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SUPPLEMENTAL DIGITAL CONTENT 

eAppendix 1: Additional information on hospitalization data in Brazil 

 The national hospital discharge database covers the majority of the national population in 

Brazil (e.g., 82% in 2012).1 Diseases were categorized using International Classification of 

Diseases (ICD) 10 code, and only the primary ICD10 discharge code was consistently available 

for each hospitalization event. Data from Brazil were selected in this study because it has one of 

the most comprehensively-collected hospitalization databases in the world and has high 

geographic resolutions. Brazil also has interesting geographic characteristics, capturing a broad 

range of income/development levels and climatic zones. There are 27 states and 5 regions in the 

country, which largely reflect climatic differences, as well as sub-national variations in human 

development, as based on income, longevity, and education. For the senior age group, two states 

in the North region were dropped from analysis, because ICD10 chapters included in the model 

had fewer than 10 hospitalizations per month on average in the study period. Therefore, 27 states 

were included in analysis for the young age group, while the old age group had 25 states. Pre-

processing of the hospitalization data, such as an adjustment for the rapid shift in the number of 

hospitalizations due to the change in coding practice in 2008, was done as described in our 

previous study.2 

 

eAppendix 2: Additional information on down-sampled data 

To assess how the number of events in a time series may affect predictions from various 

quantitative models, we performed a down sampling analysis.3,4 From the national-level data, we 

randomly subsampled the time series of ICD10 chapters, including all-cause pneumonia 

hospitalizations, using binomial distribution with various rates such that 
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𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑎𝑠𝑒𝑠.,0	~	Binomial 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑐𝑎𝑠𝑒𝑠.,0, 𝑅𝑎𝑡𝑒  

where Observed_casesi,t was the actual number of hospitalizations for disease i reported in time 

period t at the national-level. Cases were randomly sampled at rates of 10%, 1%, and 0.25%, to 

simulate the population sizes of different regions and states in Brazil. For example, the 

population sizes of the five regions were between 5% and 48% of the entire national population 

of infants and seniors. At the state level, the smallest state represented only 0.3% (State 14 in the 

North region; n=10,500) for children under 12 months of age and 0.2% (State 12 in the North 

region; n=5,900) of people 80+ years of age across Brazil.  

We repeated this sampling process 100 times and created 100 down-sampled datasets at 

each of these rates. We then fit the models to each of these down-sampled datasets and 

quantified the impact of the vaccine. To evaluate the effect of sample size on the performance of 

the models, the estimated impact of the vaccine from the down-sampled data were compared to 

those from the national-level data, assuming the national estimate was the “ground truth.”  

 

eAppendix 3: Additional information on the simulated time series data 

 The number of outcome (𝑂𝑢𝑡𝑐𝑜𝑚𝑒0) and four control diseases (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐴0, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵0, 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐶0, and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷0) are randomly sampled from the following means to generate the 

time series: 

𝜆EF0GEHI_0 = exp	(𝛽P − 1.5 ∗ 𝑡V + 3 ∗ 𝑠𝑝𝑙P +
log 0.8
24

∗ 𝑠𝑝𝑙V −
log 0.8
24

∗ 𝑠𝑝𝑙^ + 0.1

∗ 𝑠𝑖𝑛
2𝜋𝑡
12

+ 0.2 ) 

𝜆GEb0cEde_0 = exp	(𝛽P − 1.5 ∗ 𝑡V + 3 ∗ 𝑠𝑝𝑙P + 0.1 ∗ 𝑠𝑖𝑛
2𝜋𝑡
12

+ 0.2 ) 
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𝜆GEb0cEdf_0 = exp	(0.965 ∗ 𝛽P − 0.75 ∗ 𝑡V + 1.5 ∗ 𝑠𝑝𝑙P + 0.1 ∗ 𝑠𝑖𝑛
2𝜋𝑡
12

+ 1.2 ) 

𝜆GEb0cEdj_0 = exp	(0.94 ∗ 𝛽P − 1.8 ∗ 𝑡V + 3.6 ∗ 𝑠𝑝𝑙P + 0.05 ∗ 𝑠𝑖𝑛
2𝜋𝑡
12

+ 0.4 ) 

𝜆GEb0cEdk_0 = exp	(𝛽P − 0.3 ∗ 𝑡V + 0.6 ∗ 𝑠𝑝𝑙P + 0.15 ∗ 𝑠𝑖𝑛
2𝜋𝑡
12

+ 0.8 ) 

𝑠𝑝𝑙P	captures a secular trend that begins in month 43 (specified as a linear spline). 𝑠𝑝𝑙V and 

𝑠𝑝𝑙^	capture a vaccine-associated decline, which continues for 24 months and then levels out 

(also specified as linear splines). 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒0	~	Poisson 𝜆EF0GEHI_0  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐴0	~	Poisson 𝜆GEb0cEde_0  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵0	~	Poisson 𝜆GEb0cEdf_0  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐶0	~	Poisson 𝜆GEb0cEdj_0  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷0	~	Poisson 𝜆GEb0cEdk_𝑡  

𝛽P = log	(8000 ∗ 𝑝) 

𝑡V =
1
120

,
2
120

,… , 1 

where 𝑝 is the sample size (1, 0.1, 0.01, or 0.0025). For each value of	𝑝, we simulated 100 time 

series data. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐴0 is considered “perfect control,” as it had the exact same trend as the 

outcome until the simulated vaccine introduction.  

 

eAppendix 4: Additional information on the synthetic control (SC) model  

The SC modeling framework is as follows: 

ln 𝑌0 + 0.50 = 𝛽P + 𝛾q𝐼 𝑚 𝑡 = 𝑗
V^

qt^

+ 𝛽q(𝛿q) ln xq0 + 0.50
v

qtV

+ 𝜖0;				 
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𝑡 = 1,2, … , total	number	of	time	points  

where 𝑌0 represents the number of pneumonia hospitalizations at time t; xq0 represents the count 

of control disease j at time t; 𝑚 𝑡  is a function that maps a time point to the corresponding 

calendar month; 𝛾q represents the month j regression coefficient; 𝐼 .  represents the indicator 

function; p is the total number of control diseases in the analysis; 𝛽q(𝛿q) is the regression 

coefficient for control disease j which is given a spike-and-slab prior distribution (depending on 

𝛿q) in order to allow for data-driven variable selection5; 𝛿q are binary random variables that 

indicate if control disease j is included in the regression model (𝛿q = 1) or not (𝛿q = 0); and 

𝜖0~𝑁(0, 𝜎�^). The regression coefficients, 𝛽q(𝛿q) for control disease j, are not time varying, 

because we assume that the relationships between the outcome and control diseases are constant 

over time. Time series for the outcome and control diseases were log-transformed prior to being 

used in the model in order to alleviate the effects of epidemics on the long-term trend and to 

more closely resemble normality assumed in the model. As a continuity correction, 0.5 was 

added to all data points. The 2009 influenza pandemic was adjusted for by including dummy 

variables for the months in which the pandemic peaked.1 The full list of control diseases included 

in the SC model can be found in eTable 1. Control diseases included in the model varied across 

states, because data on some control diseases might not be available or were filtered out because 

there were fewer than 10 hospitalizations per month on average in the study period in some states 

(See eAppendix 1 about filtering). On average, 15 and 18 control diseases were included for 

variable selection in the SC model in the states among children and the elderly, respectively.  

Full details on the prior distribution can be found in the paper by Bruhn, et al.1,5 Briefly, 

we used spike and slab priors to select variables in the candidate models with equal prior 

probability of inclusion for each variable (π = 0.5). We collected 9,000 posterior samples after a 
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burn-in period of 1,000 iterations for each fitted model. The convergence of the Markov chain 

Monte Carlo sampling algorithm was evaluated using the Geweke diagnostic and Gelman Rubin 

diagnostic.6-8 There were no obvious signs of non-convergence as the p-values from the Geweke 

diagnostic tests were all larger than 0.05 and the potential scale reduction factors were <1.1 

across all parameters. The effective sample size was also checked to confirm that we had enough 

posterior samples to make valid inference.9,10 

 

eAppendix 5: Additional information on the STL+PCA model 

The seasonal-trend decomposition procedure based on locally weighted scatterplot 

smoothing (STL method) decomposes time series into three components: trend, seasonality, and 

the remaining variation in data (eFigure 3).11 The observed number of control disease 𝑗 cases in 

month t, denoted by 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷𝑖𝑠𝑒𝑎𝑠𝑒q0, can be written as follows: 

ln(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷𝑖𝑠𝑒𝑎𝑠𝑒q0 + 0.50) = 𝑇q0 + 𝑆q0 + 𝑅q0 

where 𝑇q0, 𝑆q0, and 𝑅q0 are the trend component, annual seasonal component, and remainder 

component, respectively. For the STL trend extraction, the span of the locally weighted 

scatterplot smoothing (LOESS) window can be changed to control the smoothness of the 

extracted trends. The larger the LOESS window is, the smoother the extracted trends are 

(eFigure 4). We set it to be 5, 25, and 59 months, and selected the optimal size using the 

deviance information criterion (DIC).12 The model with the optimal window size was then used 

to generate the counterfactual for the post-vaccine period and to quantify the impact of vaccine. 

The principal component analysis (PCA) allows us to create new uncorrelated projections 

that explain the maximum variability in the data overall.13-16 PCA was applied to the trends for 

control diseases extracted by the STL method. Extracted trends were first converted into standard 
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deviation units (Z scores) by subtracting off the mean of each variable and dividing by its 

standard deviation, as the variables included in PCA need to have the same scale. PCA involved 

an 𝑛×𝑝 matrix, 𝑋, where 𝑝 represents the number of control diseases and 𝑛 represented the total 

number of time points. The jth column of matrix 𝑋, 𝑥q, represents the time series of a scaled 

extracted trend for control disease j. We then find a linear combination of these extracted trends 

(i.e., columns of matrix 𝑋) with maximum variance, which are given by  

𝑎q𝑥q = 𝑋𝑎
v

qtV

 

where 𝑎 is a vector of constants 𝑎V, 𝑎^, … , 𝑎v. The variance of this linear combination can be 

written as follows: 

𝑉𝑎𝑟 𝑋𝑎 = 𝑎′𝑆𝑎 

where 𝑆	represents the sample covariance matrix associated with the dataset. Therefore, the 

linear combination that explains the largest variance can be identified by obtaining a 𝑝-

dimensional vector 𝑎 which maximizes the quadratic form 𝑎′𝑆𝑎. 

The JAGS model was fit using the rjags package in R version 3.4.3 (Vienna, Austria).17 

We initialized two independent Markov chains and collected 10,000 posterior samples after a 

burn-in period of 5,000 iterations for the Brazil data, and 5,000 posterior samples after a burn-in 

period of 1,000 iterations for the simulated time series data. Convergence was assessed as 

described in eAppendix 4. The JAGS model was specified as follows. A negative binomial 

regression was used due to the over-dispersion present in the data: 

𝜆0 = exp 𝛽P + 𝛾q𝐼 𝑚 𝑡 = 𝑗
V^

qt^

+ 𝛽V𝑃𝐶10  

𝑃𝑟𝑒𝑣𝑎𝑐𝑐𝑖𝑛𝑒𝑂𝑢𝑡𝑐𝑜𝑚𝑒0~Negative	Binomial 𝑝0, σ  
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𝑝0 =
σ

σ +	𝜆0
 

σ~Uniform 0, 50 ; 𝑡 = 1,2, … , 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡𝑠 

𝛾q~𝑁 0, 0.00001 ; 𝑗 = 2,… , 12 

𝛽�~𝑁 0, 0.00001 ; 𝑘 = 0, 1 

where 𝑃𝑟𝑒𝑣𝑎𝑐𝑐𝑖𝑛𝑒𝑂𝑢𝑡𝑐𝑜𝑚𝑒0 represents the number of pneumonia hospitalizations at time t in 

the pre-vaccine period; p� is a probability parameter specific to time period t; 𝑚 𝑡  is a function 

that maps a time point to the corresponding calendar month; 𝛾q represents the month j regression 

coefficient; 𝐼 .  represents the indicator function; 𝛽P is an intercept;  𝛽V is the regression 

coefficient for the first principal component (PC1); σ	is a dispersion parameter for the negative 

binomial model;	𝜆0 is the expected value of the negative binomial distribution; and 𝜖0~𝑁(0, 𝜎�^). 

 

eAppendix 6: Results on cross validation of the STL+PCA model 

We have performed cross validation using the down-sampled pre-vaccine data with the 

rate 0.25% for the elderly in Brazil. We trained our model using four years of pre-vaccine data 

(2004–2007) and generated prediction for 2008. Although it was part of the pre-vaccine period, 

we avoided using the 2009 data due to a large 2009 influenza outbreak. The 95% credible 

interval of the rate ratio included one in 97% of 100 down-sampled datasets, suggesting that this 

model successfully predicted the 2008 data.   

 

eAppendix 7: Full list of posterior inclusion probabilities of control diseases for children <12 

months of age 

Please see the Excel file.  
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eAppendix 8: Full list of posterior inclusion probabilities of control diseases for adults 80+ 

years of age 

 Please see the Excel file. 

 

eAppendix 9: Mean squared error, variance, and bias squared 

 The performance of models was compared using the mean squared error (MSE), which 

was calculated as follows: 

𝑀𝑆𝐸 = 	
𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑅 − 𝑅𝑅.

^b
.tV

𝑛
 

where 𝑅𝑅. represents a rate ratio for dataset i and n is the number of total datasets compared in 

each analysis (i.e., total number of states for state-level analysis and 100 for down-sampled 

analysis). 

MSE was decomposed to variance and bias squared, which were calculated as follows: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
(𝑅𝑅. − 𝑅𝑅)^b

.tV

𝑛
 

𝐵𝑖𝑎𝑠^ = 	 (𝑅𝑅 − 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑅)^ 

where 𝑅𝑅 = (���)
�
���
b

 . The sum of variance and bias squared is equal to MSE. 
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eTable 1. List of Control Diseases Included in the Synthetic Control Model. 
 

 
  

Grouping	scheme ICD-10 Exclusions
ICD-10	chapters

C00_D48 Neoplasms
D50_89 Diseases	 of	blood	and	blood-forming	organs	and	certain	

disorders	involving	the	immune	mechanism
E00_99 Endocrine,	nutritional,	metabolic	disorders
G00_99_SY Diseases	 of	the	nervous	system G00_04
H00_99_SY Diseases	 of	the	ear	and	mastoid	process H10,	H65,	H66
I00_99 Diseases	 of	the	circulatory	system
K00_99 Diseases	 of	the	digestive	system
L00_99 Diseases	 of	the	skin
M00_99 Diseases	 of	the	musculoskeletal	system
N00_99 Diseases	 of	the	genitourinary	system
P00_99 Perinatal	diseases
Q00_99 Congenital	malformations,	deformations	and	chromosomal	

abnormalities
S00_T99 Injury,	poisoning	and	consequences	of	external	causes
Z00_99 Factors	influencing	health	status	and	contact	with	health	

workers
Other	grouped	outcomes

a10_b99_nopneumo Certain	infectious	and	parasitic	diseases,	except	intestinal A40.3,	B95
B20_24 HIV
E10_14 Diabetes
E40_46 Malnutrition
I60_64 Stroke
J20_22 Bronchitis,	bronchiolitis	and	unspecified	acute	lower	respiratory	

infection
P05_07 Premature	delivery	and	low	birth	weight
ach_noj All	nonrespiratory	hospitalizations J00_99,	F	and	O	chapters

Specific	outcomes
A39 Meningococcal	infection
A41 Other	septicemia
B34 Viral	infection	of	unspecified	site
K35 Appendicitis
K80 Cholelithiasis
N39 Urinary	tract	infection
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eFigure 1. National-level Time Series of Observed and Counterfactual All-cause Pneumonia 
Hospitalizations Generated by the Synthetic Control Model for (A) Cases <12 Months and (B) 
80+ Years of Age in Brazil. 
 

 
 
The observed number of pneumonia hospitalizations is represented by black lines. The 
counterfactual number of pneumonia hospitalizations and their 95% credible intervals are 
represented by white dashed lines and grey areas. Vertical dashed lines indicates the timing of 
PCV10 introduction (January 2010) and the start of the evaluation period (January 2013).  
 
Abbreviations: PCV10, 10-valent pneumococcal conjugate vaccine. 
  

A)	<12	months

B)	80+	years
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eFigure 2. Simulated Monthly Time Series Data From a Single Simulation. 
 

 
 
The outcome is in black, the perfect control is in blue, and the remaining controls are in green, 
orange, and red. Percentages at the top of panels represent the sample size. Vertical dashed lines 
represent the timing of the simulated vaccine introduction (Month 85). 
 
  

A)	100%	
(~8000	cases	out	the	outcome	in	Month	1)

B)	10%	
(~800	cases	out	the	outcome	in	Month	1)

C)	1%	
(~80	cases	out	the	outcome	in	Month	1)

D)	0.25%	
(~25	cases	out	the	outcome	in	Month	1)
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eFigure 3. Diagram of the STL+PCA Model. 
 

 
 
Abbreviations: STL, seasonal-trend decomposition procedure based on locally weighted 
scatterplot smoothing; PCA, principal component analysis. 
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eFigure 4. Example of STL Decomposition Using Different Sizes of the LOESS Window 
(ICD10 code: I00_99, 80+ yo in Brazil). 
 
	

 
 
Observed number of hospitalizations is in black, and trends extracted by the STL method using 
different sizes of the LOESS window (5, 25, and 59 months) are in red. 
 
Abbreviations: LOESS, locally weighted scatterplot smoothing; STL, seasonal-trend 
decomposition procedure based on locally weighted scatterplot smoothing. 
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eFigure 5. Variance (A) and Bias Squared (B) of Estimated Rate Ratios from Down-sampled 
Datasets (80+ yo, Brazil). 
 

 
 
Abbreviations: STL, seasonal-trend decomposition procedure based on locally weighted 
scatterplot smoothing; PCA, principal component analysis.  

A B

Synthetic	control	model
STL+PCA	model

Synthetic	control	model
STL+PCA	model
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eFigure 6. Estimated Rate Ratios for Down-sampled Datasets (<12 mo, Brazil). 
 
	

 
 
Each black dot represents a RR estimated for each down-sampled dataset. Dark grey bars 
associated with these dots represent 95% credible intervals for RRs. The percentages at the top 
represent the down-sampling rates. Black vertical lines represent the null value (RR=1) and red 
dashed lines represent national estimates of RR generated by each type of the model.  
 
Abbreviations: RR, rate ratio; SC, synthetic control; STL, seasonal-trend decomposition 
procedure based on locally weighted scatterplot smoothing; PCA, principal component analysis.  
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eFigure 7. Mean Squared Errors of Estimated Rate Ratios from Down-sampled Datasets (<12 
mo, Brazil). 
 

 
 
Abbreviations: MSE, mean squared error; STL, seasonal-trend decomposition procedure based 
on locally weighted scatterplot smoothing; PCA, principal component analysis.  

Synthetic	control	model
STL+PCA	model
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eFigure 8. Mean Squared Errors (A), Variance (B), and Bias Squared (C) of Estimated Rate 
Ratios from Simulated Time Series Data. 
 

 
 

  
 
Abbreviations: MSE, mean squared error; STL, seasonal-trend decomposition procedure based 
on locally weighted scatterplot smoothing; PCA, principal component analysis. 
  

A B C
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eFigure 9. Rate Ratios for Down-sampled Datasets Estimated by the Synthetic Control Model 
Including Both National-level Covariates and Down-sampled Covariates (80+ yo, Brazil). 
 

 
 
Each black dot represents a rate ratio (RR) estimated for each down-sampled dataset. Dark grey 
bars associated with these dots represent 95% credible intervals for RRs. Vertical red lines 
represent the null value (RR=1). The percentages at the top represent the down-sampling rates. 
  

1% 0.5% 0.25%

Estimated	rate	ratios
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eFigure 10. Rate Ratios for Down-sampled Datasets Estimated by the Synthetic Control Model 
Using Quarterly Data for 80+ yo, Brazil. 
 

 
 
Each black dot represents a rate ratio (RR) estimated for each down-sampled dataset. Dark grey 
bars associated with these dots represent 95% credible intervals for RRs. Vertical red lines 
represent the null value (RR= 1). The percentages at the top represent the down-sampling rates.  
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