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1. RESULTS FOR THE RISK RATIO

a. General selection bias

Bounding factor

Assume that the causal risk ratio P (Y1=1)
P (Y0=1) is identifiable (perhaps within strata of confounders)

as

RRtrue
AY =

P (Y = 1|A = 1)

P (Y = 1|A = 0)
.

Assume, however, that we only have access to data in a selected sample, so we are actually

estimating

RRobs
AY =

P (Y = 1|A = 1, S = 1)

P (Y = 1|A = 0, S = 1)
.

Finally, assume that although Ya?? A, it is not the case that Ya?? A|S = 1, so that the observed

risk ratio is a biased estimator of the true causal risk ratio in the total population. (When

Ya?? A|S = 1, the causal risk ratio for the selected population is unbiased and can be estimated

in the data, but may di↵er from the causal e↵ect in the total population due to di↵erences in

the distribution of other risk factors for the outcome.)

We define the selection bias factor as

bias =
RRobs

AY

RRtrue
AY

.

Assume that bias > 1. If not, reverse the coding of A (so that we when we bound the bias from

above, as follows, we are in fact bounding the originally coded bias from below).

Because

RRtrue
AY =

P (Y = 1|A = 1, S = 0)P (S = 0|A = 1) + P (Y = 1|A = 1, S = 1)P (S = 1|A = 1)

P (Y = 1|A = 0, S = 0)P (S = 0|A = 0) + P (Y = 1|A = 0, S = 1)P (S = 1|A = 0)
,

we have that

bias 
⇢
P (Y = 1|A = 1, S = 1)

P (Y = 1|A = 0, S = 1)

�
/

⇢
mins P (Y = 1|A = 1, S = s)

maxs P (Y = 1|A = 0, S = s)

�
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=

⇢
P (Y = 1|A = 1, S = 1)

mins P (Y = 1|A = 1, S = s)

�
⇥
⇢
maxs P (Y = 1|A = 0, S = s)

P (Y = 1|A = 0, S = 1)

�
. (1)

We have 4 possibilities for the right-hand side, depending on what values S takes on to

maximize and minimize the respective expressions.

Take first the case in which S = 0 in both places. This occurs when P (Y = 1|A = 1, S =

1) � P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1)  P (Y = 1|A = 0, S = 0).

Then

bias 
⇢
P (Y = 1|A = 1, S = 1)

P (Y = 1|A = 1, S = 0)

�
⇥
⇢
P (Y = 1|A = 0, S = 0)

P (Y = 1|A = 0, S = 1)

�
. (2)

Now assume that there exists U such that Y ?? S|{A,U}. We will assume a categorical U

with values u = 1, 2, ..., k for ease of notation, but U can also be continuous and/or a vector of

random variables.

Since P (Y = 1|A = a, S = 1, U = u) = P (Y = 1|A = a, S = 0, U = u) = P (Y = 1|A =

a, U = u), we can rewrite equation (2):

bias 
(Pk

u=1 P (Y = 1|A = 1, U = u)P (U = u|A = 1, S = 1)
Pk

u=1 P (Y = 1|A = 1, U = u)P (U = u|A = 1, S = 0)

)
⇥

(Pk
u=1 P (Y = 1|A = 0, U = u)P (U = u|A = 0, S = 0)

Pk
u=1 P (Y = 1|A = 0, U = u)P (U = u|A = 0, S = 1)

)
.

By Lemma A.3. in Ding and VanderWeele 2016a,1 we have that

Pk
u=1 P (Y = 1|A = 1, U = u)P (U = u|A = 1, S = 1)

Pk
u=1 P (Y = 1|A = 1, U = u)P (U = u|A = 1, S = 0)


RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1
(3)

and

Pk
u=1 P (Y = 1|A = 0, U = u)P (U = u|A = 0, S = 0)

Pk
u=1 P (Y = 1|A = 0, U = u)P (U = u|A = 0, S = 1)


RRUY |(A=0) ⇥ RRSU |(A=0)

RRUY |(A=0) +RRSU |(A=0) � 1
(4)
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where

RRUY |(A=1) =
maxu P (Y = 1|A = 1, u)

minu P (Y = 1|A = 1, u)

RRUY |(A=0) =
maxu P (Y = 1|A = 0, u)

minu P (Y = 1|A = 0, u)

RRSU |(A=1) = max
u

P (U = u|A = 1, S = 1)

P (U = u|A = 1, S = 0)

RRSU |(A=0) = max
u

P (U = u|A = 0, S = 0)

P (U = u|A = 0, S = 1)
.

These values can be interpreted as the maximum relative risks comparing any two values

of U on Y within strata of A = 1 and A = 0, respectively; and the maximum factors by which

selection increases the prevalence of some value of U within the stratum A = 1 and by which

non-selection increases the relative prevalence of some value of U within stratum A = 0.

Each expression in the left-hand side of (2) is positive, so from (3) and (4) we have that

bias 
✓

RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1

◆
⇥
✓

RRUY |(A=0) ⇥ RRSU |(A=0)

RRUY |(A=0) +RRSU |(A=0) � 1

◆
. (5)

Now consider the cases in which S, in one of both of the expressions in (1), takes on the

value 1. In that case, one or both of the factors in (1) is equal to 1.

If P (Y = 1|A = 1, S = 1)  P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1) � P (Y =

1|A = 0, S = 0) then

bias  1 .

If P (Y = 1|A = 1, S = 1) � P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1) � P (Y =

1|A = 0, S = 0) then

bias 
RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1
.

If P (Y = 1|A = 1, S = 1)  P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1)  P (Y =

1|A = 0, S = 0) then

bias 
RRUY |(A=0) ⇥ RRSU |(A=0)

RRUY |(A=0) +RRSU |(A=0) � 1
.
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Because the right-hand side of equation (5) is greater or equal to the right-hand side of the

three bias inequalities under the other three conditions, then it is an upper bound for the bias

in each case.

Summary measure

To construct a summary measure for the strength of a given risk ratio against selection bias,

we can find the smallest risk ratio implied by the bounding factor that would be su�cient to

reduce a given RRobs
AY to RRtrue

AY = 1, assuming each of the parameters in the bounding factor

were of that same magnitude. Denote that value RR. Then

RRobs
AY  RR4

(2RR� 1)2
.

Solving this inequality for RR shows us that for selection bias to completely explain away

RRobs
AY ,

RRUY |(A=1) = RRUY |(A=0) = RRSU |(A=1) = RRSU |(A=0) �
q
RRobs

AY +

r
RRobs

AY �
q
RRobs

AY .

b. When S = U

Bounding factor

In some cases selection may be directly determined by U , so that S = U . Then RRSU |(A=0) =

RRSU |(A=1) =
1
0 . To bound the bias in such cases we can take the limit of the right-hand side of

equation (5) as each RRSU approaches 1:

bias  lim
RRSU!1

✓
RRUY |(A=1) ⇥ RRSU

RRUY |(A=1) +RRSU � 1

◆
⇥
✓

RRUY |(A=0) ⇥ RRSU

RRUY |(A=0) +RRSU � 1

◆

= RRUY |(A=0) ⇥ RRUY |(A=1)
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Summary measure

When S = U , if RRtrue
AY = 1, then

RRobs
AY  RRUY |(A=0) ⇥ RRUY |(A=1) .

By the same reasoning as above, if we assume both parameters in the bounding factor are of

the same magnitude, then

RRUY |(A=0) = RRUY |(A=1) 
q
RRobs

AY .

c. Increased risk in both exposure groups

Bounding factor

When P (Y = 1|A = 1, S = 1)/P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1)/P (Y =

1|A = 0, S = 0) are both greater than 1, equation (1) can be rewritten

bias  P (Y = 1|A = 1, S = 1)

P (Y = 1|A = 1, S = 0)
.

Results 3A follows from the derivation of Result 1A using only that factor in (1), giving us:

bias 
RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1
.

Summary measure

Again denote by RR the smallest risk ratio implied by the bounding factor that would

be su�cient to reduce a given RRobs
AY to RRtrue

AY = 1, assuming each of the parameters in the

bounding factor in Result 3B were of that same magnitude. Then

RRobs
AY  RR2

2RR� 1
.
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Solving this inequality for RR shows us that for selection bias to completely explain away

RRobs
AY ,

RRUY |(A=1) = RRSU |(A=1) � RRobs
AY +

s

RRobs
AY

✓q
RRobs

AY � 1

◆
.

d. Increased risk in both exposure groups and when S = U

Bounding factor

Result 4A immediately follows from Results 2A and 3A.

Summary measure

Result 4B is trivial.

e. Inference in the selected population

Bounding factor

Now assume that the parameter of interest is the causal risk ratio within the selected

population, P (Y1=1|S=1)
P (Y0=1|S=1) .

Again we can estimate

RRobs
AY =

P (Y = 1|A = 1, S = 1)

P (Y = 1|A = 0, S = 1)

from a sample, but since it is not the case that Ya?? A|S = 1, the observed risk ratio is again a

biased estimator of the causal risk ratio.

Assume, however, that Ya?? A|{S = 1, U}, so that

RRtrue
AY |(S=1) =

Pk
u=1 P (Y = 1|A = 1, U = u, S = 1)P (U = u|S = 1)

Pk
u=1 P (Y = 1|A = 0, U = u, S = 1)P (U = u|S = 1)

By Result 1 in in Ding and VanderWeele 2016b,2

RRobs
AY

RRtrue
AY |(S=1)


RRUY |(S=1) ⇥ RRAU |(S=1)

RRUY |(S=1) +RRAU |(S=1) � 1
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where

RRUY |(S=1) = max
a

maxu P (Y = 1|A = a, S = 1, U = u)

minu P (Y = 1|A = a, S = 1, U = u)

RRAU |(S=1) = max
u

P (U = u|A = 1, S = 1)

P (U = u|A = 0, S = 1)
.

Summary measure

The analytic form of Result 5A is equivalent to that of Result 2A. It therefore follows that

the minimum magnitude of each of the two parameters that make up the bounding factor in

Result 5A, assuming they are equal, that would be su�cient to shift a given RRobs
AY to the null

is given by:

RRUY |(S=1) = RRAU |(S=1)  RRobs
AY +

q
RRobs

AY (RR
obs
AY � 1) .

2. RESULTS FOR THE RISK DIFFERENCE

a. General selection bias

Bound

As with the risk ratio, we assume that the causal risk di↵erence P (Y1 = 1)� P (Y0 = 1) is

identifiable as

RDtrue
AY = P (Y = 1|A = 1)� P (Y = 1|A = 0) .

We exclude the variables necessary to eliminate confounding from the conditioning statement for

ease of notation, but the above could hold conditional on confounders C, in which case assume

all probability statements that follow are also conditional on confounders C.

If we only have data from a selected population, we observe

RDobs
AY = P (Y = 1|A = 1, S = 1)� P (Y = 1|A = 0, S = 1) .

Again we assume that it is not the case that Ya?? A|S = 1, so that RDobs
AY is a biased estimator

of the causal risk di↵erence. Now we are concerned with bias on the additive scale:

bias = RRobs
AY � RRtrue

AY .
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Assume that the bias is non-negative; if not, recode the exposure A so that it is.

Because RDtrue
AY � mins P (Y = 1|A = 1, S = s)�maxs P (Y = 1|A = 0, S = s), we have that

bias  [P (Y = 1|A = 1, S = 1)� P (Y = 1|A = 0, S = 1)] �

h
min
s

P (Y = 1|A = 1, S = s)�max
s

P (Y = 1|A = 0, S = s)
i
. (6)

The right-hand side of equation (6) is maximized with S = 0 in both conditioning statements,

so we will find a bound for the bias under that condition.

We can therefore rewrite (6):

bias  [P (Y = 1|A = 1, S = 1)� P (Y = 1|A = 1, S = 0)] +

[P (Y = 1|A = 0, S = 0)� P (Y = 1|A = 0, S = 1)] . (7)

The bias is bounded by the sum of two risk di↵erences representing the association between S

and Y within strata of A. To deal with each of them simultaneously we will consider bounding

the apparent risk di↵erence for any value A = a and two values of S, s and s⇤:

RDapp
SY = P (Y = 1|A = a, S = s)� P (Y = 1|A = a, S = s⇤) . (8)

(This risk di↵erence is never actually observed because we have no data for the stratum S = 0,

which must be either s or s⇤.)

Assume there exists U such that P (Y = 1|A = a, S = s, U = u) � P (Y = 1|A = a, S =

s⇤, U = u) = 0 for all values u, or equivalently Y ?? S|{A,U}. In other words, conditioning

on U is su�cient to eliminate the apparent association between S and Y (and therefore the

selection bias as well, as the extent to which RDapp
SY is non-zero (for each value of A) is essentially

the extent of the bias due to selection). We will denote the risk di↵erence conditional on U as

RDtrue
SY .

Because RDtrue
SY = 0, a bound for RDapp

SY � RDtrue
SY is also a bound for RDapp

SY .
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We can use results from Ding and VanderWeele 2016b2 to bound RDapp
SY . From their results

we have that

P (Y = 1|A = a, S = s)

P (Y = 1|A = a, S = s⇤)


RRUY |(A=a) ⇥ RRSU |(A=a)

RRUY |(A=a) +RRSU |(A=a) � 1
(9)

where

RRUY |(A=a) =
maxu P (Y = 1|A = a, u)

minu P (Y = 1|A = a, u)

and

RRSU |(A=a) = max
u

P (U = u|A = a, S = s)

P (U = u|A = a, S = s⇤)
.

Rearranging (9) shows us that

RDapp
SY  P (Y = 1|A = a, S = s⇤)⇥

RRUY |(A=a) ⇥ RRSU |(A=a)

RRUY |(A=a) +RRSU |(A=a) � 1
�

P (Y = 1|A = a, S = s)⇥
RRUY |(A=a) +RRSU |(A=a) � 1

RRUY |(A=a) ⇥ RRSU |(A=a)
.

Returning to equation (7), we now can replace each of the apparent risk di↵erences with their

bounds, which will be an overall bound for the bias:

bias  P (Y = 1|A = 1, S = 0)⇥ BF1 � P (Y = 1|A = 1, S = 1)/BF1 +

P (Y = 1|A = 0, S = 1)⇥ BF0 � P (Y = 1|A = 0, S = 0)/BF0

where

BF1 =
RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1

and

BF0 =
RRUY |(A=0) ⇥ RRSU |(A=0)

RRUY |(A=0) +RRSU |(A=0) � 1

with the RR parameters defined as in section I.

Because the probabilities conditional on S = 0 aren’t generally observed, we can replace those

values with their possible extremes, 0 and 1, to obtain the bound:

bias  BF1 � P (Y = 1|A = 1, S = 1)/BF1 + P (Y = 1|A = 0, S = 1)⇥ BF0 . (10)
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b. When S = U

Bound

As in section I, when S = U , we can take the limit of equation (10) as each of the RRSU

terms in BF1 and BF0 approaches 1:

bias  lim
RRSU!1

BF1 � P (Y = 1|A = 1, S = 1)/BF1 + P (Y = 1|A = 0, S = 1)⇥ BF0

= RRUY |(A=1) � P (Y = 1|A = 1, S = 1)/RRUY |(A=1) + P (Y = 1|A = 0, S = 1)⇥ RRUY |(A=0)

c. Increased risk in both exposure groups

Bound

When P (Y = 1|A = 1, S = 1)�P (Y = 1|A = 1, S = 0) and P (Y = 1|A = 0, S = 1)�P (Y =

1|A = 0, S = 0) are both greater than 0, (6) can be rewritten

bias  P (Y = 1|A = 1, S = 1)� P (Y = 1|A = 1, S = 0) .

Following the derivation of Result 2A, we find that

bias  P (Y = 1|A = 1, S = 0)⇥
RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1
�

P (Y = 1|A = 1, S = 1)⇥
RRUY |(A=1) +RRSU |(A=1) � 1

RRUY |(A=1) ⇥ RRSU |(A=1)
.

In terms of the observable data, we have:

bias 
RRUY |(A=1) ⇥ RRSU |(A=1)

RRUY |(A=1) +RRSU |(A=1) � 1
�P (Y = 1|A = 1, S = 1)⇥

RRUY |(A=1) +RRSU |(A=1) � 1

RRUY |(A=1) ⇥ RRSU |(A=1)
.
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d. Increased risk in both exposure groups and when S = U

Bound

Combining Results 2A and 3A, we have that

bias  RRUY |(A=1) � P (Y = 1|A = 1, S = 1)/RRUY |(A=1) .

e. Inference in the selected population

Bound

When we are concerned with the causal risk di↵erence P (Y1 = 1|S = 1)� P (Y0 = 1|S = 1),

we assume that Ya?? A|{S = 1, U}; that is, conditioning on U is su�cient to eliminate the bias

induced by conditioning on the selected population. This is an equivalent condition to that

which requires U to su�ce to control for confounding, conditional on measured confounders, in

VanderWeele and Ding 2016b.2 We can use their results for bounding the causal risk di↵erence

under unmeasured confounding as follows.

Define the following for arbitrary U with K levels (for notational simplicity, as in Section I):

RDtrue
AY +|S=1 = P (Y = 1|A = 1, S = 1)�

KX

k=1

P (Y = 1|A = 0, S = 1, U = k)P (U = k|A = 1, S = 1)

RDtrue
AY �|S=1 =

KX

k=1

P (Y = 1|A = 1, S = 1, U = k)P (U = k|A = 0, S = 1)�P (Y = 1|A = 0, S = 1)

RDtrue
AY |S=1 = P (A = 1|S = 1)⇥ RDtrue

AY +|S=1 + (1� P (A = 1|S = 1))⇥ RDtrue
AY �|S=1

bias = RDobs
AY � RDtrue

AY |S=1

BFU =
RRUY |(S=1) ⇥ RRAU |(S=1)

RRUY |(S=1) +RRAU |(S=1) � 1

where the parameters in BFU are defined as in Section I and RDobs
AY as from Result 1A in Section

II.

Because

RDtrue
AY |S=1 � min

⇣
RDtrue

AY +|S=1,RD
true
AY �|S=1

⌘
,
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we have that

bias  max
⇣
RDobs

AY � RDtrue
AY +|S=1,RD

obs
AY � RDtrue

AY �|S=1

⌘
.

Using the lower bounds for the causal risk di↵erences from Ding and VanderWeele 2016b,2

we have that

RDtrue
AY +|S=1 � RDobs

AY  P (Y = 1|A = 0, S = 1)⇥ (BFU � 1)

and

RDtrue
AY �|S=1 � RDobs

AY  P (Y = 1|A = 1, S = 1)⇥ (1� 1/BFU ) .

Therefore,

bias  max (P (Y = 1|A = 0, S = 1)⇥ (BFU � 1), P (Y = 1|A = 1, S = 1)⇥ (1� 1/BFU )) .
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eTable for Bounding bias due to selection

eTable. Summary of bounding factors for selection bias on the risk di�erence scale and their summary measures under di�erent scenarios.

Bounda

Result 1. General selection
biasb,c

RRUY |(A=1)◊RRSU|(A=1)
RRUY |(A=1)+RRSU|(A=1)≠1 ≠P (Y = 1|A = 1, S = 1)◊ RRUY |(A=1)+RRSU|(A=1)≠1

RRUY |(A=1)◊RRSU|(A=1)
+P (Y = 1|A = 0, S = 1)◊ RRUY |(A=0)◊RRSU|(A=0)

RRUY |(A=0)+RRSU|(A=0)≠1

Result 2. When S = Ub,d RRUY |(A=1) ≠ P (Y = 1|A = 1, S = 1)/RRUY |(A=1) + P (Y = 1|A = 0, S = 1) ◊ RRUY |(A=0)

Result 3. Increased risk with
selection in both exposure
groupsb,e

RRUY |(A=1)◊RRSU|(A=1)
RRUY |(A=1)+RRSU|(A=1)≠1 ≠ P (Y = 1|A = 1, S = 1) ◊ RRUY |(A=1)+RRSU|(A=1)≠1

RRUY |(A=1)◊RRSU|(A=1)

Result 4. S = U and
increased risk

RRUY |(A=1) ≠ P (Y = 1|A = 1, S = 1)/RRUY |(A=1)

Result 5. Inference in the
selected populationf

max
1

P (Y = 1|A = 0, S = 1) ◊
1

RRUY |(S=1)◊RRAU|(S=1)
RRUY |(S=1)+RRAU|(S=1)≠1 ≠ 1

2
, P (Y = 1|A = 1, S = 1) ◊

1
1 ≠ RRUY |(S=1)+RRAU|(S=1)≠1

RRUY |(S=1)◊RRAU|(S=1)

22

a The bias due to selection of the observed risk di�erence, RDobs
AY ≠ RDtrue

AY , is guaranteed to be less than this value. The parameters that define each bound are defined in the main text.
b The bound holds under the assumption that Y  S{A, U}.
c The parameter of interest, RDtrue

AY , is the causal risk di�erence for the whole population.
d The factor responsible for selection bias, U , is common to the entire selected population.
e P (Y = |A = 1, S = 1)/P (Y = |A = 1, S = 0) and P (Y = |A = 0, S = 1)/P (Y = |A = 0, S = 0) are both greater than 1.
f The parameter of interest, RDtrue

AY |(S=1), is the causal risk di�erence in the selected population only. The bound holds under the assumption that Ya  A|{S = 1, U}.
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