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1. Table of Studies 
eTable 1: Summary of the findings of studies using meta-analysis to examine variation between arms, as cited in the introduction of the main 
text. 

Trial Statistic Topic 
Outcome 

measure 

Number of 

studies in 

meta-

analysis 

Finding 

Cally 1 logRoCV 

Sexual selection and 

population fitness 

“fitness 

components 

measured in 

females under 

stressful 

conditions” 

27 
"under stressful conditions, sexual selection tends to 

reduce the phenotypic variance in fitness traits" 

logRoCV = -0.78 (95%CI -1.23, -0.34) for females; 

for mixed sex it is similar logRoCV=-0.76 (-1.22, -

0.31) 

Chamberlain 2 
logRoSD 

(=logVR) 

Visuospatial ability in 

people with dyslexia 

Performance in 

high-level 

visuospatial tasks 

97 effect 

sizes 

Dyslexia is associated with a greater variability in 

performance on visuospatial tasks 

logRoSD = 0.102 (SE=0.0366, p=0.0108) 

Munkholm 3 
logVR 
logRoCV 

Individual response to 

antidepressants for 

depression in adults 

Hamilton 

Depression Rating 

Scale or the 

Montgomery-

Åsberg 

Depression Rating 

Scale 

345 

comparisons 

from 222 

RCTs 
No evidence for a larger variance in the 

antidepressant arm compared with placebo overall 

O'Dea 4 logRoCV 

Gender differences in 

academic grades at school 

Academic grades 346 effects 

sizes 

extracted 

from 227 

studies 

There is less variation in girls’ grades in STEM 

subjects than boys’, at school: 

logRoCV = -0.114 (-0.133, -0.095) 
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Pillinger 5 
logVR, 

logRoCV 

Immune parameters in 

psychosis 

Levels of 

peripheral 

immune 

parameters (eg. 

Level of blood 

cytokines) 

35 

For two immune parameters there is lower variance 

in control arm. 

For one immune parameter there is lower variance 

in intervention arm. 

Plöderl 6 
logVR 
logRoCV 

Personalised treatment 

with anti-depressants 

Hamilton 

Depression Rating 

Scale or the 

Montgomery-

Åsberg 

Depression Rating 

Scale 

163 

randomised, 

placebo-

controlled 

trials 

No evidence for larger variance in the arms 

receiving antidepressants compared with the control 

arm, for any antidepressant. 

Prendergast 7 F-test 

Is there a difference in 

mean spinal bone mass 

density across genotype 

groups in pre-menopausal 

women (illustration of their 

method) 

Mean spinal bone 

mass density 

13 

MLE 1.36 (1.03) 

REML 1.34 (1.00, 1.79) 

Senior 8 
logVR, 

logRoCV 

Dietary restriction and 

longevity 

Mean longevity “77 effect 

sizes of mean 

longevity from 

21 studies 

across 14 

species” from 

English and 

Uller 9   

positive, but not "statistically significant", increase in 

variance in the arm with dietary restrictions 

logVR = 0.05 (95% CI -0.045, 0.154) 

logRoCV=0.09 (-0.021, 0.205) 
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Senior 10 

logVR, 

logRoCV, 

logSD 

Effect of two dietary 

interventions on variability 

in weight (illustration of 

methods) 

Body mass (kg) 16 Not "statistically significant" - but low carbohydrate 

diets result in more variance in weight than calorie 

restricted diet: 

logVR = -0.08 (-0.19, 0.02) 

logRoCV = -0.10 (-0.20, 0.9x10^-3) 

Williamson 11 

“true 

individual 

response 

variance” 

Weight change in 

response to an exercise 

intervention 

Weight change 

(kg) 

12 
There is greater variability in weight change in the 

exercise arm, but it is not "significant": 

SD_IR = 0.8 (-0.9, 1.4) kg 

Winkelbeiner 12 logVR 
RCTs of anti-psychotic 
drugs in patients with 
schizophrenia 

Syndrome scale 52 Lower variation in intervention arm 

logVR = 0.97 (95%CI 0.95, 0.99) 
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2. Methods for examining difference in variance between trial arms – 

extension to main text methods 
In the following two sections we describe in full the methods summarised in Table 1 of the 

main text. 

Throughout the paper we use the following notation. We assume each RCT has two groups, 

referred to as control (i=0) and intervention (i=1). The groups are of size N_0 and N_1, 

respectively, where N=N_0+N_1 is the total sample size of the trial. The j^th individual in the 

trial has group allocation Z_j (=0 or 1), and a response Y_j. Let μ_i and σ_i^2 be the 

underlying mean and variance of responses Y_j for individuals in group i, with sample 

estimates denoted by μ _̂i and σ _̂i^2. 

 

2.1 Examining differences in variance between two arms using data from one trial 

Glejser’s test. The test proposed by Glejser 13 takes the absolute value of the residuals (𝜖𝑖) 

from the standard linear model: 

𝑌𝑗 =  𝛽0 +  𝛽1𝑍𝑗 +  𝜖𝑗, 

and regresses them on the explanatory variable (in this instance, the arm indicator 𝑍𝑗): 

|𝜖𝑗| = 𝛾0 + 𝛾1𝑍𝑗 + 𝑣𝑗 

A one-sample t-test based on 𝛾1 of whether 𝛾1 = 0 is used to test the null hypothesis that the 

variances in the two arms are the same. The linear model can include covariates, and thus 

examine whether known covariates explain the differences in variance. 

 

Levene’s test.  Levene’s test is suitable for non-normally distributed data (and may be less 

powerful than the alternatives for normally distributed data) and can be based on absolute 

deviations from the median, mean or trimmed mean 14. For the two trial arms, using the 

notation defined above, the test statistic is calculated as: 

𝑊 = (𝑁 − 2) ∗
∑ 𝑁𝑖(𝑋𝑖. − 𝑋..)

21
𝑖=0

∑ ∑ (𝑋𝑖𝑗 − 𝑋𝑖.)
2𝑁𝑖

𝑗=1
1
𝑖=0

 

where, within each arm (𝑖 = 0,1), we define 𝑋𝑖𝑗 = |𝑌𝑗 − 𝑚𝑖| (i.e. the absolute deviations 

where 𝑚𝑖 is either the mean (𝜇𝑖), the median (resulting in the Brown-Forsythe test 15) or the 

trimmed mean of responses in the 𝑖th arm), 𝑋𝑖. =
1

𝑁𝑖
∑ 𝑋𝑖𝑗

𝑁𝑖
𝑗=1  is the mean of the 𝑋𝑖𝑗 within arm 

𝑖 and  𝑋.. =
1

𝑁
∑ ∑ 𝑋𝑖𝑗

𝑁𝑖
𝑗=1

1
𝑖=0  is the mean of all 𝑋𝑖𝑗.  

 

The test statistic has an approximate F-distribution with 1 and 𝑁 − 2 degrees of freedom. It is 

noted that Levene’s test can also be performed using a regression framework (as with 

Glejser’s test, but using least absolute deviation regression 16), in which case an estimate of 

the difference in variation can be obtained alongside a p-value. As with Glesjer’s test, the 

initial least absolute deviation regression model can be extended to include other covariates. 
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Bartlett’s test. The equality of variances between two arms can be tested using Bartlett’s 

test 17. This involves a test statistic, 𝑇𝐵, calculated as: 

𝑇𝐵 =
(𝑁 − 2) ln(𝜎̂𝑝

2) − ((𝑁0 − 1) ln(𝜎̂0
2) + (𝑁1 − 1) ln(𝜎̂1

2))

1 +  
1
3 ((

1
(𝑁0 − 1)

+
1

(𝑁1 − 1)
) − 

1
𝑁 − 2)

 

where 𝜎̂𝑝
2 =

1

𝑁−2
∑ (𝑁𝑖 − 1)𝜎̂𝑖

21
𝑖=0  (the weighted estimate for the variance). 

The test statistic, 𝑇𝐵, has an approximate 𝜒1
2 distribution when the variances are equal. 

Bartlett’s test assumes that the underlying distributions in each arm of the trial are Normal. 

 

Estimating parameters from a linear model with non-constant variance (LMNCV). The 

standard linear model for a two-arm trial with a continuous outcome assumes that the 

variances are equal in the two arms, such that 𝜎0
2 = 𝜎1

2 = 𝜎2: 

𝑌𝑗 =  𝛽0 +  𝛽1𝑍𝑗 +  𝜖𝑗, 

with 

𝜖𝑗~𝑁(0, 𝜎2). 

Here 𝛽0 (= 𝜇0) is the mean in the control arm and 𝛽1 is the difference in means between the 

arms (𝜇1 − 𝜇0). Omitting the intercept, we can write this using the notation above as  

𝑌𝑗 =  𝜇0(1 − 𝑍𝑗) + 𝜇1𝑍𝑗 + 𝜖𝑗, 

𝜖𝑗~𝑁(0, 𝜎2). 

We can extend this formulation to allow the variances to differ between the two arms:  

𝑌𝑗 =  𝜇0(1 − 𝑍𝑗) +  𝜇1𝑍𝑗 +  𝜖0𝑗𝑍𝑗(1 − 𝑍𝑗) + 𝜖1𝑗𝑍𝑗, 

with 

𝜖𝑖𝑗~N(0, 𝜎𝑖
2), for 𝑖 = 0, 1. 

This model can be re-expressed in the form of a linear mixed model (LME) as follows, 

facilitating implementation in mixed modelling software: 

𝑌𝑗 =  𝛽0 +  𝛽1𝑍𝑗 +  𝑢𝑗𝑍𝑗 + 𝜖𝑗, 

with 

𝜖𝑗~N(0, 𝜎𝜖
2) & 𝑢𝑗~N(0, 𝜎𝑢

2). 

Here, 𝜎𝜖
2 (= 𝜎0

2) is the variance in the control arm and 𝜎𝑢
2 is the difference in variance 

between the arms (𝜎1
2 − 𝜎0

2). To estimate the parameters from this form of the model freely, 

software must allow variances to be negative. Since many software packages require all 

variances to be positive, the mixed model parameterisation would require that the model be 

specified with the arm with larger variance as arm 1. Whichever formulation of the model is 

used, post-estimation confidence intervals (or credible intervals if a Bayesian framework is 
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used) can be derived for either the difference or the ratio of the two variances. Both 

formulations also can include covariates and thus can be used to investigate the known 

factors that might explain the difference in variances. 

 

Estimating the magnitude of difference (DiV). The magnitude of the difference between 

the two variances can be estimated by taking the difference of the sample variances. The 

difference in variances (DiV) is obtained by simple subtraction:  

DiV =  𝜎1
2 − 𝜎0

2 

The approximate standard error (SE) of each estimated variance, 𝜎̂i
2, is 18:  

SE𝜎𝑖
2 = 𝜎̂𝑖

2√
2

𝑁𝑖 − 1
 

Since in a two-arm trial the two arms are independent, the SE of the DiV is given by  

SEDiV = √𝑆𝐸
𝜎0

2
2 + 𝑆𝐸

𝜎1
2

2 = √2 (
𝜎̂0

4

𝑁0 − 1
+

𝜎̂1
4

𝑁1 − 1
) . 

The variability of the two arms is compared by a t-test, with test statistic DiV/SEDiV, where 

the SEDiV is calculated under the null hypothesis, i.e. assuming that 𝜎̂1
2=𝜎̂0

2=
(𝑁0−1)s0

2+(𝑁1−1)s1
2

(𝑁0+𝑁1−2)
 

 

This method relies on the samples being sufficiently large that the chi-square distribution for 

the variance can be approximated by a Normal distribution. The distribution of the variance 

is chi-squared, and thus asymmetric - but for larger samples (>=100) can be approximated 

by a Normal distribution. 

The ratio of variances method (F-test, RoV). A simple F statistic formed by the ratio of 

sample variances between the two arms, 

𝐹 =
𝜎̂0

2

𝜎̂1
2 

follows the F-distribution with 𝑁0 − 1 and 𝑁1 − 1 degrees of freedom if the true variances of 

two normally distributed variables are equal, so can be used to test for equality of the two 

variances (assuming that the outcome is Normally distributed in both groups). The F-

distribution can be used to derive a confidence interval for the RoV. 

 

Log of the ratio of standard deviations (logRoSD). The log of the ratio of standard 

deviations can be used to compare variance between two arms 12,19; logRoSD is calculated 

as the log of the ratio of standard deviations: 

𝑙𝑜𝑔𝑅𝑜𝑆𝐷 = 𝑙𝑜𝑔 (
𝜎1

𝜎0
) + 

1

2(𝑁1 − 1)
−  

1

2(𝑁0 − 1)
 

with sampling variance 
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𝜎𝑙𝑜𝑔𝑅𝑜𝑆𝐷
2 =

1

2(𝑁1 − 1)
+  

1

2(𝑁0 − 1)
 

 

(Note that this is called the log of the variability ratio, and referred to as logVR in 12,19 but to 

avoid notation confusion we have used RoSD to reflect that it is the ratio of standard 

deviations.) 

The variability of the two arms is compared by a t-test on logRoSD (i.e., the test statistic 

is logRoSD/σlogRoSD). 

 

2.2 Examining the relationship between mean and variation across the two arms 

Difference in coefficient of variation (DiCV). For arm 𝑖 with mean 𝜇𝑖 and SD 𝜎𝑖 the CoV is 

estimated as: 

CoV𝑖 =
𝜎̂𝑖

𝜇̂𝑖
 

We use the method described by Feltz and Miller 20 to compare the CoV of two arms. A 

pooled CoV across the arms is 

CoV𝑝 =
(𝑁0 − 1)CoV0 + (𝑁1 − 1)CoV1

𝑁0 + 𝑁1 − 2
, 

and the test statistic is 

𝑍 =  
CoV0 − CoV1

√(
CoV𝑝

2

𝑁0 − 1 +  
CoV𝑝

2

𝑁1 − 1) (0.5 + CoV𝑝
2

)

. 

𝑍2 approximates the chi-square distribution with one degree of freedom. This method 

performs best if each 𝑁𝑖 > 10 and each CoV𝑖 > 0.33 20. 

The standard error of the difference in the coefficient of variation (not under the null 

hypothesis), SEDiCV is given by: √(
CoV0

2

𝑁0−1
) (0.5 + CoV0

2
) + (

CoV1
2

𝑁1−1
) (0.5 + CoV1

2
). 

 

 

Log of the coefficient of variation ratio (logRoCV). Using the CoV as calculated above, 

the log of the ratio of coefficient of variations can be calculated and used to compare 

differences in variability between the two arms 19: 

𝑙𝑜𝑔𝑅𝑜𝐶𝑉 = 𝑙𝑜𝑔 (
𝐶𝑜𝑉1

𝐶𝑜𝑉0
) + 

1

2(𝑁1 − 1)
− 

1

2(𝑁0 − 1)
 

where 𝐶𝑜𝑉𝑖 = 𝜎𝑖/𝜇𝑖. As logRoCV uses the CoV, it should only be used when data satisfies 

the same criteria as for using CoV (data on a ratio scale, with a meaningful zero).  

The sampling variance is defined 
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𝜎𝑙𝑜𝑔𝑅𝑜𝐶𝑉
2 =

𝜎0

𝑁0𝜇0
2 +

1

2(𝑁0 − 1)
− 2𝜌𝑙𝑜𝑔𝜇0,𝑙𝑜𝑔𝜎0

√
𝜎0

2

𝑁0𝜇0
2

1

2(𝑁0 − 1)
 

+
𝜎1

𝑁1𝜇1
2 +

1

2(𝑁1 − 1)
− 2𝜌𝑙𝑜𝑔𝜇1,𝑙𝑜𝑔𝜎1

√
𝜎1

2

𝑁1𝜇1
2

1

2(𝑁1 − 1)
 

where 𝜌𝑙𝑜𝑔𝜇𝑖,𝑙𝑜𝑔𝜎𝑖
 are the correlations between the means and standard deviations (on log 

scales) across studies, for the control (𝑖 = 0) and intervention (𝑖 = 1) arms. 

These rho terms can be removed if we make the assumption that the data are normally 

distributed (as in the R package that implements these equations for meta-analysis, 

metafor). In this work, we assume normality and therefore remove the rho terms. 

The variances of the two arms are compared by a t-test on logRoCV (i.e., the test statistic 

is 𝑙𝑜𝑔𝑅𝑜𝐶𝑉/𝜎𝑙𝑜𝑔𝑅𝑜𝐶𝑉).  
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3. CoV Simulation Study 

3.1 Methods 
Data are simulated for 20 trials with 100 observations in each, as follows: 

Scenario 1 (same CoV in each arm), for each trial: 

1. Randomly assign 200 observations to treatment, T=0 or T=1, with probability 0.5 

2. Generate the “true” effect of treatment for trial j, as  𝛼𝑗 = 𝜇𝑗 + 10 where 𝜇𝑗 is drawn 

from a normal distribution 𝑁(0,1)  (i.e 𝛼𝑗~𝑁(10,1) ) 

3. Generate observed outcomes for individual i in trial j, so that the CoV is 0.5 in each 

arm: 

𝑖𝑓 𝑇 = 0: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑗 = 𝛼𝑗 + 𝛼𝑗 × 0.5 × 𝛽𝑖 

𝑖𝑓 𝑇 = 1: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑗 = (𝛼𝑗 + 10) + (𝛼𝑗 + 10) × 0.5 × 𝛽𝑖 

𝑤ℎ𝑒𝑟𝑒 𝛽𝑖~𝑁(0,1) 

4. Record the N in each arm and calculate the mean and SD of each arm. 

5. Repeat over 20 trials 

Scenario 2 (different CoV in each arm), for each trial: 

1. Randomly assign observations to treatment, T=0 or T=1, with probability 0.5 

2. Generate the “true” effect of treatment for trial j, as  𝛼𝑗 = 𝜇𝑗 + 10 where 𝜇𝑗 is drawn 

from a normal distribution 𝑁(0,1)  (i.e 𝛼𝑗~𝑁(10,1) ) 

3. Generate observed outcomes for individual i in trial j, so that the CoV is 0.5 in each 

arm: 

𝑖𝑓 𝑇 = 0: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑗 = 𝛼𝑗 + 𝛼𝑗 × 0.5 × 𝛽𝑖 

𝑖𝑓 𝑇 = 1: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑗 = (𝛼𝑗 + 10) + (𝛼𝑗 + 10) × 1 × 𝛽𝑖 

𝑤ℎ𝑒𝑟𝑒 𝛽𝑖~𝑁(0,1) 

6. Record the N in each arm and calculate the mean and SD of each arm. 

7. Repeat over 20 trials 

 

Each scenario was then analysed as follows: 

Across the 20 trials, (1) correlations between mean and SD of each arm were calculated; (2) 

mean and SD for each arm were plotted against one another; (3) coefficient of variation was 

calculated for both arms of each trial; (4) these CoVs were meta-analysed, as described in 

the main paper. 

Code (in R) is included with this paper for these simulations. 

2.2 Results 

The seed is fixed at the start of these scenarios, because of this, the scenarios have the 

same correlation between mean and SD in the control arms (T=0), eTable 2. 

eTable 2: Correlation between mean and SD and mean CoV for the simulated trials in each 
scenario. 

 Scenario 1 Scenario 2 

 T=0 T=1 T=0 T=1 
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Correlation 
between mean 
and SD 

0.53 

 
0.38 

 
0.53 

 
0.27 

 

Mean CoV 0.48 0.48 0.48 0.95 

Mean of the 
outcome means 

10.12 20.70 10.12 21.43 

Mean of the 
outcome SDs 

4.85 9.92 4.85 19.84 

 

 

eFigure 1 and eFigure 2 plot the mean against the SD from the two arms, for each scenario, 
and include unadjusted regression lines (with intercept and forced through the origin). The 
unadjusted regression line is not helpful for interpreting the coefficient of variation. For 
example, it may seem that the mean and SD are not related when in fact they are, because 
of regression dilution bias. This could be mitigated by using the regression line forced 
through the origin (shown in orange below). 

eFigure  1: Plot of mean outcome vs SD for scenario 1. The correlation coefficient is given 
as r, in the bottom right of each plot. Blue solid line: the unadjusted regression line and 95% 
confidence intervals. Orange dashed line: the unadjusted regression line, forced through the 
origin, with 95% confidence intervals. 

 

 

eFigure  2: Plot of mean outcome vs SD for scenario 2. The correlation coefficient is given 
as r, in the bottom right of each plot. Blue solid line: the unadjusted regression line and 95% 
confidence intervals. Orange dashed line: the unadjusted regression line, forced through the 
origin, with 95% confidence intervals. 
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The meta-analysis shows that the coefficient of variation behaves quite differently in the two 

scenarios. In scenario 1, the CoVs are around 0.5 in both arms, and the meta-analysis 

estimates imply that differences in variation between arms across the trials may be due to 

differences in the means. In scenario 2, the CoV are different between the arms and the 

meta-analysis estimates imply that differences in variation between arms were not just due 

to differences in the means, eTable 3. 

eTable 3: Meta-analysis of the Difference in CoV for the simulated trials from each scenario. 

Meta analysis Estimate Standard 
Error 

Lower Upper Pvalue 

Scenario 
1 

Fixed -0.0063 0.0182 -0.0421 0.0294 0.7285 

Random -0.0052 0.0216 -0.0474 0.0371 0.8100 

Scenario 
2 

Fixed -0.4246 0.0309 -0.4853 -0.3640 0.0000 

Random -0.4462 0.0428 -0.5300 -0.3624 0.0000 

 

These scenarios demonstrate how the correlation plots tell us nothing about the CoV across 

the meta-analysis. The decision to compare CoV between the two arms (or to meta-analyse 

the difference in CoV across trials) should be based on substantive grounds (i.e. are there 

grounds to believe that the variance changes with the mean). If there is no evidence of a 

difference in variance between the two arms then a comparison of the CoV may not be 

meaningful. For example, if the treatment effect is homogeneous, then the variation in the 

two arms would be the same but the means would differ, leading to a difference in CoV. 

However, this difference would not be of clinical relevance. 
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4. Analysis of a single trial 

4.1 Methods 
eFigure  3: Beck Depression Inventory (BDI) score at baseline (A) and at 4-month follow-up 
(B) in Kessler et al 21. The 4-month BDI scores are not normally distributed. Colours indicate 
the different arms (darker red where they overlap). 

 

4.2 Results 

Koenker’s test 

We note that Koenker’s test (the studentized version of the Breusch-Pagan test) 22 is similar 

to Glejser’s test as described above, but takes the square of the residuals instead of the 

absolute value. Glejser’s test does not provide direct estimates of the difference in variance 

(or the SE and CI) but Koenker’s test can. As a supplement to Table 3 in the main text, we 

note that Koenker’s test supports our main conclusions that including baseline BDI score 

(adjusted model 2, in eTable 4) largely removed any evidence of difference in variance 

between the arms. 

 

eTable 4: Tests for difference in variance in BDI score at 4 months, between the intervention 
and control arms from the single trial exploring the effect of a CBT intervention on 
depression 21 

Test Test Statistic p-value Estimate 95% CI 

Koenker’s test, 
unadjusted 

t-statistic 2.17 0.031 -55.98 (-106.75, -5.23) 

Koenker’s test, 
adjusted 1a 

t-statistic 2.42 0.016 -61.23 (-111.05, -11.40) 

Koenker’s test, 
adjusted 2b 

t-statistic 1.13 0.26 -19.38 (-53.07, 14.31) 

a Covariates added in the adjusted model 1 are as specified in the original trial paper: centre ID, present 
antidepressant treatment, sex, whether or not GP practice has a counsellor 
b As adjusted model 1, but also including baseline BDI score 
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Sensitivity Analysis 

eTable 5 shows the results of all tests on the IPD at baseline. The results for all tests are 

similar, with no evidence for any difference in variance between the intervention and control 

arm, even when testing only the subset remaining after excluding those lost to attrition at 4 

month follow up. The intervention arm had 24% attrition at 4 months, compared to 34% in 

the control arm. 

eTable 5: Tests for difference in variance in BDI score at baseline, between the intervention 
and control arms from the Kessler 2009 paper 21 exploring the effect of a CBT intervention 
on depression. The test statistics are the Bartlett’s k-squared for Bartlett’s test, the ratio of 
variances for the F-test and the Levene test-statistic for Levene’s test.  

Test Test 
Statistic 

p-value Estimate SE 

Baseline 

   Levene test (median) 1.468 0.23 0.735 0.607 

   Levene test (mean) 1.904 0.17 0.808 0.585 

   Levene test (trimmed 
mean) 1.659 0.20 0.762 0.592 

   Bartlett’s test 1.655 0.20 NA NA 

   F-test 0.809 0.20 NA NA 

Baseline, excluding those lost to attrition by 4 months 

   Levene test (median) 2.453 0.12 1.083 0.691 

   Levene test (mean) 2.618 0.11 1.111 0.686 

   Levene test (trimmed 
mean) 2.515 0.11 1.092 0.688 

   Bartlett’s test 1.637 0.20 NA NA 

   F-test 0.777 0.20 NA NA 



 

 

5. Meta-Analyses 

5.1 Results 
eTable 6: Results for the Richards et al 23 meta-analyses (self-reported depression measures*). Yellow shading in each row indicates the arm with the 
higher SD. Estimates for the Ratio of Variances and Log of Variability ratio are also plotted in Figure 1. The final rows show the results of the pooled 
RoV test, and the meta-analysis of the Differences in Variance tests. 

Study Measure 
used 

Intervention arm Control arm Difference in 
Variances test 
[95% CI] 

Ratio of 
Variances [95% 
CI] 

Log of variability 
ratio [95% CI] Mean SD N Mean SD N 

Andersson et al 2005 BDI 12.2 6.8 36 19.5 8.1 49 
-19.37 [-53.40, 
14.66] 0.70 [0.38, 1.34] -0.17 [-0.48, 0.14] 

De Graaf et al 
2009&2011 BDI 20.6 10.4 97 22.1 10.2 97 4.12 [-38.34, 46.58] 1.04 [0.70, 1.55] 0.02 [-0.18, 0.22] 

Hollandare et al 2011 BDI 9.3 12 38 13.4 11.9 39 2.39 [-89.04, 93.82] 1.02 [0.53, 1.95] 0.01 [-0.31, 0.33] 

Kessler et al 2009 BDI 14.5 11.2 
11
3 22 13.5 97 

-56.81 [-117.95, 
4.33] 0.69 [0.47, 1.01] -0.19 [-0.38, 0.01] 

Meyer et al 2009 BDI 19.87 11.85 
15
9 27.15 10.01 57 40.22 [-8.11, 88.56] 1.40 [0.89, 2.12] 0.16 [-0.05, 0.38] 

Perini et al 2009 BDI 17.3 9.86 27 23.33 9.29 17 
10.92 [-68.89, 
90.72] 1.13 [0.43, 2.66] 0.05 [-0.39, 0.49] 

Proudfoot 2003&2004 BDI 12.1 9.3 95 18.4 10.9 
10
0 

-32.32 [-73.63, 
8.99] 0.73 [0.49, 1.09] -0.16 [-0.36, 0.04] 

Ruwaard et al 2009 BDI-IA 9.8 6.5 36 15.6 7.6 18 
-15.51 [-59.09, 
28.07] 0.73 [0.30, 1.60] -0.17 [-0.58, 0.24] 

Spek et al 2007&2008 BDI 11.97 8.05 
10
2 14.46 10.42 

10
0 

-43.77 [-78.91, -
8.64] 0.60 [0.40, 0.88] 

-0.26 [-0.45, -
0.06] 

Titov et al 2010 BDI-II 15.29 9.81 41 26.15 10.14 40 
-6.58 [-68.72, 
55.56] 0.94 [0.50, 1.76] -0.03 [-0.35, 0.28] 

Vernmark et al 2010 BDI 10.3 5.2 29 16.6 7.9 29 
-35.37 [-71.00, 
0.26] 0.43 [0.20, 0.92] 

-0.42 [-0.79, -
0.05] 

All trials           

Fixed 
 

      
-19.13 [-32.79, -
5.48]  

 

Random 
 

      
-18.19 [-33.80, -
2.58] 0.82 [0.67, 1.00] 

-0.10 [-0.20, -
0.00] 



 

 

eTable 7: Results for the Palmer et al 24 meta-analyses, measuring the impact of statins on LDL cholesterol (reported in mg/dL). Yellow shading in 
each row indicates the arm with the higher SD. Estimates are also plotted in Figure 2. The final rows show the results of the pooled RoV test, and the 
meta-analysis of the Differences in Variances and CoV tests. 

Study Intervention arm Control arm Difference in 
Variances (DiV) 
test [95% CI] 

Ratio of 
Variances (RoV) 
[95% CI] 

Coefficient of 
Variation (CoV) 
test [95% CI] 

Mean 
(mg/dL
) 

SD N CoV Mean 
(mg/dL
) 

SD N CoV 

Tonolo 1997 127 35 10 0.28 189 37 9 0.20 

-144.00 [-
1899.25, 
1611.25] 0.89 [0.21, 3.67] 0.08 [-0.09, 0.25] 

Hommel 1992 100 19 12 0.19 182 39 9 0.21 
-1160.00 [-
2680.78, 360.78] 0.24 [0.06, 0.87] -0.02 [-0.16, 0.11] 

Nielsen 1993 116 22 8 0.19 166 37 10 0.22 
-885.00 [-
2247.72, 477.72] 0.35 [0.08, 1.71] -0.03 [-0.18, 0.12] 

Aranda 1994 166 37 8 0.22 208 12 8 0.06 
1225.00 [-217.14, 
2667.14] 9.51 [1.90, 47.49] 0.17 [0.04, 0.29] 

LORD Study 
2006 95 35 16 0.37 160 45 18 0.28 

-800.00 [-
2419.21, 819.21] 0.60 [0.22, 1.70] 0.09 [-0.09, 0.27] 

Fried 2001 97 27 6 0.28 124 23 11 0.19 
200.00 [-815.68, 
1215.68] 1.38 [0.33, 9.12] 0.09 [-0.11, 0.30] 

Zhang 1995 100 24 10 0.24 127 29 10 0.23 
-265.00 [-
1206.81, 676.81] 0.68 [0.17, 2.76] 0.01 [-0.15, 0.17] 

Imai 1999 128 23 15 0.18 155 44 19 0.28 
-1407.00 [-
2731.15, -82.85] 0.27 [0.10, 0.79] -0.10 [-0.23, 0.02] 

Lam 1995 116 31 16 0.27 146 33 18 0.23 
-128.00 [-
1132.48, 876.48] 0.88 [0.32, 2.48] 0.04 [-0.09, 0.17] 

Mori 1992 93 22 18 0.24 126 33 15 0.26 
-605.00 [-
1474.87, 264.87] 0.44 [0.15, 1.22] -0.03 [-0.16, 0.11] 

Makamura 2002 130 24 20 0.18 216 36 20 0.17 
-720.00 [-
1621.85, 181.85] 0.44 [0.18, 1.12] 0.02 [-0.06, 0.10] 

Verma 2005 80 32 44 0.40 133 44 39 0.33 
-912.00 [-
1884.19, 60.19] 0.53 [0.28, 0.98] 0.07 [-0.06, 0.20] 

Yasuda 2004 127 37 39 0.29 168 36 41 0.21 
73.00 [-764.57, 
910.57] 1.06 [0.56, 2.00] 0.08 [-0.01, 0.16] 

Goicoechea 
2006 101 25 44 0.25 126 29 19 0.23 

-216.00 [-825.66, 
393.66] 0.74 [0.31, 1.55] 0.02 [-0.08, 0.11] 



 

 

Panichi 2005 104 29 28 0.28 131 21 27 0.16 
400.00 [-108.65, 
908.65] 1.91 [0.87, 4.14] 0.12 [0.03, 0.21] 

Bianchi 2003 121 21 28 0.17 206 21 28 0.10 
0.00 [-332.69, 
332.69] 1.00 [0.46, 2.16] 0.07 [0.02, 0.12] 

Lee 2002 102 18 42 0.18 116 28 40 0.24 
-460.00 [-835.18, 
-84.82] 0.41 [0.22, 0.77] -0.06 [-0.13, 0.00] 

ESPLANADE 
Study 2010 96 33 92 0.34 132 38 94 0.29 

-355.00 [-876.90, 
166.90] 0.75 [0.50, 1.14] 0.06 [-0.02, 0.13] 

Sawara 2006 99 13 22 0.13 125 17 16 0.14 
-120.00 [-350.71, 
110.71] 0.58 [0.21, 1.48] -0.00 [-0.07, 0.06] 

UK-HARP-I 
2005 85 29 

12
1 0.34 114 33 

12
0 0.29 

-248.00 [-597.07, 
101.07] 0.77 [0.54, 1.11] 0.05 [-0.01, 0.11] 

Di Lullo 2005 87 8 80 0.09 161 23 50 0.14 
-465.00 [-675.42, 
-254.58] 0.12 [0.07, 0.20] 

-0.05 [-0.08, -
0.02] 

PREVEND IT 
2000 120 35 

37
5 0.29 151 35 

37
9 0.23 

0.00 [-247.64, 
247.64] 1.00 [0.82, 1.22] 0.06 [0.03, 0.09] 

All trials            

Fixed    
 

   
 -220.36 [-318.84, 

-121.87] - 0.02 [0.01, 0.03] 

Random    
 

   
 -226.33 [-376.77, 

-75.90] 0.66 [0.48, 0.91] 0.03 [-0.00, 0.06] 

Removing trials N<=10  

Fixed    
 

   
 -223.51 [-323.90, 

-123.12] - 0.02 [0.00, 0.03] 

Random    
 

   
 -233.17 [-388.82, 

-77.53] 0.62 [0.44, 0.87] 0.03 [-0.01, 0.06] 

 

  



 

 

eTable 7, continued. 

Study Log of Ratio of 
Standard 
Deviation 
(logRoSD) [95% 
CI] 

Log of ratio of 
coefficient of 
variation 
(logRoCV) [95% CI] 

Tonolo 1997 -0.06 [-0.74, 0.61] 0.34 [-0.37, 1.04] 

Hommel 1992 -0.74 [-1.38, -0.09] -0.14 [-0.81, 0.53] 

Nielsen 1993 -0.50 [-1.20, 0.19] -0.15 [-0.87, 0.58] 

Aranda 1994 1.13 [0.39, 1.87] 1.35 [0.59, 2.11] 

LORD Study 2006 -0.25 [-0.74, 0.24] 0.27 [-0.27, 0.81] 

Fried 2001 0.21 [-0.55, 0.97] 0.46 [-0.34, 1.25] 

Zhang 1995 -0.19 [-0.84, 0.46] 0.05 [-0.64, 0.73] 

Imai 1999 -0.64 [-1.13, -0.15] -0.45 [-0.97, 0.07] 

Lam 1995 -0.06 [-0.55, 0.43] 0.17 [-0.35, 0.69] 

Mori 1992 -0.41 [-0.91, 0.09] -0.11 [-0.64, 0.42] 

Makamura 2002 -0.41 [-0.86, 0.04] 0.10 [-0.36, 0.56] 

Verma 2005 -0.32 [-0.63, -0.01] 0.19 [-0.16, 0.53] 

Yasuda 2004 0.03 [-0.29, 0.34] 0.31 [-0.03, 0.64] 

Goicoechea 2006 -0.16 [-0.55, 0.22] 0.06 [-0.35, 0.47] 

Panichi 2005 0.32 [-0.06, 0.70] 0.55 [0.15, 0.95] 

Bianchi 2003 0.00 [-0.38, 0.38] 0.53 [0.15, 0.92] 

Lee 2002 -0.44 [-0.75, -0.13] -0.31 [-0.64, 0.01] 

ESPLANADE Study 
2010 -0.14 [-0.35, 0.06] 0.18 [-0.05, 0.40] 

Sawara 2006 -0.28 [-0.75, 0.19] -0.04 [-0.52, 0.43] 

UK-HARP-I 2005 -0.13 [-0.31, 0.05] 0.16 [-0.03, 0.36] 

Di Lullo 2005 -1.06 [-1.31, -0.81] -0.44 [-0.70, -0.19] 

PREVEND IT 2000 0.00 [-0.10, 0.10] 0.23 [0.12, 0.34] 

All trials   

Fixed   



 

 

Random -0.21 [-0.37, -0.05] 0.12 [-0.02, 0.26] 

Fixed   

Random -0.24 [-0.41, -0.08] 0.09 [-0.05, 0.24] 

 

 

 



 

 

6. Power Simulation Study 

6.1 Methods 
To explore the power of the methods for detecting a difference in variance, under different 
scenarios, a simulation study was used. 
 
Simulating data 
A response 𝑌 =  𝑌0 + 𝑍 ∗ 𝑌1 was simulated for two arms 𝑍 ∈ (0,1) of size 𝑁0 and 𝑁1, where 
𝑌0 was the response in the control arm and 𝑌1 was the treatment effect. Then for 𝑁 = 𝑁0 +
𝑁1 individuals: 

𝑌0~ 𝑁(𝜇0, 𝜎0) 
𝑌1~ 𝑁(𝜇1, 𝜎1) 

Without loss of generality, the variables were standardised to the standard deviation in the 
baseline arm (arm 0, 𝜎0 = 1) with means 𝜇0 = 0 and 𝜇1 = 1 and with the standard deviation 
for 𝑌1 allowed to vary such that 𝜎1 ∈ ( 0.2, 0.3, … . , 1.0). The number of individuals in each arm 

was fixed as 𝑁0 = 𝑁1 = 𝑁/2. 
 
A single simulated dataset consisted of ID (1 to N), the response 𝑌 and an arm indicator 𝑍. 

Two example simulated datasets for 𝑁 = 10,000 are shown in eFigure  4. 
 
eFigure  4: Two simulated datasets of 10,000 responses (5000 in each arm, Z=0 and Z=1). 
Simulated with 𝑚0 = 0, 𝑚1 = 1, 𝜎0 = 1 and (A) 𝜎1 = 0.1 and (B) 𝜎1 = 1.0. Red shows 𝑍 = 0 

and blue shows 𝑍 = 1 (where they overlap is the purple/red). 

 

 
Simulation and analysis process 
The aim was to determine what minimum sample size 𝑁 allowed the difference in variance 
to be detected with 95% power, for different 𝜎1 (standard deviation of the treatment effect). 

𝜎1 was varied between 0.2 and 1 (note that this meant the standard deviation of arm Z=1 
changed, as it is equal to the square root of the sum of the two standard deviations squared, 

i.e. √𝜎0
2 + 𝜎1

2). For each 𝜎1, a binary search algorithm was used first to find what value of 𝑁 

(the total sample size) obtained an approximately 50% power (for efficiency, this uses only 
100 simulated datasets). Then, starting at this 𝑁, 𝑁 was increased up to 500,000 (with 

increasing step sizes) simulating 10,000 datasets for each 𝑁. In each of the 10,000 
simulated datasets the difference in variance between the two arms was tested using: (1) an 
LME model; (2) Glejser’s test; (3) Levene’s test (using deviation from the mean); (4) 
Bartlett’s test; (5) Ratio of Variances (F-test) method. For each 𝑁 the power was defined as 



 

 

the percentage of simulations for which the p-value for the test of the null hypothesis (that 
the difference in variance is zero) was <0.05. 𝑁 was increased until the power to detect the 

difference in variance had reached a threshold of 95% for the last three 𝑁. 
 

6.2 Results 
Power to detect a difference in variance (using an LME model, Glejser’s test, Levene’s test, 
Bartlett’s test and the Ratio of Variances method) increased with sample size N for all 
𝜎1 scenarios, though much larger sample sizes were required to obtain adequate power 
when the difference in variance between the arms was low (eFigure  5 & eFigure  6). Results 
were very similar for all methods, with the Bartlett’s test, RoV method and the LMER model 
requiring very slightly lower sample size for the same power compared to Levene’s and 
Glejser’s tests. 
 
eFigure  5: Plot of sample size (N) vs the power to detect difference in variances between 
the two arms for scenarios with different standard deviations in the two arms (varying 𝜎1: see 
methods). The numbers on the lines indicate the value of 𝜎1. Grey dashed horizontal lines 
indicate power = 0.8, 0.9, 0.95 and 1.0. 10,000 simulations were performed for each N. 
(eFigure  6 shows individual panels for each 𝜎1, without a logged x-axis.) 

 
 
  



 

 

eFigure  6: Plots of N (sample size) vs the power to detect difference in variances between 
the two arms for scenarios with different standard deviations in the two arms (with fixed 𝜎0 =
1 varying 𝜎1: see methods). Grey dashed horizontal lines indicate power = 0.8, 0.9, 0.95 and 
1.0. 10,000 simulations were performed for each N. This is an alternative version of eFigure  
5. All methods are plotted, but the results are the same for (1) LMER, Bartlett’s test and RoV 
(the purple/red, top line) and (2) Levene and Glejser tests (the blue, bottom line). 
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