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eAPPENDIX 2.  Example computer code.
SAS code for a generalized DID estimator.  
We assume an exposure variable of primary interest (A), covariate (Z1), and outcome variables (Y0 and Y1) measured at times 0 and 1, respectively.  In the example, the original dataset is named ONE.   


* Calculate difference between post- and pre-treatment outcomes;
data TWO;
 set ONE; 
 DIFFY=Y1-Y0; 
 
*Fit proposed generalized DID;
proc model data=TWO;
exogenous Z1; 
endogenous A DIFFY;
DIFFY = p0 + p1 *A; 
A = intercep + p2*Z1;
fit DIFFY A / n2sls FSRSQ; 
instruments Z1; run;


R code for a generalized DID estimator  

We assume an exposure variable of primary interest (a), covariate (z1), and outcome variables (y_pre and y_post) measured at times 0 and 1, respectively.   

library(ivreg)
library(lmtest)
library(sandwich)

gdid<-function(y_pre,y_post,a,z1,robust.se=FALSE){
  y_diff<-y_post-y_pre
  fit_gdid<-ivreg(y_diff~a|z1)
  if(robust.se==TRUE){
    se<-coeftest(fit_gdid, vcov = vcovHC, type = "HC3")[2,2]
  }else{
    se<-summary(fit_gdid)$coefficients[2,2]
  }
  
  return(list(est=summary(fit_gdid)$coefficients[2,1],
              se=se,
              f.statistic=summary(fit_gdid)$diagnostic[1,3]))
}



eAPPENDIX 3.  Additional simulations.

Additional simulations were conducted.  In each scenario, we considered respectively the case when Z1 is strongly (=2), moderately (=1), and weakly (=0.4) associated with A.

In simulation A1, U1 affected Z1, but otherwise the simulation conformed to the ‘parallel trends’ assumption in simulation scenario 1. We generated an unmeasured covariate, denoted U1, as a random binary variable.  U1 affected the measured covariate, denoted Z1, which was a random variable with probability 0.4+0.2 U1. We assigned A as a random binary variable that took a value of 1 with probability 1/(1+exp(-(-0.1 -0.5×U1 +×Z1))).  The pre-treatment outcome variable, Y(t=0), took a value of (1 +1×U1 +1×Z1 +), where  ~N(0,1); and, the post-treatment outcome variable, Y(t=1), took a value of (1 +1×U1 +1×Z1 +1×A+).  

In simulation A2, U1 affected Z1, but otherwise conformed to the second scenario, which violated the ‘parallel trends’ assumption. We generated an unmeasured covariate, denoted U1, as a random binary variable.  U1 affected the measured covariate, denoted Z1, which was a random variable with probability 0.4+0.2 U1. We generated an additional covariate, denoted U2, that was a continuous variable assigned by sampling from a normal (0,1) distribution.  We assigned A as a random binary variable that took a value of 1 with probability 1/(1+exp(-(-0.1 -0.5×U1 -0.5×U2 +×Z1))).  The pre-treatment outcome, Y(t=0), took a value of (1 +1×U1 +1×U2 +1×Z1 +); and, the post-treatment outcome, Y(t=1), took a value of (1 +1×U1 +1×Z1 +1×A+). 

In simulation A3, U2 affected Z1, but otherwise conformed to the second scenario, which violated the ‘parallel trends’ assumption. We generated an unmeasured covariate, denoted U1, as a random binary variable. We generated an additional covariate, denoted U2, that was a continuous variable assigned by sampling from a normal (0,1) distribution.  U2 affected the measured covariate, denoted Z1, which was a random variable with probability 1/(1+exp(-(-0.5+0.5 U2).  We assigned A as a random binary variable that took a value of 1 with probability 1/(1+exp(-(-0.1 -0.5×U1 -0.5×U2 +×Z1))).  The pre-treatment outcome, Y(t=0), took a value of (1 +1×U1 +1×U2 +1×Z1 +); and, the post-treatment outcome, Y(t=1), took a value of (1 +1×U1 +1×Z1 +1×A+).


eTable. Monte Carlo mean, standard deviation (SD), and root MSE (RMSE), average standard error (SE), and coverage probability (CP) of 95% asymptotic confidence interval for 1000 cohorts with 5,000 observations each. Results of simulations of association between exposure, A, measured covariate, Z, unmeasured covariate, U, and outcome, Y.  

	Scenario
	Mean
	SD
	RMSE
	SE
	CP

	Scenario A1
Strong bespoke IV (Mean F-statistic 1050.5)
	

	
	
	
	

	GDID method
Standard DID method
	1.00
1.00
	0.10
0.04
	0.10
0.04
	0.10
0.04
	95.1
96.1

	
	
	
	
	
	

	Moderate bespoke IV (Mean F-statistic 248.7)
	
	
	
	
	

	GDID method 
	1.00
	0.18
	0.18
	0.19
	95.3

	Standard DID method

Weak bespoke IV (Mean F-statistic 27.8)
GDID method 
Standard DID method 
	1.00


1.00
1.00
	0.04


0.58
0.04
	0.04


0.58
0.04
	0.04


0.59
0.04

	95.3


97.1
95.7

	Scenario A2 
Strong bespoke IV (Mean F-statistic 956.0)
	
	
	
	
	

	GDID method
Standard DID method
	1.00
1.39
	0.13
0.05
	0.13
0.40
	0.13
0.05
	95.6
0.0

	
	
	
	
	
	

	Moderate bespoke IV (Mean F-statistic 223.4)
	
	
	
	
	

	GDID method
	1.00
	0.24
	0.24
	0.24
	96.1

	Standard DID method

Weak bespoke IV (Mean F-statistic 25.2)
GDID method 
Standard DID method
	1.45


0.97
1.47
	0.05


0.77
0.05
	0.45


0.77
0.47
	0.05


0.77
0.05
	0.0


97.1
0.0

	
	
	
	
	
	

	Scenario A3 
Strong bespoke IV (Mean F-statistic 744.9)
GDID method
Standard DID method 
	

-0.30
1.22
	

0.15
0.05

	

1.30
0.22

	

0.15
0.05

	

0.0
0.7

	Moderate bespoke IV (Mean F-statistic 151.1)
	
	
	
	
	

	GDID method
	-1.71
	0.38
	2.74
	0.39
	0.0

	Standard DID method

Weak bespoke IV (Mean F-statistic 7.8)
GDID method 
Standard DID method
	1.35


-15.68
1.42
	0.05


55.78
0.05
	0.35


58.20
0.42
	0.05


99.61
0.05
	0.0


28.8
0.0
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tablishes that

E(6Y|Z=2)
= V(Z)E(A|Z1 = .2y = %)+ E{Y*=°(1) - Y*=%(0)|Z = =}

=0

=v(2)E(4|2)

Proving the result.
Next, we consider alternative nonparametric identification without assump-
tion 6.

Result 3:Suppose that Assumptions 1)-5) hold, and that
E[Y4=°(1) - y*=°(0)|A=0a.Z ==
—E[Y*°(1) - y*(0))A=0.2="]
= 7(2)a

does not depend on z1,then ¥ (z) is nonparametrically identified as the unique
solution to the moment equation

i et Aty

where
() = _E@YIA=07=2) E@VA=021=02=2)
i E(A[Z1.2:) - B (A|Z1 = 0.25)
E@Y|A=0,Z=2)—E(Y|A=0,21 = 0,25 = =)
= —E, Z1., Z - Zy = z
2,/ {W( 1, Z2) E (471,75 — E(AZi =0, 75) |22 =2
and

E[Y*"(1) - Y*=°(0)|Z1 = 0, Z2 = 2]
= E(0Y[A=0.2Z1=0.Z = %) +7(2) E(A|Z; = 0,Z5 = 2)
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Proof:

E(0Y|A=aZ==
E{Y(1)-Y(0)}|A=a,Z =]
E[{y*(1)-v4(0)} - {v*=°(1) - Y*=°(0)} [A=0a,Z =
+E[Y*=(1) —v*=0(0)|[A=a, Z =¢]

= E[{v*(1)-v*'())}|[A=a.Z =]
+E[Y*=0(1) —v*=(0)|[A=a, Z = %]
—E[y*=(1) —Y*=°(0)|A=0.Z = 2]

E[y*="(1) - Y*=°(0)|4,Z =
-E [{ -E [1[/“:"(1) —Y*=0(0)|4=0,Z

4lz-
+E [Y*=0(1) —Y*=%(0)|Z = 2]
= v()at+v(n)la—E(AZ=2)]+E[Y*°(1) - y*=°(0)[2 = 2]
= v()a+7()la—E(AZ=2)]+E[Y*=°(1) - Y*=(0)|Z1 = 0,2, = %]

1t follows that v (25) is uniquely identified by
E@Y|A=0,Z=2)—E(6Y|A=0,21 =0,2 = 2)
E(A|Z1.Z5) — E(A|Z1 =0.25)
EWBY|[A=0,Z=2)—E(0Y|A=0,2,=0,Z, = 25)
= —E 21, Z: Zy = =
i {o@ ) E(A[Z. 2 - E(A1Z: = 0.2) e

for any user-specified function w (Zy, Z») such that E {w (Z1,Z)|Z>} = 1; fur-
thermore, E [Y*=%(1) — Y*=°(0)|Z1 = 0, Z = 25] is uniquely identified by

v(z2) =

E[Y*=0(1) - Y*=°(0)|Z1 = 0, Z5 = 2]
= E(Y[A=0,Z1=0.Z>=2)+7(22) E(A|Z1=0,2Z> = 22)..

Finally, it is straightforward to verify that ¥ (Z) is the unique solution to (3).
‘We briefly describe a straightforward approach to make inferences based on
Result 3. The approach entails positing models for 7 (23) , E [Yazo(l) —Y*=0(0)|Z; =0, Z, = Zg]
and E (4|7 = =) sayy (32) = (1.35)9. E [Y*=0(1) = Y*=0(0)|Z1 = 0.2y = 2] =
(1. 24)w: E (A|Z = 2) = g((1.2")ar) where g~ is a user-specified link function.
Let ¥ (2) = (1,2')¥ denote a model for the effect of treatment on the treated,
then a consistent estimator 8 of 6 = (7.w,a,?) can be obtained by solving the
following set of equations:

Zli

0o =3 Z;AA((E%) 5(5)
A
ZA

0 — Z(;)A(a)
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where
c(0) = oY — (L2 )wA— (L2)yA(a) — (L, 25)w
Afa) = A-g((1.2)a)

Inferences about @ based on 8 then follows by standard M-estimation as-
ymptotic theory, details are omitted.
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We have data Y(0),Y (1), A, Z = (Z1. Z2) , where A may be binary or con-
tinuous, and we wish to identify

E{Y*(t) Y= (t)[A=0a.Z} =¥ (2)a

a linear causal model of the effect of treatment on the treated conditional on Z.
‘We make the following assumptions, which generalize assumptions given in the
main text allowing for continuous treatment:

1) No anticipation Assumption :Y* (tg) =Y (o) for all a;

2) Treatment value consistency: E[Y® (tg)|A=a,Z] = E[Y (to) |[A =a.Z]
for all a# 0.

3) Positivity : Thereisac > 0, such that for any z such that Pr (Z = z|A = a) >
c for some a # 0 it must be that Pr(Z = z|A =0) >c.

4) Zy additive equi-confounding conditional on Z:

E[Y°(t1)|Z1. Z2]E[Y°(t1)| 21 = 0. Z5] = E[Y°(t0)|Z1. Zo]~E[Y°(t0)| Z1 = 0, Z5]
or equivalently Z; parallel trend assumption conditional on Z5
EY°(t1) - Y°(t0)| 21, Z2] = E[Y°(t1) = Y°(t0)| 21 = 0, Z2)]
5) Zy conditional relevance:
E(A|Z1, Zy = z0) — E(A|Z1 =0, Za = z3) # 0 for each 2o
6) Additive average causal effect of A on Y (1) conditional on A and Z does
not dependent on Z1, that is:
E[ye(1)—Y °()|A=a. 21, 2] = E[Y*(1) - Y °(1)|A = a.Z; = 0. 2Zo].
Result 1:Let §Y = Y(1)—Y(0). then under assumptions 1)-6): for any z; # 0

E(5Y|2) = %1, 25) — E(8Y|2y = 0, Z5)
E(A|Z1 = 21, 25) — E (A|Z1 = 0, Z5)

V(2. 22) =¥ (Z2) =
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Proof: By defiinition, for any z = (21.22) with 21 #0
E@Y|Z==

= E{E{Y(1)-Y(0)}|A.Z=:]|Z==

= E{E[{y*(1)-Y40)}|AZ==2]|Z=2}

= E{E[{y*(1)-Y*0) - {¥y*=°(1) - v*=°0)}} |4, Z =] |Z = =}
+E{E[Y*=°(1) - Y*=(0)|A. 2 = 2] |z = =}

= E{E[{y*(1)-Y*°(1) - {¥*0) - v*=°0)}} |4, 2 =] |Z = =}
+E{E[Y*=°(1) - Y*=°(0)|A.Z ==

112 =<}
= E E[YA(I)YA"(l)A,Zz]|Zz}

=u(Z)A by linear causal model

—E{E[Y*0)-Y*°0)A.Z=2]|Z ==

=0 by no anticipation

+  E{Y* 1) -v*0)z==

=E{Y 4=0(1)—Y 4=0(0)|2=0} by Z1 parallel trend
¥ (2) E(Alz)
~—

=u(Z2) by Assumption 6)

+E {y*=°(1) - v*=%(0)|Z = 0}
therefore

E@Y|Z=2)—E(8Y|Z1 =0,Zy = %)
= U(0)E(A|Z1=2.2y =) + E{Y*=°(1) - Y*=°(0)|Z2 = =}

— [ (22) E(A|Z1 = 0.Z5 = 2) + E{Y4=%(1) = Y4=0(0)[Z, = 0.2, = 2, }]
= V(2){E(A|Z1=21.2Z5=2%) —E(A|Z1 =0,Zy = 2)}

E(8Y|Z1 = #1. Z2) — E (6|21 = 0, 25)
E(A|Z1 = 21,22) — E(A|Z1 =0, 2)
= v(22)
= v(xn,2)

proving the result.

Intuitively, Z; acts as a valid IV for the causal effect of A on §Y conditional
on Z and A = 1, and the latter is equal to the causal effect of A on Y given
Z under our assumptions. Building on this intuition, suppose that following
causal model holds,

E{Y*(t1) - V" (1) |4d=a,Z} = va )
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and further, that the linear model

E[Y°(t1) = Y (to)| Z1 = 0. Zo] = (1. Z)n

is correctly specified. We aim to make inferences about the causal parameter ¥,
which we propose to estimate by the following two-stage least-squares approach:

1) Regress A on Z by ordinary least-squares (OLS) and construct the corre-
sponding fitted values, say A = (1, Z’) @ where @ is the OLS parameter estimate.

~ N ~
2) Regress §Y on (A, 1, Z;) by OLS, and denote ¢’ the corresponding esti-

mate of the coefficient for A.

‘We have that

where, by definition

which implies that

(6K Ry - (1.251)5)

(5= DA+ 0 (4 - &) - (1, 23)7)
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‘We conclude that

Zy; ~
0= 1 | (o% - D4 - (1.23)7)
i Zai

provided that A\, depends on Zi; (as generally implied by Z; conditional rele-
vance assumption 5))

Zy; N
o= 1) (wi-d4 - (1.z2)7)
i Zo;

The right hand-side to the above equation is an empirical version of the popu-
lation moment condition

E 1 | (Y —vA—EN°(t1) — YO(to)| Z2. Z1 = 0])

- E 1 | (E(6Y|21,22) — E(8Y|Z1 =0, Z) — A — E[Y°(t1) — Y°(t0)| Z2. Z1 = 0])

_ el [ etz + BYOe) - vO() 22 21 = 0]
N —vA—E[Y°(t) — Y°(t0)|Z2, Z1 = 0]

=0

Formally establishing that under the assumptions of Result 1 and linear models
(1) and (2). 2SLS provides a consistent estimator of the causal effect parameter
. It is important to note that the first stage linear regression of A on Z need
not be correctly specified, provided that it is estimated via OLS, an analogous
robustness property known to hold for standard 2SLS. This also justifies validity
of the approach for binary treatment even under a misspecified first stage linear
model.

The following results provide alternative nonparametric identification con-
ditions for ¥ (Z) without assumption 6.

Result 2:Suppose that

E[Y°(t1)|Z1, 2] = E[Y°(t0)|Z1. 2],
then under assumptions 1)-3) and E (A|Z) #0

_EGY|2)
v(Z)= FAz)

Proof: The proof proceeds similar to that of the previous result, which es-




