
SUPPLEMENTARY MATERIAL: IDENTIFICATION OF VACCINE
EFFECTS WHEN EXPOSURE STATUS IS UNKNOWN

Appendix A. Proofs

Proof of Proposition 1. For any a, a′ ∈ {0, 1}, use laws of probability and conditions

(5) and (7)-(10) to express

E(Y | A = a) =E(Y | E = 1, A = a)P (E = 1 | A = a)︸ ︷︷ ︸
=P (E=1|A=a′)

+E(Y | A = a,E = 0)P (E = 0 | A = a)︸ ︷︷ ︸
=0

=E(Y | E = 1, A = a)P (E = 1 | A = a′).

Thus,

E(Y | A = 1)

E(Y | A = 0)
=

E(Y | E = 1, A = 1)P (E = 1 | A = 1)

E(Y | E = 1, A = 0)P (E = 1 | A = 0)

=
E(Y | E = 1, A = 1)

E(Y | E = 1, A = 0)

=
E(Y a=1 | E = 1)

E(Y a=0 | E = 1)
,

where the second and third line again follow due to assumption (5) and (7)-(10). �

Proof of Proposition 2. We first derive an upper bound.

E(Y a=0 | E = 1)− E(Y a=1 | E = 1)

=E(Y | E = 1, A = 0)− E(Y | E = 1, A = 1) due to (7)− (9)

=
E(Y | A = 0)

P (E = 1 | A = 0)
− E(Y | A = 1)

P (E = 1 | A = 1)
due to (10) and laws of prob.

=
E(Y | A = 0)

P (E = 1 | A = 0)
− E(Y | A = 1)

P (E = 1 | A = 0)
due to (5)

≤E(Y | A = 0)

E(Y | A = 0)
− E(Y | A = 1)

E(Y | A = 0)
= 1− E(Y | A = 1)

E(Y | A = 0)
.(S1)

1
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The last line is an equality when (E = 1 ⇐⇒ Y = 1) | A = 0.

A lower bound on the absolute CECE is given by

E(Y a=0 | E = 1)− E(Y a=1 | E = 1)

=
E(Y | A = 0)

P (E = 1 | A = 0)
− E(Y | A = 1)

P (E = 1 | A = 0)

≥E(Y | A = 0)− E(Y | A = 1).(S2)

The last line in (S2) is an equality when P (E = 1) = 1. �

Proof of Proposition S1.

E(Y a=1,e=1 | L)

E(Y a=0,e=1 | L)
=

E(Y | E = 1, A = 1, L)

E(Y | E = 1, A = 0, L)
due to (S10)− (S12)

=
E(Y | A = 1, L)

E(Y | A = 0, L)
,

where the last equality follows from

E(Y | E = 1, A = a, L) =
E(Y | A = a, L)

P (E = 1 | A = a, L)
=

E(Y | A = a, L)

P (E = 1 | A = a′, L)
,

using (10) and (5), similarly to the proof of Proposition (1). �

Proof of Proposition S2. The result follows from including L in the conditioning

set in all the derivations of Proposition 1, which then gives the same identification

result as in Proposition S1. �

Appendix B. Time-to-events and censoring

We re-introduce the terminology from Section CECE in Time-to-Event Settings.

Let Yk and Ek be time-to-event variables indicating whether an individual has

experienced the event by time k (Yk = 1) and being exposed by time k (Ek = 1),

respectively. Let Ck denote loss to follow-up (censoring) by interval k > 0, and

we define the temporal (and topological) order (Ck, Ek, Yk) in each interval k > 0.
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Suppose we are interested in outcomes in time intervals k = 0, . . . , K. We adopt

the convention that random variables with a negative subscript are equal to 0 (e.g.,

Y−1 ≡ 0).

Let the history of a random variable be denoted by a check symbol, e.g. Y̌k =

(Y0, Y1, ..., Yk) is the history of the event of interest through interval k. Further,

let the future of a random variable through K be denoted by an underline, e.g.

Y k = (Yk, Yk+1, ..., YK).

Consider now classical identifiability conditions for causal effects in time-to-event

settings, which are just extensions of (7)-(9).

Assumption (Treatment exchangeability).

Y̌ a,c=0
K , Ěa,c=0

K ⊥⊥ A,(S3)

Y a,c=0
k ⊥⊥ Ck | Yk−1 = Ck−1 = 0, A = a.(S4)

Condition (S3) holds when A is randomly assigned. Condition (S4) requires that

losses to follow-up are independent of future counterfactual events, given the mea-

sured past; this assumption, which corresponds to classical independent censoring

assumptions, does not hold by design in a randomized trial, as losses to follow-up

are not randomly assigned in practice. The treatment exchangeability conditions

are satisfied in the SWIG in Figure 2.

Assumption (Positivity).

P (A = a) > 0 ∀a ∈ {0, 1}(S5)

P (Yk = 0, Ck = 0, A = a) > 0 =⇒

P (Ck+1 = 0 | Yk = 0, Ck = 0, A = a) > 0 ,(S6)

for all a ∈ {0, 1} and k < K.
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The positivity conditions require that for any possible history of treatment as-

signment and covariates among those who are event-free and uncensored at k, some

subjects will remain uncensored at the next time k + 1.

Assumption (Consistency).

if A = a and Ck = 0,

then Y̌k = Y̌ a,c=0
k , Ěk = Ěa,c=0

k(S7)

for all a ∈ {0, 1} and k ≤ K.

Consistency holds if any individual who has data history consistent with the

intervention under a counterfactual scenario, would have observed outcomes that

are equal to the counterfactual outcomes.

Besides the classical identifiability conditions, we introduce the following con-

ditions, which generalize exposure necessity (10) and the no effect on exposure

assumption (5) from the main text.

Assumption (Time-varying exposure necessity).

Ea,c=0
k = 0 =⇒ Y a,c=0

k = 0,(S8)

for all a ∈ {0, 1} and k ≤ K.

Like (10), the assumption of time-varying exposure necessity states that the out-

come can only happen in individuals who have been exposed to the virus. By

definition, Ea,c=0
k−1 = 1 =⇒ Ea,c=0

k = 1, so the time-varying nature of exposure and

the outcome should not make this assumption less justifiable.

Assumption (No effect on exposure).

Ea=0,c=0
k = Ea=1,c=0

k ,(S9)
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for all k ≤ K.

This assumption says that the risk of exposure by any time k is the same among

treated and untreated. Consider a situation in which a vaccine A prevents or

delays the outcome Y . Under blinding, condition (S9) would still hold because

prior infection would be the only thing preventing future exposure, but under (S8),

anyone with the outcome would have already been exposed. However, we must

assume that blinding continues to be successful; that is, this assumption would be

violated if over time individuals notice that they are not getting infected after the

same level of exposure as people around them, and therefore conclude that they

have been vaccinated and change behavior.

Under these conditions we sketch a proof for Proposition 4.

Sketch of proof of Proposition 4. We can invoke (S8)-(S9) to find that

E(Y a=1,c=0
k )

E(Y a=0,c=0
k )

=
E(Ea=1,c=0

k Y a=1,c=0
k )

E(Ea=0,c=0
k Y a=0,c=0

k )

=
E(Y a=1,c=0

k | Ea=1,c=0
k = 1)E(Ea=1,c=0

k )

E(Y a=0,c=0
k | Ea=0,c=0

k = 1)E(Ea=0,c=0
k )

=
E(Y a=1,c=0

k | Ea=1,c=0
k = 1)

E(Y a=0,c=0
k | Ea=0,c=0

k = 1)
,

where we used exposure necessity in the first equality, laws of probability in the

second equality and the last equality follows because E(Ea=0,c=0
k ) = E(Ea=1,c=0

k )

under (S9).

Then, using treatment exchangeability, consistency and positivity, it follows that

E(Y a,c=0
k ) can be expressed in terms of the cumulative incidence function at k, µk(a).

The proof for the additive CECE follows the same structure as the proof of

Proposition 2. �

Appendix C. Parallel to risk ratio under perfect specificity

A well-known result in epidemiology is the fact that under so-called non-differential

misclassification of the outcome with perfect specificity, the exposure-outcome risk
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ratio is unbiased, although the risk difference is not. For example, in the setting

of possibly incomplete disease ascertainment in exposed and unexposed cohorts,

Lawrence and Greenwald described how a screening program could be implemented

to remove false positive cases, resulting in an unbiased risk ratio [?]. The require-

ment of perfect specificity parallels our exposure necessity assumption, and that of

non-differential misclassification parallels our assumption of no effect on exposure.

We demonstrate these parallels with the DAGs in Figure S1. Each has one partially

deterministic arrow and one independence assumption, though the causal structures

differ. The partially deterministic arrow and the independence assumption allow in

each case for an unbiased ratio measure, as we demonstrate in the following deriva-

tion. Take Y to be a binary outcome and A any exposure of interest (also binary

for simplicity). We denote a misclassified version of the outcome with Y ∗. Then we

have for the misclassification setting that

P (Y ∗ = 1 | A = 1)

P (Y ∗ = 1 | A = 0)

=
P (Y ∗ = 1 | A = 1, Y = 1)P (Y = 1 | A = 1) + P (Y ∗ = 1 | A = 1, Y = 0)P (Y = 0 | A = 1)

P (Y ∗ = 1 | A = 0, Y = 1)P (Y = 1 | A = 0) + P (Y ∗ = 1 | A = 0, Y = 0)P (Y = 0 | A = 0)

=
P (Y ∗ = 1 | A = 1, Y = 1)P (Y = 1 | A = 1) + 0× P (Y = 0 | A = 1)

P (Y ∗ = 1 | A = 0, Y = 1)P (Y = 1 | A = 0) + 0× P (Y = 0 | A = 0)

=
P (Y ∗ = 1 | Y = 1)P (Y = 1 | A = 1)

P (Y ∗ = 1 | Y = 1)P (Y = 1 | A = 0)
=
P (Y = 1 | A = 1)

P (Y = 1 | A = 0)
,

and a parallel derivation of our Proposition 1, that is,

P (Y = 1 | A = 1)

P (Y = 1 | A = 0)

=
P (Y = 1 | A = 1, E = 1)P (E = 1 | A = 1) + P (Y = 1 | A = 1, E = 0)P (E = 0 | A = 1)

P (Y = 1 | A = 0, E = 1)P (E = 1 | A = 0) + P (Y = 1 | A = 0, E = 0)P (E = 0 | A = 0)

=
P (Y = 1 | A = 1, E = 1)P (E = 1 | A = 1) + 0× P (E = 0 | A = 1)

P (Y = 1 | A = 0, E = 1)P (E = 1 | A = 0) + 0× P (E = 0 | A = 0)

=
P (Y = 1 | A = 1, E = 1)P (E = 1)

P (Y = 1 | A = 0, E = 1)P (E = 1)
=
P (Y = 1 | A = 1, E = 1)

P (Y = 1 | A = 0, E = 1)
,
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where the second equality uses the appropriate partially deterministic arrow as-

sumption and the third equality the appropriate independence assumption.

A Y Y ∗

(a)

A E Y

(b)

Figure S1. Simplified DAGs demonstrating the parallels described
in eAppendix C. (a) Non-differential misclassification of the outcome.
The assumption that outcome misclassification doesn’t depend on
exposure results in A ⊥⊥ Y ∗ | Y . The heavier arrow from Y to Y ∗

represents the perfect specificity assumption: Y = 0 =⇒ Y ∗ = 0.
(b) The setting from the main text (simplified to remove common
causes of E and Y ). The no effect on exposure assumption results
in A ⊥⊥ E. The heavier arrow from E to Y represents the exposure
necessity assumption: E = 0 =⇒ Y = 0.

Appendix D. Identification of the CDE (4)

Identification results for the CDE are well-established when the exposure E is

measured. To motivate our new result for settings where E is unmeasured, we first

present these conventional identifiability conditions.

Assumption (Exposure exchangeability).

Ea ⊥⊥ A | L, Y a,e=1 ⊥⊥ A | L and Y a,e=1 ⊥⊥ Ea | L,A = a.(S10)

Conditions (S10) are classical exchangeability condition, analogous to assump-

tions that are typically implemented to identify per protocol effects in trials, causal

effects from observational data, and mediation effects. This assumption is stronger

than exchangeability assumption (7). In particular, (S10) does not hold unless we

measure common causes of Y and E, as illustrated in the SWIG in Figure 1d.
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Assumption (Exposure positivity).

P (A = a,E = 1 | L) > 0 for all a ∈ {0, 1} w.p.1.(S11)

Assumption (Exposure consistency).

If A = a then E = Ea. If A = a and E = 1 then Y = Y a,e=1,(S12)

for all a ∈ {0, 1} .

When we impose conditions (S10)-(S12), the CDE can be expressed as a function

of factual variables,

E(Y a,e=1) = E{E(Y | E = 1, A = a, L)}.

However, because we do not measure E, it is not possible to identify the CDE

from our observed data; we cannot identify the term E(Y | E = 1, A = a, L)

without measuring E. In particular, the absolute CDE cannot be identified unless

we measure E. Nevertheless, our next proposition shows that the relative CDE

conditional on L is point identified.

Proposition S1 (CDE conditional on L). Under conditions (5), (10) and (S10)-

(S12), the relative CDE conditional on the baseline covariate L is

E(Y a=1,e=1 | L)

E(Y a=0,e=1 | L)
=

E(Y | A = 1, L)

E(Y | A = 0, L)
.

The proof is given in Appendix Appendix A. The following proposition relates

the CECE within a subpopulation defined by L and the CDE.
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Proposition S2 (CECE and CDE conditional on L). Under conditions (5), (7)-

(10) and (S10)-(S12), the relative CECE given L = l and the relative CDE condi-

tional on the baseline covariate L = l are equal, that is,

E(Y a=1 | Ea=1 = 1, L = l)

E(Y a=0 | Ea=0 = 1, L = l)
=

E(Y a=1,e=1 | L = l)

E(Y a=0,e=1 | L = l)
=

E(Y | A = 1, L = l)

E(Y | A = 0, L = l)
.

It is crucial that the covariate vector L in Proposition S1 and Proposition S2

is sufficient to adjust for confounding, i.e. to ensure that exposure exchangeabil-

lity (S10) holds. Thus, identification of the conditional CDEs requires stronger

assumptions compared to identification of the CECE. Although the conditional

CECE can be defined and estimated within any set of baseline covariates, it is only

interpretable as a conditional CDE when that set of covariates consists of those

sufficient to adjust for confounding.

The marginal CDE is not point identified. Whereas the conditional relative

CDE can be point identified under (5), (10) and (S10)-(S12), the marginal relative

CDE is not identified without additional assumptions. To see this, consider a binary

outcome Y ∈ {0, 1}. The marginal relative CDE can be expressed as a weighted

average of conditional relative CDEs,1

E(Y a=1,e=1)

E(Y a=0,e=1)
=
∑
l

E(Y a=1,e=1 | L = l)

E(Y a=0,e=1 | L = l)
P (L = l | Y a=0,e=1 = 1)

=
∑
l

E(Y | A = 1, L = l)

E(Y | A = 0, L = l)
P (L = l | Y a=0,e=1 = 1).(S13)

1Following the collapsibility results for relative risks in e.g. Huitfeldt et al [?].
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Using laws of probability and (S10)-(S12), P (L = l | Y a=0,e=1 = 1) can be written

as

P (L = l | Y a=0,e=1 = 1) =
P (Y a=0,e=1 = 1 | L = l)P (L = l)

P (Y a=0,e=1 = 1)

=
P (Y = 1 | E = 1, A = 0, L = l)P (L = l)∑
l P (Y = 1 | E = 1, A = 0, L = l)P (L = l)

,

which depends on probabilities conditional on E = 1 that are not estimable from

observed data. However, we can point-identify the marginal CDE under the addi-

tional strong assumption that E(Y a=0,e=1) = 1, that is, the exposure deterministi-

cally causes the outcome if untreated. Then, P (L = l | Y a=0,e=1 = 1) = P (L = l),

and thus the marginal relative CDE is point identified by

E(Y a=1,e=1)

E(Y a=0,e=1)
=
∑
l

E(Y | A = 1, L = l)

E(Y | A = 0, L = l)
P (L = l).

The marginal absolute PPE is point identified as

E(Y a=1,e=0)−E(Y a=1,e=1) = 1−E(Y a=1,e=1)

E(Y a=0,e=1)
= 1−

∑
l

E(Y | A = 1, L = l)

E(Y | A = 0, L = l)
P (L = l).

Appendix E. Sensitivity analyses

Proof of Proposition 3 from Section “External Data and Sensitivity Analysis”. We

follow the same strategy as for the lower bound (S1) in the main text.
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E(Y a=1 | Ea=1 = 1)− E(Y a=0 | Ea=0 = 1)

=E(Y | E = 1, A = 0)− E(Y | E = 1, A = 1) due to (7)− (9)

=
E(EY | A = 0)

P (E = 1 | A = 0)
− E(EY | A = 1)

P (E = 1 | A = 1)
(laws of prob.)

=
E(Y | A = 0)

P (E = 1 | A = 0)
− E(Y | A = 1)

P (E = 1 | A = 1)
due to (10)

=
E(Y | A = 0)

P (E = 1 | A = 0)
− E(Y | A = 1)

P (E = 1 | A = 0)
due to (5)

=
E(Y | A = 0)E(Y | E = 1, A = 0)

E(Y | A = 0)
− E(Y | A = 1)E(Y | E = 1, A = 0)

E(Y | A = 0)

=E(Y | E = 1, A = 0)

(
1− E(Y | A = 1)

E(Y | A = 0)

)
,

where we used exposure necessity (10) in the 5th equality, which implies that P (Y =

1 | E = 1, A = 0)P (E = 1 | A = 0) = P (Y = 1 | A = 0) and that E(Y | A = 0) ≥

E(Y | A = 1). �

Proposition 3 motivates a sensitivity analysis and/or use of data from external

sources; the investigator can include their background knowledge on P (Y = 1 |

E = 1, A = 0) – the probability of experiencing the outcome given exposure in the

unvaccinated – along with the observed data on E(Y | A = a) to point identify the

absolute CECE.

The 4th line of the proof of Proposition 3 motivates an alternative sensitivity

analysis: the investigator can specify the marginal risk of being exposed to the

infectious agent given no treatment, that is, P (E = 1 | A = 0), and then point

identify the risk difference.

Appendix F. R code to compute bounds for the aCECE and create

Figure 3

\footnotesize
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# install.packages(c("ggplot2", "ggrepel"))

library(ggplot2)

## uncomment these lines and dev.off() at the bottom to recreate the

## figure using tikz

## install.packages("tikzDevice")

# library(grid)

# library(tikzDevice)

#

# tikz(file = "sensitivity_params.tex",

# standAlone = FALSE,

# width = 5,

# height = 5

# )

## Observed values

# P(Y = 1 | A = 1)

pYA1 <- 0.009

# P(Y = 1 | A = 0)

pYA0 <- 0.031

# function to compute the bounds of the aCECE

calc_aCECE <- function(pYA1, pYA0, pE = 1, pYE1A0 = 1) {

lower_bound <- (pYA0 - pYA1) / pE

upper_bound <- (1 - pYA1 / pYA0) * pYE1A0

c(lower_bound = lower_bound, upper_bound = upper_bound)

}

# calculate the bounds using the observed values set above

calc_aCECE(pYA1 = pYA1, pYA0 = pYA0)

# given a certain Pr(Y = 1 | E = 1, A = 0), we can compute Pr(E = 1 | A = 0)

# from the observed P(Y = 1 | A = 0) and P(Y = 1 | A = 1) and vice versa

convert_params <- function(pYE1A0 = NULL, pE = NULL, pYA1, pYA0) {

if (!is.null(pYE1A0) & !is.null(pE)) stop("Please specify only one of pYE1A0

and pE")

if (is.null(pYE1A0) & is.null(pE)) stop("Either pYE1A0 or pE must be specified")

if (!is.null(pYE1A0)) {

pE <- -((pYA1 - pYA0) / (1 - (pYA1 / pYA0))) / pYE1A0

return(c(pE = pE))

} else {

pYE1A0 <- -((pYA1 - pYA0) / (1 - (pYA1 / pYA0))) / pE

return(c(pYE1A0 = pYE1A0))

}

}

# confirm that we can go back and forth

convert_params(pYE1A0 = 0.05, pYA1 = pYA1, pYA0 = pYA0)
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convert_params(pE = 0.62, pYA1 = pYA1, pYA0 = pYA0)

# as soon as we specify one or the other of Pr(E = 1 | A = 0) or

# Pr(Y = 1 | E = 1, A = 0), the bounds are the same

# and the aCECE is point-identified

# here we are specifying Pr(Y = 1 | E = 1, A = 0) = 0.85 and using that to

# compute Pr(E = 1 | A = 0)

calc_aCECE(pYA1 = pYA1, pYA0 = pYA0,

pE = convert_params(pYE1A0 = 0.85, pYA1 = pYA1, pYA0 = pYA0),

pYE1A0 = 0.85)

# specify values to compute aCECE for

pE <- c(0.9,

0.6,

convert_params(pYE1A0 = 0.85, pYA1 = pYA1, pYA0 = pYA0))

pYE1A0 <- c(convert_params(pE = 0.9, pYA1 = pYA1, pYA0 = pYA0),

convert_params(pE = 0.6, pYA1 = pYA1, pYA0 = pYA0),

0.85)

# apply the function to each pair of values

aCECE <- mapply(FUN = calc_aCECE,

pE = pE, pYE1A0 = pYE1A0,

# the other parameters stay the same

MoreArgs = list(pYA1 = pYA1, pYA0 = pYA0))

# the lower and upper bounds are the same

aCECE

# create dataframe of points to graph

points_to_highlight <- data.frame(x = pE, y = pYE1A0, aCECE = aCECE[1,],

lbl = paste0("aCECE = ",

scales::number(aCECE[1,])))

# plot the range of possible pairs of

# Pr(E = 1 | A = 0) and Pr(Y = 1 | E = 1, A = 0)

# with those values annotated with the corresponding aCECE

fig <- ggplot(data = points_to_highlight, aes(x, y, label = lbl)) +

xlim(pYA0, 1) +

geom_function(fun = convert_params, args = list(pYA1 = pYA1, pYA0 = pYA0)) +

labs(x = "$\\Pr(E = 1 \\mid A= 0)$", y = "$\\Pr(Y = 1 \\mid E = 1, A = 0)$") +

geom_point() +

ggrepel::geom_text_repel() +

theme_minimal() +

theme(axis.line.y.left = element_line(color = "#565656"),

axis.line.x.bottom = element_line(color = "#565656"))

print(fig)
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# dev.off()


