1 Proof that causal effects in the selected population are not estimable under outcomeinfluenced selection

Define $p_{a y .1}=p(A=a, Y=y \mid S=1), q_{a .1}=p\left(Y_{a}=1 \mid S=1\right), \mathbf{p}_{.1}=$ $\left\{p_{00.1}, p_{01.1}, p_{10.1}, p_{11.1}\right\}$ and $\mathbf{q}_{.1}=\left\{q_{0.1}, q_{1.1}\right\}$. Similarly, define $p_{\text {ay } 1}=p(A=$ $a, Y=y, S=1), q_{a 1}=p\left(Y_{a}=1, S=1\right), \mathbf{p}_{1}=\left\{p_{001}, p_{011}, p_{101}, p_{111}\right\}$ and $\mathbf{q}_{1}=$ $\left\{q_{01}, q_{11}\right\}$. Causal effects in the selected population are contrasts between the elements of \mathbf{q}_{11}. Let S_{y} denote the potential outcome of S for a given subject if, possibly contrary to fact, exposed to level $Y=y$. Note that \mathbf{p}_{1} and \mathbf{q}_{1} are obtained by marginalizing the distribution $p\left(A, Y_{0}, Y_{1}, S_{0}, S_{1}\right)$. Specifically, due to consistency (1) in the main text we have that

$$
\begin{align*}
p_{a y 1} & =p\left(A=a, Y_{a}=y, S_{y}=1\right) \\
& =\sum_{y^{\prime} \in\{0,1\}} p\left(A=a, Y_{a}=y, Y_{1-a}=y^{\prime}, S_{y}=1\right) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
q_{a 1} & =\sum_{a^{\prime}, y} p\left(A=a^{\prime}, Y_{a}=1, Y_{1-a}=y, S=1\right) \\
& =\sum_{y} p\left(A=a, Y_{a}=1, Y_{1-a}=y, S_{1}=1\right)+p\left(A=1-a, Y_{a}=1, Y_{1-a}=y, S_{y}=1\right) \tag{2}
\end{align*}
$$

Since $p(S=1)=\sum_{a, y} p_{a y 1}$ it follows that $\mathbf{p}_{.1}=\mathbf{p}_{1} / p(S=1)$ and $\mathbf{q}_{.1}=$ $\mathbf{q}_{1} / p(S=1)$ are obtained by first marginalizing then conditioning the distribution $p\left(A, Y_{0}, Y_{1}, S_{0}, S_{1}\right)$. To show that causal effects in the selected population are not estimable under the causal diagram in Figure 3 in the main text we thus show that, for any given $\mathbf{p}_{.1}$, it is possible to find two valid distributions $p\left(A, Y_{0}, Y_{1}, S_{0}, S_{1}\right)$ which imply the same given $\mathbf{p}_{\text {. }}$ but two different $\mathrm{q}_{\text {. } 1}$.

First, define $p=p(A=1), v_{i j}=p\left(Y_{0}=i, Y_{1}=j\right), r_{y}=p\left(S_{y}=1\right)$, $r=p(S=1)$ and $\theta=\left\{p, v_{00}, v_{01}, v_{10}, v_{11}, r_{0}, r_{1}\right\}$. Under the causal diagram in Figure in the main text, the distribution $p\left(A, Y_{0}, Y_{1}, S_{0}, S_{1}\right)$ factorizes into $p(A) p\left(Y_{0}, Y_{1}\right) p\left(S_{0}, S_{1}\right)$. From (1) and (2) we thus have that

$$
\begin{align*}
& p_{00.1}=(1-p)\left(v_{00}+v_{01}\right) r_{0} / r \\
& p_{01.1}=(1-p)\left(v_{10}+v_{11}\right) r_{1} / r \\
& p_{10.1}=p\left(v_{00}+v_{10}\right) r_{0} / r \\
& p_{11.1}=p\left(v_{01}+v_{11}\right) r_{1} / r \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
q_{0.1} & =\left\{(1-p)\left(v_{10}+v_{11}\right) r_{1}+p\left(v_{10} r_{0}+v_{11} r_{1}\right)\right\} / r \\
q_{1.1} & =\left\{p\left(v_{01}+v_{11}\right) r_{1}+(1-p)\left(v_{01} r_{0}+v_{11} r_{1}\right)\right\} / r . \tag{4}
\end{align*}
$$

Define $v_{a}=p\left(Y_{a}=1\right)$. If $Y_{0} \perp Y_{1}$, then

$$
\begin{aligned}
& v_{00}=\left(1-v_{0}\right)\left(1-v_{1}\right) \\
& v_{01}=\left(1-v_{0}\right) v_{1} \\
& v_{10}=v_{0}\left(1-v_{1}\right) \\
& v_{11}=v_{0} v_{1}
\end{aligned}
$$

so that (3) and (4) simplify to

$$
\begin{align*}
p_{00.1} & =(1-p)\left(1-v_{0}\right) r_{0} / r \\
p_{01.1} & =(1-p) v_{0} r_{1} / r \\
p_{10.1} & =p\left(1-v_{1}\right) r_{0} / r \\
p_{11.1} & =p v_{1} r_{1} / r \tag{5}
\end{align*}
$$

and

$$
\begin{aligned}
q_{0.1} & =\left[(1-p) v_{0} r_{1}+p\left\{v_{0}\left(1-v_{1}\right) r_{0}+v_{0} v_{1} r_{1}\right\}\right] / r \\
q_{1.1} & =\left[p v_{1} r_{1}+(1-p)\left\{\left(1-v_{0}\right) v_{1} r_{0}+v_{0} v_{1} r_{1}\right\}\right] / r
\end{aligned}
$$

Define $x=r_{1} / r_{0}$. Considering r, x and $\mathbf{p}_{.1}$ as fixed and solving (5) for
$\left\{p, v_{0}, v_{1}, r_{0}, r_{1}\right\}$ gives

$$
\begin{align*}
p & =\frac{x p_{10.1}+p_{11.1}}{x p_{10.1}+p_{11.1}+x p_{00.1}+p_{01.1}} \\
v_{0} & =\frac{p_{01.1}}{x p_{00.1}+p_{01.1}} \\
v_{1} & =\frac{p_{11.1}}{x p_{10.1}+p_{11.1}} \\
r_{0} & =\frac{\left(x p_{00.1}+p_{01.1}+x p_{10.1}+p_{11.1}\right) r}{x} \\
r_{1} & =\left(x p_{00.1}+p_{01.1}+x p_{10.1}+p_{11.1}\right) r . \tag{6}
\end{align*}
$$

For this solution we have that $0 \leq\left\{p, v_{0}, v_{1}, r_{0}\right\} \leq 1$ if $x \geq 1$. We also have that $0 \leq r_{1} \leq 1$ if

$$
x \leq \frac{r^{-1}-p_{01.1}-p_{11.1}}{p_{00.1}+p_{10.1}}=\frac{r^{-1}-p_{01.1}-p_{11.1}}{1-p_{01.1}-p_{11.1}} .
$$

The range

$$
\begin{equation*}
1 \leq x \leq \frac{r^{-1}-p_{01.1}-p_{11.1}}{1-p_{01.1}-p_{11.1}} \tag{7}
\end{equation*}
$$

is non-empty, provided that $r<1$. Thus, for any given $\mathbf{p}_{.1}$ we may find two valid distributions $p\left(A, Y_{0}, Y_{1}, S_{0}, S_{1}\right)$ which imply the same given $\mathbf{p}_{.1}$ by first setting r to an arbitrary number >0 and <1, then choosing two arbitrary values of x in the range (7) and solving (6) for $\left\{p, v_{0}, v_{1}, r_{0}, r_{1}\right\}$.

It remains to show that the obtained solutions $q_{0.1}$ and $q_{1.1}$ are non-
constant functions of x. We show this by a numerical example. Figure 1 shows $q_{0.1}$ and $q_{1.1}$ as functions of x for $r=0.05, p_{00.1}=0.1, p_{01.1}=0.2$, $p_{10.1}=0.3$ and $p_{11.1}=0.4$. Clearly, these are non-constant, which completes the proof.

2 Derivation of the Robins-Manski bounds for causal effects in the selected population under outcome-influenced selection

We have that

$$
\begin{aligned}
p\left(Y_{a}=1 \mid S=1\right) & =p\left(Y_{a}=1 \mid A=a, S=1\right) p(A=a \mid S=1) \\
& +p\left(Y_{a}=1 \mid A=1-a, S=1\right) p(A=1-a \mid S=1) \\
& =p(Y=1 \mid A=a, S=1) p(A=a \mid S=1) \\
& +p\left(Y_{a}=1 \mid A=1-a, S=1\right) p(A=1-a \mid S=1)
\end{aligned}
$$

where the first equality follows from the law of total probability, and the second from consistency (1) in the main text. The right-hand side of this expression in minimized when $p\left(Y_{a}=1 \mid A=1-a, S=1\right)=0$ and maximized when $p\left(Y_{a}=1 \mid A=1-a, S=1\right)=1$, which gives the bounds for $p\left(Y_{a}=\right.$ $1 \mid S=1)$ in (6) in the main text.

Figure 1: $q_{0.1}$ and $q_{1.1}$ as functions of x for $r=0.05, p_{00.1}=0.1, p_{01.1}=0.2$, $p_{10.1}=0.3$ and $p_{11.1}=0.4$.

3 Proof that the observed data have no information about causal effects in the source population under outcome-associated selection

Consider an arbitrary distribution $p^{*}(A, Y \mid S=1)$ and arbitrary counterfactual probabilities $p^{*}\left(Y_{1}=1\right)$ and $p^{*}\left(Y_{0}=1\right)$ under the causal diagram in Figure 2 in the main text. We first note that

$$
\begin{aligned}
p^{*}\left(Y_{a}=1\right) & =p^{*}\left(Y_{a}=1 \mid A=a\right) \\
& =p^{*}(Y=1 \mid A=a)
\end{aligned}
$$

where the first equality follows from the fact that $Y_{a} \perp A$ under the counterfactual diagram in Figure 4 in the main text, and the second from consistency (1) in the main text. To prove the desired result we thus need to show that it is possible to construct a valid distribution $p(A, Y, U, S)$ that obeys the factorization $p(A, Y, U, S)=p(A) p(U) p(Y \mid A, U) p(S \mid U)$ implied by the causal diagram in Figure 2 in the main text, and marginalizes to $p^{*}(A, Y \mid S=1)$, $p^{*}\left(Y_{1}=1\right)=p^{*}(Y=1 \mid A=1)$ and $p^{*}\left(Y_{0}=1\right)=p^{*}(Y=1 \mid A=0)$. We proceed through the following steps.

1. Set $p(A=1)=p^{*}(A=1 \mid S=1)$.
2. Let U be binary and set $U=S$.
3. If $p^{*}(Y=1 \mid A=a)=p^{*}(Y=1 \mid A=a, S=1)$ for $a \in\{0,1\}$, then set

$$
\begin{aligned}
& p(U=1 \mid A=a)=p(U=1)=1 / 2 \text { for } a \in\{0,1\} . \text { Otherwise, set } \\
& \quad p(U=1 \mid A=a)=p(U=1)= \\
& \quad=\min \left\{\frac{p^{*}(Y=1 \mid A=0)}{p^{*}(Y=1 \mid A=0, S=1)}, \frac{p^{*}(Y=0 \mid A=0)}{p^{*}(Y=0 \mid A=0, S=1)},\right. \\
& \left.\frac{p^{*}(Y=1 \mid A=1)}{p^{*}(Y=1 \mid A=1, S=1)}, \frac{p^{*}(Y=0 \mid A=1)}{p^{*}(Y=0 \mid A=1, S=1)}\right\}
\end{aligned}
$$

for $a \in\{0,1\}$.
4. Set $p(Y=1 \mid A=a, U=1)=p^{*}(Y=1 \mid A=a, S=1)$ for $a \in\{0,1\}$
5. Set

$$
p(Y=1 \mid A=a, U=0)=\frac{p^{*}(Y=1 \mid A=a)-p(Y=1 \mid A=a, U=1) p(U=1)}{p(U=0)}
$$

for $a \in\{0,1\}$, where we define $0 / 0=1$.

The constructed distribution completely defines the joint distribution $p(A, Y, U, S)$.
We have that

$$
\begin{aligned}
p(A, Y, U, S) & =p(A) p(U \mid A) p(Y \mid A, U) p(S \mid A, Y, U) \\
& =p(A) p(U) p(Y \mid A, U) p(S \mid U)
\end{aligned}
$$

where the second equality follows from steps 2 and 3 . We further have that

$$
\begin{aligned}
p(A=a, Y=y \mid S=1) & =p(A=a \mid S=1) p(Y=y \mid A=a, S=1) \\
& =p(A=a \mid U=1) p(Y=y \mid A=a, U=1) \\
& =p(A=a) p(Y=y \mid A=a, U=1) \\
& =p^{*}(A=a \mid S=1) p^{*}(Y=y \mid A=a, S=1) \\
& =p^{*}(A=a, Y=y \mid S=1)
\end{aligned}
$$

where the second equality follows from step 2 , the third equality follows from step 3 , and the fourth equality follows from steps 1 and 4 . We further have that

$$
\begin{aligned}
& p(Y=y \mid A=a)=p(Y=y \mid A=a, U=0) p(U=0 \mid A=a) \\
& \quad+p(Y=y \mid A=a, U=1) p(U=1 \mid A=a) \\
& \quad=p(Y=y \mid A=a, U=0) p(U=0)+p(Y=y \mid A=a, U=1) p(U=1) \\
& \quad=p^{*}(Y=1 \mid A=a),
\end{aligned}
$$

where the second equality follows from step 3 and the third equality follows from step 5. It remains to show that the constructed distribution $p(A, Y, U, S)$ is valid. From step 1 we have that $0 \leq p(A=1) \leq 1$; from step 3 we have that $0 \leq p(U=1 \mid A=a) \leq 1$ for $a \in\{0,1\}$; from step 4 we have that $0 \leq p(Y=1 \mid A=a, U=1) \leq 1$ for $a \in\{0,1\}$; from step 2 we have that $p(S=1 \mid A, Y, U=1)=1$ and $p(S=1 \mid A, Y, U=0)=0 ;$ from step 5 we
have that $0 \leq p(Y=1 \mid A=a, U=0) \leq 1$ if $p(U=1) \leq \min \left\{p^{*}(Y=1 \mid A=\right.$ a) $\left./ p(Y=1 \mid A=a, U=1), p^{*}(Y=0 \mid A=a) / p(Y=0 \mid A=a, U=1)\right\}$, which is implied by steps 3 and 4 .

4 Proof that the causal odds ratio in the source population is equal to the odds ratio in the

selected population under outcome-associated

 selectionWe have that

$$
\begin{aligned}
\frac{p\left(Y_{1}=1\right) / p\left(Y_{1}=0\right)}{p\left(Y_{0}=1\right) / p\left(Y_{0}=0\right)} & =\frac{p\left(Y_{1}=1 \mid A=1\right) / p\left(Y_{1}=0 \mid A=1\right)}{p\left(Y_{0}=1 \mid A=0\right) / p\left(Y_{0}=0 \mid A=0\right)} \\
& =\frac{p(Y=1 \mid A=1) / p(Y=0 \mid A=1)}{p(Y=1 \mid A=0) / p(Y=0 \mid A=0)} \\
& =\frac{p(A=1 \mid Y=1) / p(A=0 \mid Y=1)}{p(A=1 \mid Y=0) / p(A=0 \mid Y=0)} \\
& =\frac{p(A=1 \mid Y=1, S=1) / p(A=0 \mid Y=1, S=1)}{p(A=1 \mid Y=0, S=1) / p(A=0 \mid Y=0, S=1)} \\
& =\frac{p(Y=1 \mid A=1, S=1) / p(Y=0 \mid A=1, S=1)}{p(Y=1 \mid A=0, S=1) / p(Y=0 \mid A=0, S=1)}
\end{aligned}
$$

where the first equality follows from the fact that $Y_{a} \perp A$ under the counterfactual diagram in Figure 6 in the main text, the second from consistency (1) in the main text, the third from Bayes' theorem, the fourth from the fact that $A \perp S \mid Y$ under the causal diagram in Figure 3 in the main text, and the
fifth from Bayes' theorem.

5 Comparison with the bounds by Kuroki et al. (2010)

Define $p_{y}=p(A=1 \mid Y=y, S=1)$. Kuroki et al (2010) derived the following bounds for the causal risk difference under case-control sampling:

$$
\begin{equation*}
\min \left(p_{1}-1,-p_{0}\right) \leq p\left(Y_{1}=1\right)-p\left(Y_{0}=1\right) \leq \max \left(p_{1}, 1-p_{0}\right) \tag{8}
\end{equation*}
$$

Let l and u be the lower and upper bound in (8), and let \tilde{l} and \tilde{u} be our lower and upper bound in (9) in the main text. We show that $l \leq \tilde{l}$; that $u \geq \tilde{u}$ can be shown analogously.

By Bayes' theorem, the odds ratio $O R$ in (9) in the main text can be expressed as

$$
O R=\frac{p_{1}\left(1-p_{0}\right)}{\left(1-p_{1}\right) p_{0}}
$$

If $0 \leq \frac{\sqrt{O R}-1}{\sqrt{O R}+1}$, then $\tilde{l}=0$. In this case, $l \leq \tilde{l}$, since $l \leq 0$. We thus proceed by considering the case when $0>\frac{\sqrt{O R}-1}{\sqrt{O R}+1}$ so that $\tilde{l}=\frac{\sqrt{O R}-1}{\sqrt{O R}+1}$. Suppose first that

$$
\begin{equation*}
p_{1}-1 \leq-p_{0} \tag{9}
\end{equation*}
$$

so that $l=p_{1}-1$. We then have that $l \leq \tilde{l}$ if

$$
p_{1}-1 \leq \frac{\sqrt{O R}-1}{\sqrt{O R}+1}
$$

After a bit of algebra, this relation can be simplified to

$$
p_{1}\left(1-p_{1}\right) p_{0} \leq\left(1-p_{0}\right)\left(2-p_{1}\right)^{2} .
$$

This relation holds, since (9) implies that $p_{1} \leq 1-p_{0}$, and $\left(1-p_{1}\right) p_{0} \leq 1$ whereas $\left(2-p_{1}\right)^{2} \geq 1$. Suppose next that

$$
\begin{equation*}
p_{1}-1>-p_{0} \tag{10}
\end{equation*}
$$

so that $l=-p_{0}$. We then have that $l \leq \tilde{l}$ if

$$
-p_{0} \leq \frac{\sqrt{O R}-1}{\sqrt{O R}+1}
$$

After a bit of algebra, this relation can be simplified to

$$
\left(1-p_{0}\right)\left(1-p_{1}\right) p_{0} \leq p_{1}\left(1+p_{0}\right)^{2} .
$$

This relation holds, since (10) implies that $\left(1-p_{0}\right)<p_{1}$, and $\left(1-p_{1}\right) p_{0} \leq 1$ whereas $\left(1+p_{0}\right)^{2} \geq 1$.

Finally, the bounds by Kuroki et al (2010) for the causal risk ratio are $[0, \infty)$, which are trivially wider than our bounds in (10) in the main text.

