
1 Proof that causal effects in the selected pop-

ulation are not estimable under outcome-

influenced selection

Define pay.1 = p(A = a, Y = y|S = 1), qa.1 = p(Ya = 1|S = 1), p.1 =

{p00.1, p01.1, p10.1, p11.1} and q.1 = {q0.1, q1.1}. Similarly, define pay1 = p(A =

a, Y = y, S = 1), qa1 = p(Ya = 1, S = 1), p1 = {p001, p011, p101, p111} and q1 =

{q01, q11}. Causal effects in the selected population are contrasts between the

elements of q.1. Let Sy denote the potential outcome of S for a given subject

if, possibly contrary to fact, exposed to level Y = y. Note that p1 and q1 are

obtained by marginalizing the distribution p(A, Y0, Y1, S0, S1). Specifically,

due to consistency (1) in the main text we have that

pay1 = p(A = a, Ya = y, Sy = 1)

=
∑

y′∈{0,1}

p(A = a, Ya = y, Y1−a = y′, Sy = 1) (1)

and

qa1 =
∑
a′,y

p(A = a′, Ya = 1, Y1−a = y, S = 1)

=
∑
y

p(A = a, Ya = 1, Y1−a = y, S1 = 1) + p(A = 1− a, Ya = 1, Y1−a = y, Sy = 1).

(2)
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Since p(S = 1) =
∑

a,y pay1 it follows that p.1 = p1/p(S = 1) and q.1 =

q1/p(S = 1) are obtained by first marginalizing then conditioning the distri-

bution p(A, Y0, Y1, S0, S1). To show that causal effects in the selected popula-

tion are not estimable under the causal diagram in Figure 3 in the main text

we thus show that, for any given p.1, it is possible to find two valid distri-

butions p(A, Y0, Y1, S0, S1) which imply the same given p.1 but two different

q.1.

First, define p = p(A = 1), vij = p(Y0 = i, Y1 = j), ry = p(Sy = 1),

r = p(S = 1) and θ = {p, v00, v01, v10, v11, r0, r1}. Under the causal diagram

in Figure in the main text, the distribution p(A, Y0, Y1, S0, S1) factorizes into

p(A)p(Y0, Y1)p(S0, S1). From (1) and (2) we thus have that

p00.1 = (1− p)(v00 + v01)r0/r

p01.1 = (1− p)(v10 + v11)r1/r

p10.1 = p(v00 + v10)r0/r

p11.1 = p(v01 + v11)r1/r

(3)

and

q0.1 = {(1− p)(v10 + v11)r1 + p(v10r0 + v11r1)}/r

q1.1 = {p(v01 + v11)r1 + (1− p)(v01r0 + v11r1)}/r.

(4)
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Define va = p(Ya = 1). If Y0⊥Y1, then

v00 = (1− v0)(1− v1)

v01 = (1− v0)v1

v10 = v0(1− v1)

v11 = v0v1

so that (3) and (4) simplify to

p00.1 = (1− p)(1− v0)r0/r

p01.1 = (1− p)v0r1/r

p10.1 = p(1− v1)r0/r

p11.1 = pv1r1/r

(5)

and

q0.1 = [(1− p)v0r1 + p{v0(1− v1)r0 + v0v1r1}]/r

q1.1 = [pv1r1 + (1− p){(1− v0)v1r0 + v0v1r1}]/r.

Define x = r1/r0. Considering r, x and p.1 as fixed and solving (5) for
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{p, v0, v1, r0, r1} gives

p =
xp10.1 + p11.1

xp10.1 + p11.1 + xp00.1 + p01.1

v0 =
p01.1

xp00.1 + p01.1

v1 =
p11.1

xp10.1 + p11.1

r0 =
(xp00.1 + p01.1 + xp10.1 + p11.1)r

x

r1 = (xp00.1 + p01.1 + xp10.1 + p11.1)r.

(6)

For this solution we have that 0 ≤ {p, v0, v1, r0} ≤ 1 if x ≥ 1. We also have

that 0 ≤ r1 ≤ 1 if

x ≤ r−1 − p01.1 − p11.1
p00.1 + p10.1

=
r−1 − p01.1 − p11.1
1− p01.1 − p11.1

.

The range

1 ≤ x ≤ r−1 − p01.1 − p11.1
1− p01.1 − p11.1

(7)

is non-empty, provided that r < 1. Thus, for any given p.1 we may find two

valid distributions p(A, Y0, Y1, S0, S1) which imply the same given p.1 by first

setting r to an arbitrary number > 0 and < 1, then choosing two arbitrary

values of x in the range (7) and solving (6) for {p, v0, v1, r0, r1}.

It remains to show that the obtained solutions q0.1 and q1.1 are non-
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constant functions of x. We show this by a numerical example. Figure 1

shows q0.1 and q1.1 as functions of x for r = 0.05, p00.1 = 0.1, p01.1 = 0.2,

p10.1 = 0.3 and p11.1 = 0.4. Clearly, these are non-constant, which completes

the proof.

2 Derivation of the Robins-Manski bounds

for causal effects in the selected population

under outcome-influenced selection

We have that

p(Ya = 1|S = 1) = p(Ya = 1|A = a, S = 1)p(A = a|S = 1)

+ p(Ya = 1|A = 1− a, S = 1)p(A = 1− a|S = 1)

= p(Y = 1|A = a, S = 1)p(A = a|S = 1)

+ p(Ya = 1|A = 1− a, S = 1)p(A = 1− a|S = 1),

where the first equality follows from the law of total probability, and the

second from consistency (1) in the main text. The right-hand side of this

expression in minimized when p(Ya = 1|A = 1−a, S = 1) = 0 and maximized

when p(Ya = 1|A = 1 − a, S = 1) = 1, which gives the bounds for p(Ya =

1|S = 1) in (6) in the main text.
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Figure 1: q0.1 and q1.1 as functions of x for r = 0.05, p00.1 = 0.1, p01.1 = 0.2,
p10.1 = 0.3 and p11.1 = 0.4.

6



3 Proof that the observed data have no in-

formation about causal effects in the source

population under outcome-associated selec-

tion

Consider an arbitrary distribution p∗(A, Y |S = 1) and arbitrary counterfac-

tual probabilities p∗(Y1 = 1) and p∗(Y0 = 1) under the causal diagram in

Figure 2 in the main text. We first note that

p∗(Ya = 1) = p∗(Ya = 1|A = a)

= p∗(Y = 1|A = a),

where the first equality follows from the fact that Ya⊥A under the counter-

factual diagram in Figure 4 in the main text, and the second from consistency

(1) in the main text. To prove the desired result we thus need to show that it

is possible to construct a valid distribution p(A, Y, U, S) that obeys the fac-

torization p(A, Y, U, S) = p(A)p(U)p(Y |A,U)p(S|U) implied by the causal

diagram in Figure 2 in the main text, and marginalizes to p∗(A, Y |S = 1),

p∗(Y1 = 1) = p∗(Y = 1|A = 1) and p∗(Y0 = 1) = p∗(Y = 1|A = 0). We

proceed through the following steps.

1. Set p(A = 1) = p∗(A = 1|S = 1).

2. Let U be binary and set U = S.
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3. If p∗(Y = 1|A = a) = p∗(Y = 1|A = a, S = 1) for a ∈ {0, 1}, then set

p(U = 1|A = a) = p(U = 1) = 1/2 for a ∈ {0, 1}. Otherwise, set

p(U = 1|A = a) = p(U = 1) =

= min

{
p∗(Y = 1|A = 0)

p∗(Y = 1|A = 0, S = 1)
,

p∗(Y = 0|A = 0)

p∗(Y = 0|A = 0, S = 1)
,

p∗(Y = 1|A = 1)

p∗(Y = 1|A = 1, S = 1)
,

p∗(Y = 0|A = 1)

p∗(Y = 0|A = 1, S = 1)

}

for a ∈ {0, 1}.

4. Set p(Y = 1|A = a, U = 1) = p∗(Y = 1|A = a, S = 1) for a ∈ {0, 1}

5. Set

p(Y = 1|A = a, U = 0) =
p∗(Y = 1|A = a)− p(Y = 1|A = a, U = 1)p(U = 1)

p(U = 0)

for a ∈ {0, 1}, where we define 0/0=1.

The constructed distribution completely defines the joint distribution p(A, Y, U, S).

We have that

p(A, Y, U, S) = p(A)p(U |A)p(Y |A,U)p(S|A, Y, U)

= p(A)p(U)p(Y |A,U)p(S|U),
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where the second equality follows from steps 2 and 3. We further have that

p(A = a, Y = y|S = 1) = p(A = a|S = 1)p(Y = y|A = a, S = 1)

= p(A = a|U = 1)p(Y = y|A = a, U = 1)

= p(A = a)p(Y = y|A = a, U = 1)

= p∗(A = a|S = 1)p∗(Y = y|A = a, S = 1)

= p∗(A = a, Y = y|S = 1),

where the second equality follows from step 2, the third equality follows from

step 3, and the fourth equality follows from steps 1 and 4. We further have

that

p(Y = y|A = a) = p(Y = y|A = a, U = 0)p(U = 0|A = a)

+ p(Y = y|A = a, U = 1)p(U = 1|A = a)

= p(Y = y|A = a, U = 0)p(U = 0) + p(Y = y|A = a, U = 1)p(U = 1)

= p∗(Y = 1|A = a),

where the second equality follows from step 3 and the third equality follows

from step 5. It remains to show that the constructed distribution p(A, Y, U, S)

is valid. From step 1 we have that 0 ≤ p(A = 1) ≤ 1; from step 3 we have

that 0 ≤ p(U = 1|A = a) ≤ 1 for a ∈ {0, 1}; from step 4 we have that

0 ≤ p(Y = 1|A = a, U = 1) ≤ 1 for a ∈ {0, 1}; from step 2 we have that

p(S = 1|A, Y, U = 1) = 1 and p(S = 1|A, Y, U = 0) = 0; from step 5 we
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have that 0 ≤ p(Y = 1|A = a, U = 0) ≤ 1 if p(U = 1) ≤ min{p∗(Y = 1|A =

a)/p(Y = 1|A = a, U = 1), p∗(Y = 0|A = a)/p(Y = 0|A = a, U = 1)}, which

is implied by steps 3 and 4.

4 Proof that the causal odds ratio in the source

population is equal to the odds ratio in the

selected population under outcome-associated

selection

We have that

p(Y1 = 1)/p(Y1 = 0)

p(Y0 = 1)/p(Y0 = 0)
=

p(Y1 = 1|A = 1)/p(Y1 = 0|A = 1)

p(Y0 = 1|A = 0)/p(Y0 = 0|A = 0)

=
p(Y = 1|A = 1)/p(Y = 0|A = 1)

p(Y = 1|A = 0)/p(Y = 0|A = 0)

=
p(A = 1|Y = 1)/p(A = 0|Y = 1)

p(A = 1|Y = 0)/p(A = 0|Y = 0)

=
p(A = 1|Y = 1, S = 1)/p(A = 0|Y = 1, S = 1)

p(A = 1|Y = 0, S = 1)/p(A = 0|Y = 0, S = 1)

=
p(Y = 1|A = 1, S = 1)/p(Y = 0|A = 1, S = 1)

p(Y = 1|A = 0, S = 1)/p(Y = 0|A = 0, S = 1)
,

where the first equality follows from the fact that Ya⊥A under the counter-

factual diagram in Figure 6 in the main text, the second from consistency

(1) in the main text, the third from Bayes’ theorem, the fourth from the fact

that A⊥S|Y under the causal diagram in Figure 3 in the main text, and the
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fifth from Bayes’ theorem.

5 Comparison with the bounds by Kuroki et

al. (2010)

Define py = p(A = 1|Y = y, S = 1). Kuroki et al (2010) derived the following

bounds for the causal risk difference under case-control sampling:

min (p1 − 1,−p0) ≤ p(Y1 = 1)− p(Y0 = 1) ≤ max (p1, 1− p0) . (8)

Let l and u be the lower and upper bound in (8), and let l̃ and ũ be our lower

and upper bound in (9) in the main text. We show that l ≤ l̃; that u ≥ ũ

can be shown analogously.

By Bayes’ theorem, the odds ratio OR in (9) in the main text can be

expressed as

OR =
p1(1− p0)
(1− p1)p0

.

If 0 ≤
√
OR−1√
OR+1

, then l̃ = 0. In this case, l ≤ l̃, since l ≤ 0. We thus proceed

by considering the case when 0 >
√
OR−1√
OR+1

so that l̃ =
√
OR−1√
OR+1

. Suppose first

that

p1 − 1 ≤ −p0, (9)
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so that l = p1 − 1. We then have that l ≤ l̃ if

p1 − 1 ≤
√
OR− 1√
OR + 1

.

After a bit of algebra, this relation can be simplified to

p1(1− p1)p0 ≤ (1− p0)(2− p1)2.

This relation holds, since (9) implies that p1 ≤ 1 − p0, and (1 − p1)p0 ≤ 1

whereas (2− p1)2 ≥ 1. Suppose next that

p1 − 1 > −p0, (10)

so that l = −p0. We then have that l ≤ l̃ if

−p0 ≤
√
OR− 1√
OR + 1

.

After a bit of algebra, this relation can be simplified to

(1− p0)(1− p1)p0 ≤ p1(1 + p0)
2.

This relation holds, since (10) implies that (1− p0) < p1, and (1− p1)p0 ≤ 1

whereas (1 + p0)
2 ≥ 1.

Finally, the bounds by Kuroki et al (2010) for the causal risk ratio are

[0,∞), which are trivially wider than our bounds in (10) in the main text.
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