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Photobiomodulation Therapy (PBMT)
Photobiomodulation Therapy (PBMT), also known as photobiostimulation and phototherapy (1), is a nonthermal process in which light interacts with photo-signal transducers (i.e., chromophores), leading to photophysical and photochemical reactions within tissues (2, 3). PBMT uses non-ionizing light sources, including lasers (low-level laser therapy - LLLT), light emitting diodes (light emitting-diode therapy - LEDT), and broadband light from the visible to the infrared spectrum (4), to therapeutically assist in skin wound healing (5) and tissue regeneration in muscle (6), tendon (7), nerve (8), and cartilage (9). It may also positively influence both pain (10) and inflammatory responses (11), as well as reduce the central sensitization associated with chronic osteoarthritis (9). The magnitude of effect of PBMT is influenced by several factors, including the light wavelength, energy density (or fluence) and power density as well as the injury type and the photoreceptor absorption spectrum (12-14).
[bookmark: _Hlk54793448]In addition to the healing process, studies in animal and human models have examined the effects of LLLT and LEDT applied before exercise on muscle performance and fatigue. Lopes-Martins et al. (15) observed reduced post-NMES muscle fatigue in isolated rat muscles exposed to phototherapy. Subsequent studies support these findings in frog (16) and mouse (17) muscles as well as in cell cultures (18). In humans, Leal-Junior et al. (19) found that individuals performed more elbow flexion-extension repetitions before task failure immediately after LLLT than placebo. Several studies subsequently assessed the effects of imposing LLLT and/or LEDT before performing isoinertial (20-23), isometric (24-26) and isokinetic exercise (27-29) as well as cycling exercise (30-33), treadmill running (34-36) and futsal (i.e. indoor soccer)(37). Positive effects of LLLT and/or LEDT before exercise on performance and/or recovery were consistently observed.
Muscle fatigue, an important consequence of NMES, is a complex process involving physiological, biomechanical, and psychological elements (38-43). The loss of muscle function results from changes at several sites within the muscle that contribute to impairment as well as to several intervening factors that may alter muscle fatigue. These include metabolic alterations such as substrate depletion (lack of ATP and glycogen), inorganic phosphate accumulation, increased oxidative stress and reactive oxygen metabolite-derived compounds, tissue hypoxia, blood acidification and reduced biological antioxidant potential (38, 44). Exercise intensity and duration as well as age, gender, motivation, and previous task knowledge/experience are important factors increasing the complexity of the fatigue process. Despite this, strategies that enhance the response to, or recovery from, NMES-evoked fatigue will be well important in the clinical context, as they should subsequently increase the chance of evoking positive outcomes from NMES use.
The effect of PBMT on muscle fatigue likely results from direct light-tissue interactions and the phenomena generated by this interaction on blood circulation and mitochondrial function. BPMT has been shown to improve peripheral microcirculation and promote arteriolar vasodilation, for example (45, 46). Consequently, increased muscle blood and oxygen supply may allow for improved performance in aerobic activities and reduce blood lactate accumulation (15, 21, 27, 28, 47), although a lack of effect of laser therapy on blood lactate accumulation after exercise has also been observed (19, 48). PBMT has been shown to improve mitochondrial function in several cell types and organelles. The interaction between LLLT and mitochondria has been a particular research focus, with a stimulatory effect on the mitochondrial capacity to generate ATP being observed (49-51).
According to Borsa et al. (52), chromophores absorb light particles (i.e., photons) at the plasma membrane or at cytosolic organelles (e.g., mitochondria). At the plasma membrane, chromophores act as photosensitizers that change membrane permeability and cellular transport, leading to intracellular changes in pH, ion concentrations, and membrane excitability (53). Photons that are able to penetrate the cell membrane enter the mitochondria where cytochrome enzymes (e.g., cytochrome c oxidase) absorb them. These enzymes, in turn, lead to the production of reactive oxygen species (ROS), and increase adenosine triphosphate (ATP) and protein synthesis rates (3, 51, 54). Evidence in support of the above mechanism has been provided by cell culture studies, which have shown that LLLT increases ATP synthesis, mitochondrial membrane potential and intracellular calcium levels, and stimulates ROS production and nitric oxide release with a biphasic pattern in normal murine cortical neurons (55-57). Animal models have also shown laser interventions to decrease oxidative stress (58, 59). Xu et al. (18), for example, verified that laser treatment significantly decreased ROS production and restored mitochondrial function. In addition to these functional changes at the cell membrane and cytosolic organelles, Manteifel et al. (60) observed giant mitochondria in human lymphocytes after laser irradiation that could produce greater ATP levels. Such results suggest that PBMT alters mitochondrial structure and function, allowing for an increase in cellular energy production that may consequently reduce fatigue or aid recovery.
Ferraresi et al. (61) raised several questions regarding the use of PBMT (e.g., wavelengths, best time to apply on muscles, best parameters, how many points to irradiate) for improving sports performance. Leal-Junior et al (4) proposed clinical and scientific recommendations for what they believe is the correct use of PBMT in exercise performance enhancement and post-exercise recovery. Their recommendations for healthy subjects bare repeating in the present Supplementary file for consideration in future research: (1) dose of 20-60 J for small muscle groups (i.e. biceps brachii or triceps surae), and 60-300 J for large muscle groups (i.e. quadriceps and hamstrings); (2) power of 50-200 mW per diode for single probes and 10-35 mW per diode for cluster probes; (3) wavelengths of 640 nm (red) - 950 nm (infrared), although most studies combine red and infrared wavelengths; (4) and either pulsed or continuous mode. The authors also suggest that therapy is used 5 min to 6 h before activity for acute effects (a single event), but 5 to 10 min before each exercise session for chronic effects associated with strength training. For chronic effects associated with endurance training (e.g. treadmill running), irradiation should be performed 5-10 min before and immediately after each exercise session; this may also be suitable for use in programs using low-force, prolonged functional electrical stimulation (FES)-based exercise, although this has yet to be tested scientifically. The minimum irradiation duration should be 30 s per site/point, with irradiation covering as much of the area as possible in most (if not all) involved muscle groups. Finally, when single probes are used, the distance between irradiation sites/points must be less than 2 cm.
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