$Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$

Page 1

The following content was supplied by the authors as supporting material and has not been copy-edited or verified by JBJS.

Appendix I. Instructions for evaluating the eight radiographic parameters in the final wrist skeletal maturity model.

R7- "Capping" at the radial 1/3rd of the distal radius radial physis

How to evaluate:

- Assessment of the proximal-radial margin of the radial epiphysis and its relation to the metaphysis.
- "Capping" occurs when a corner of the proximal-radial aspect of the epiphysis develops and points towards the metaphysis.

- Absent capping- assign value of 0
 - The proximal-radial margin of the distal radial epiphysis is blunted without a proximally-oriented projection

- Capping without fusion- assign value of 1
 - o The proximal-radial margin of the distal radial epiphysis is sharp with a proximally oriented projection, but there is no fusion in the radial 1/3rd of the physis

Copyright ${}^{\hbox{$\otimes$}}$ by The Journal of Bone and Joint Surgery, Incorporated Furdock et al.

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 2$

- Capping with fusion- assign value of 2
 - o Fusion has begun at the radial aspect of the physis (Figure 1C)

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 3$

GPR1: Height of the radial styloid

How to evaluate:

- First, draw a line measuring the distal radius width at its widest point (M)
- Next, draw a line perpendicular to the first, measuring the greatest height of the radial epiphysis (H)

How to grade:

• The value for GPR1 is calculated by dividing the radial styloid height (H) by the metaphyseal width (M)

TPM5: Corner between the distal and radial margin of the trapezium

How to Evaluate:

• Assessment of the shape of the distal-radial trapezium

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 4$

- Absent- assign value of 0
 - o The cortex between the distal and radial margin of the trapezium is rounded

- Present- assign value of 1
 - There is a corner between the distal and radial margins of the trapezium (Figure 3B)

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 5$

Met 1-7: Metacarpal I physeal fusion

How to Evaluate:

• Assessment of physeal closure of the first metacarpal

- Absent- assign value of 0
 - o No fusion of the first metacarpal physis

- Partial- assign value of 1
 - o Incomplete fusion of the first metacarpal physis

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 6$

- Complete- assign value of 2
 - o Complete fusion of the first metacarpal physis

Met 3-5: Metacarpal III physeal fusion

How to Evaluate:

• Assessment of physeal closure of the third metacarpal

How to Grade:

• Absent- assign value of 0

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 7$

o No fusion of the third metacarpal physis

- Partial- assign value of 1
 - o Incomplete fusion of the first metacarpal physis

- Complete- assign value of 2
 - o Complete fusion of the first metacarpal physis

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 8$

Met 1-2: Epiphyseal-metaphyseal width ratio of the 1st metacarpal

How to Evaluate:

- First, measure the greatest width of the 1st metacarpal metaphysis (Figure 6- "M")
- Next, measure the greatest width of the 1^{st} metacarpal epiphysis in a line parallel to the metaphyseal line (Figure 6- "E")

- The value for Met 1-2 is calculated by dividing the 1st metacarpal epiphyseal width (E) by the 1st metacarpal metaphyseal width (M)
- Met $1-2 = \frac{1st \text{ Metacarpal Epiphyseal Width}}{1st \text{ Metacarpal Metaphyseal Width}}$

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$ $Page \ 9$

Met 3-2: Epiphyseal-metaphyseal width ratio of 3rd metacarpal

How to Evaluate:

- First, measure the greatest width of the 3rd metacarpal metaphysis (Figure 7- "M")
- Next, measure the greatest width of the 3rd metacarpal epiphysis in a line parallel to the metaphyseal line (Figure 7- "E")

- The value for Met 3-2 is calculated by dividing the 1st metacarpal epiphyseal width (E) by the 1st metacarpal metaphyseal width (M)
- Met 3-2 = $\frac{3\text{rd Metacarpal Epiphyseal Width}}{3\text{rd Metacarpal Metaphyseal Width}}$

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$

Page 10

Met 5-4: Proximo-ulnar projection of the 5th metacarpal epiphysis

How to Evaluate:

• Assessment of the shape of the proximo-ulnar margin of the 5th metacarpal epiphysis

- Absent-assign value of 0
 - No proximo-ulnar projection of the 5th metacarpal epiphysis

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$

Page 11

- Present- assign value of 1
 - There is a proximally-pointed projection of the ulnar aspect of the 5th metacarpal epiphysis. There is typically a concave area of the epiphysis just radial to this projection.

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$

Page 12

Table 1. Example of using modified Fels wrist skeletal maturity system to estimate skeletal maturity.

Graded Value (From evaluation of radiograph)		Multiplier (From GEE model)		Product
NA	*	-12.045	=	-12.045
10	*	0.458	=	4.580
0	*	-0.755	=	-0.755
1	*	0.234	=	0.234
0.34	*	2.209	=	0.751
0	*	0.285	=	0
1.09	*	1.843	=	2.009
0	*	0.184	=	0
0.96	*	3.283	=	3.152
	(From evaluation of radiograph) NA 10 0 1 0.34 0 1.09	(From evaluation of radiograph) NA * 10 * 0 * 1 * 0.34 * 0 * 1.09 * 0 *	(From evaluation of radiograph) Multiplier (From GEE model) NA * 10 * 0 * 0 * 1 * 0.34 * 2.209 0 * 1.09 * 1.843 0 0.184	(From evaluation of radiograph) Multiplier (From GEE model) NA * -12.045 = 10 * 0.458 = 0 * -0.755 = 1 * 0.234 = 0.34 * 2.209 = 0 * 0.285 = 1.09 * 1.843 = 0 * 0.184 =

 $Systematic \ Isolation \ of \ Key \ Parameters \ for \ Estimating \ Skeletal \ Maturity \ on \ Anteroposterior \ Wrist \ Radiographs \ http://dx.doi.org/10.2106/JBJS.21.00819$

Page 13

Met 3-5	0	*	0.154	=	0	
Met 5-4	1	*	0.323	=	0.323	

SUM -1.00 years

Based on this model, this 10-year-old female is -1.00 years away from reaching 90% of her final height. Mean age at 90% final height is 11.40 years in females and 13.20 years in males. In this example, the estimated skeletal maturity is 11.40 years -1.00 years = 10.40 years. The "What's the Skeletal Maturity?" mobile application simplifies use of the Modified Fels wrist skeletal maturity system by handling all mathematical processes and outputting a bone age directly. It is available for free on the Apple App store (iOS) and the Google Play Store (Android).