The following content was supplied by the authors as supporting

material and has not been copy-edited or verified by JBJS.

Appendix: Deduction process of the mathematical algorithm for

calculation of ante-inclination

It is assumed that there is no coronal tilting and axial rotation of the pelvis in the current algorithm, which is an approximation of the clinical situation.

In the current study, we defined a coordinate system based on the APP plane of the pelvis: the mid-point of the bilateral anterior superior iliac spine was defined as the origin point $\mathrm{O}(0,0,0)$ of pelvic coordinate system; the X -axis was defined as the left-right direction(leftwards as positive), the Y -axis was defined as the anteriorposterior direction (posterior-wards as positive), and the Z-axis was defined as the cranial-caudal direction (upwards as positive) (Appendix Fig. 1A). $\boldsymbol{V}_{\mathbf{1}}$ is defined as the normal vector of the cup opening plane with the initial orientation pointing to the negative side of Z-axis: $V_{1}=(0,0,-1)^{T}$ (Appendix Fig. 1A). Firstly, we rotate V_{1} around the X -axis of the value of RA (radiographic anteversion) angle to get $V_{2} . M_{1}$ is the matrix of this rotation. (Appendix Fig. 1B)

$$
M_{1}=\left[\right]
$$

Secondly, we rotate V_{2} around the Y-axis of the value of RI angle to get $V_{3} . M_{2}$ is the matrix of this rotation. (Appendix Fig. 1C)

$$
M_{2}=\left[\begin{array}{ccc}
\cos (-R I * d) & 0 & \sin (-R I * d) \\
0 & 1 & 0 \\
-\sin (-R I * d) & 0 & \cos (-R I * d)
\end{array}\right]
$$

d is a bool variable represent the surgery side.

$$
\mathrm{d}=\left\{\begin{array}{c}
1, \text { right side surgery } \\
-1, \text { left side surgery }
\end{array}\right.
$$

Thirdly, we rotate V_{3} around the X -axis of the value of the PT angle to get V_{4}. M_{3} is the matrix of this rotation. (Appendix Fig. 1D)

$$
M_{3}=\left[\right]
$$

$V p$ is defined as a "tool" vector for calculation of projection in the sagittal plane (the YOZ plane). (Fig. 1D)

$$
V_{p}=(\mathbf{0}, \mathbf{1}, \mathbf{1})^{T}
$$

Then V_{5} is defined as the projection of V_{4} on to the YOZ plane, and calculated

Tang et al.
Conversion of the Sagittal Functional Safe Zone to the Coronal Plane Using a Mathematical
Algorithm. The Reason for Failure of the Lewinnek Safe Zone
http://dx.doi.org/10.2106/JBJS.21.00840
Page 2
as the Hadamard product of V_{4} and $V p$, (Fig. 1D)

$$
V_{5}=V_{4} \odot V p
$$

AI can be calculated as the angle between V_{1} and V_{5}, (Appendix Fig. 1D)

$$
A I=\operatorname{acos}\left(\frac{\operatorname{dot}\left(V_{1}, V_{5}\right)}{\left\|V_{1}\right\| *\left\|V_{5}\right\|}\right)
$$

Here, $\operatorname{dot}\left(V_{1}, V_{5}\right)$ is the inner product of V_{1} and $V_{5},\left\|V_{1}\right\|$ is the L_{2}-norm of V_{1}, and $\left\|V_{5}\right\|$ is the L_{2}-norm of V_{5}.
As a result, AI can be calculated by

$$
A I=\operatorname{acos}\left(\frac{\operatorname{dot}\left(V_{1},\left(M_{3} * M_{2} * M_{1} * V_{1}\right) \odot V_{p}\right)}{\left\|V_{1}\right\| *\left\|\left(M_{3} * M_{2} * M_{1} * V_{1}\right) \odot V_{p}\right\|}\right)
$$

Copyright © by The Journal of Bone and Joint Surgery, Incorporated
TANG ETAL.
Conversion of the Sagittal Functional Safe Zone to the Coronal Plane Using a Mathematical
Algorithm. The Reason for Failure of the Lewinnek Safe Zone
http://dx.doi.org/10.2106/JBJS.21.00840
Page 3

Tang et al.
Conversion of the Sagittal Functional Safe Zone to the Coronal Plane Using a Mathematical
Algorithm. The Reason for Failure of the Lewinnek Safe Zone
http://dx.doi.org/10.2106/JBJS.21.00840
Page 4
Appendix Fig. 1 Schematic drawings illustrating the algorithm for deducing AI from RA, RI and PT. (A) The coordinate system (XYZ) of the pelvis is defined with the midpoint of the bilateral anterior superior iliac spine as the original point (point O), and V_{1} was defined as the initial normal vector of the cup opening plane pointing to the negative Z axis, (B) the cup's normal vector turns to be V_{2} after the first rotation of an angle of RA around the X -axis, (C) the second rotation of an angle of RI around the Y-axis of the pelvis rotates the normal vector to $V_{3},(\mathrm{D})$ the third rotation of the pelvis of an angle of PT around the X -axis of the pelvis leads to the resultant normal vector V_{4}, which projects onto the YOZ plane to be V_{5}, and the final AI angle was calculated between V_{1}.and V_{5}.

