COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED SACKS ET AL. $PARASPORT: EFFECTS \ ON \ MUSCULOSKELETAL \ FUNCTION \ AND \ INJURY \ PATTERNS$ http://dx.doi.org/10.2106/JBJS.21.01504 Page 1

The following content was supplied by the authors as supporting material and has not been copy-edited or verified by JBJS.

Study Effect of sports on musculoskeletal function	Level of Evidence*	Summary	Outcome
Baik et al ²³	Π	RCT n=16 12wk horseback riding program vs normal rehab activities in children with CP	Improvements in muscle tone and hip range of motion for intervention group, not in control group. However, groups were not significantly different from each other at follow-up.
Chin et al ⁸⁷	Π	Prospective comparative n=24 6 wks of endurance cycling with the contralateral leg in people with unilateral transfemoral amputations vs ordinary prosthetic walking training	Maximal oxygen consumption and anaerobic threshold significantly increased in intervention group compared to control
Dodd et al ²⁰	Π	RCT n=21 6wk home-based strength training program vs normal daily activities in young adults with spastic diplegic CP	Increased lower limb strength as measured by dynamometer at 6 and 12wks following intervention. Trend towards faster walking speed and improved scores on Gross Motor Function Measures of Standing, Walking/Running/Jumping but not statistically significant

A man dia A Care f Studios Citad to Dovolon Crados of Decommon datio

Herrero et al ²⁹	Π	RCT n=38 10wk of hippotherapy simulation sessions with simulator turned on vs simulator turned off (no rhythmic movement) in children with CP	Sitting balance significantly improved in intervention group and improvements were larger for children with lower functional levels. However, gains were not maintained at 3-month follow-up
Hemachithra et al ²⁵	Π	RCT n=35 1 session of hippotherapy simulation vs sitting on a pillow for same amount of time in children with GMFCS I-III CP	Significant reduction in adductor spasticity and hip abduction range of motion in intervention group. No long term follow-up.
Pitetti et al ⁸⁶	III	Prospective n=10 15wk aerobic conditioning program in adults with lower extremity amputations	Heart rate during rest and exercise, and oxygen consumption decreased after intervention
Sterba et al ³¹	III	Prospective n=17 18wks of horseback riding in children with spastic CP	Significant improvements in Gross Motor Function Measure total score that persisted at 6wks post- intervention. Improvements in dimensions of walking, running, jumping remained longer than 6wks following intervention.
Lakes et al ³²	III	Prospective n= 8 6wk of ballet classes in children with spastic, ambulatory CP	Significant improvements in step length on right, stride length on left, and ambulation speed 5wks after intervention
Vega et al ⁴⁸	IV	Cross sectional	

		n=11 Assessed level of neurotrophic factors after moderate intensity hand- biking in athletes with SCI	Significant elevations in brain-derived neurotrophic factor (BDNF) at baseline in elite athletes with SCI and after 10 minutes of hand-biking. BDNF promotes synaptic plasticity and neurogenesis
Dallmeijer et al ⁵⁰	IV	Prospective n=20 Adults with SCI followed for 1 year after discharge from acute rehabilitation center. High lost to follow- up rate	Participation in at least 1hr of sports activity/week was most important variable explaining increases in physical capacity (sprint and power output) at 1 year follow-up
Bragaru et al ⁸⁰	IV	Systematic review n= 47 studies Studies examining sports participation among amputees	Cardiopulmonary function improved in people with amputations engaged in regular exercise programs
Kurdiballo & Bogatykh ⁸⁹	IV	Prospective n= not listed Swimming and underwater exercise program in people with lower limb amputations	Reduced blood pressure and body mass after swimming exercise program
Lopez-Ortiz et al ²⁴	IV	Systematic review n= 11 studies Studies examining rehabilitative effects of dance in people with CP	Preliminary evidence of benefits of dance on balance, gait, walking, and cardiorespiratory fitness but studies of too varied methodology and without validated outcome measures to make definitive conclusion
Ross et al ¹³	IV	Retrospective n=97 Intensive summer sports program for people with CP GMFCS I-III, ages 6-	Significant improvements in Timed Up and Go, 25ft walk/run, and modified 6- min walk distance over time, representing

Injuries in Para Athletes		20. Subjects participated each summer (maximum of 4 weeks) over 9 years	improved walking ability and endurance
Burnham et al ⁴⁹	Π	Prospective comparative n= 39 SCI wheelchair athletes vs able bodied controls who underwent shoulder muscle strength testing	SCI athletes had stronger shoulder muscles than controls. SCI athletes with RTC impingement were weaker in adduction, ER, and IR than SCI athletes without impingement.
Chung et al ³⁹	Π	Prospective comparative n=24 Wheelchair fencers vs able bodied fencers competing on Hong Kong National Squad followed over 3 years	Wheelchair fencers had increased relative risk of injury compared to able- bodied fencers: RR 13.6 for shoulder injury, RR 5.9 for elbow injury, 2.2 for muscle strains. Wheelchair fencers with poor trunk control had higher RR of injury than those with good trunk control
Akbar et al ⁶¹	III	Cross sectional comparative n=296 Wheelchair users with SCI who play overhead sports regularly vs those who don't play overhead sports regularly	Regular overhead sports players had significantly increased risk of RTC tear: Overall RR 2.2. RR 2.3 in individuals with higher neurological level of lesion
Blauwet et al ³⁴	III	Prospective n= 977 Athletes competing in track and field followed over 10- day competition period at 2012 Paralympic Games	Majority of ambulant athletes sustained injuries to the thigh and majority of athletes using a wheelchair sustained shoulder or clavicle injuries. Less injuries among ambulant athletes

			with CP compared to athletes with visual impairment or limb deficiency
Nyland et al ⁹⁶	III	Cross sectional n= 304 U.S. athletes competing at 1996 Paralympic Games	254 soft tissue injuries identified. Upper extremity injuries most common in wheelchair athletes. Increased rates of contralateral ankle injuries in unilateral amputees.
Webborn et al ³⁷	III	Prospective n= 166 Football 5-a-side and 7-a- side athletes followed over competition at the 2012 Paralympic Games	IP of 31.4 injuries/100 athletes for football 5-a- side and 14.6 injuries/100 athletes for football 7-a- side
Willick et al ¹⁵	III	Prospective n= 3,565 Athletes from 160 delegations followed over competition at the 2012 Paralympic Games	Overall IP was 17.8 injuries/100 athletes. Predominance of upper limb injuries, particularly involving shoulder. Acute traumatic injuries accounted for 51.5%, chronic overuse for 31.8%, acute on chronic for 16.7%. Injury rates for women were higher in the pre-competition period compared to competition period.
Derman et al ³⁸	III	Prospective n= 547 Athletes from 45 countries followed over competition at the 2014 Paralympic Games	IR was 26.5/1000 athlete days. IR was 3x higher than in 2014 Olympic games and 2x higher than 2012 summer Paralympic games. Sports with highest IR were skiing/snowboarding and para ice hockey.

Webborn et al ⁴⁰	III	Prospective n=505 Athletes from 44 countries followed over competition at the 2010 Paralympic Games	Injuries identified in 24% of athletes, higher rates than in 2002 and 2006. Injury rates highest in alpine skiers and para ice hockey athletes
Webborn et al ⁴¹	Π	Prospective n=39 Athletes from 20 countries followed over competition at the 2002 Paralympic games who presented to the village clinic	39 injuries identified. Alpine skiers most frequently injured athletes (62% of total injuries), followed by para ice hockey (31%). 77% injuries were acute traumatic. 27% were severe enough to affect participation. 18% were due to equipment issues
Hawkeswood et al ⁴²	IV	Cross sectional n= 10 Survey of trainers, therapists, physicians and coaches from top 5 international para ice hockey teams	Upper extremity injuries (muscle strains, lacerations) and concussions were most common. Suggestions for improved hand protection, reduction in intentional head contact, lowered-rink boards, and modified rink bathroom surfacing
Athanasopolous et al ³⁶	IV	Retrospective n=161 Athletes who presented for care at the 2004 Paralympic Village physiotherapy clinic	131 injuries identified.Most injuries to the upper extremity among wheelchair athletes.Acute injuries: 64.1%,Overuse injuries: 22.1%Most injuries occurred pre-competition
Heneghan et al ⁹¹	IV	Retrospective n= 32 Paralympic athletes with limb deficiency seeking	107 lower back injuries identified. Most injures occurred during training and located in lumbosacral

		care at the English Institute for Sport from 2008-2017	region. Increased training volume and equipment issues associated with lower back problems
Heneghan et al ⁹⁵ Abuse in Parasport	IV	Retrospective n=34 Paralympic athletes with limb deficiency seeking care at the English Institute for Sport from 2008-2016	162 upper limb injuries identified. Most commonly located in shoulder, neck, and thorax, particularly in athletes with upper extremity amputations.
Vertommen et al ¹⁰²	III	Cross sectional comparative n= 4,000 total, n= 185 in parasport 4,000 European adults surveyed who participated in organized sport as a child	Among those who participated in parasport, 49.7% reported psychologic abuse, 32.4% physical abuse, 33.5% sexual abuse. Compared to children in able bodied sports, RR 2.9 of sexual abuse, 3.23 of physical abuse, 1.39 of psychologic abuse
Tukali-Wosornu ¹⁰¹	IV	Systematic review n= 8 Studies examining harassment and/or abuse in athletes with physical or emotional impairments	Half of studies described high rates of bullying and its social implications. Most studies focused on young, visually impaired athletes. Concluded that there is limited amount of data to estimate true prevalence of non- accidental harm in para athletes
Rutland et al ¹⁰³	IV	Cross sectional n= 27 Qualitative survey data from interviews conducted with para athletes	Athletes identified wide range of abusive behaviors with 3 types identified more frequently and were less easily recognized:

Injury/Illness Prevention			financial abuse, neglect, and disability stigma
Belanger et al ⁷²	Π	Prospective comparative n= 28 Subjects with SCI who underwent functional electrical stimulation (FES) resistance training program on 1 limb, FES against gravity on other limb, and matched control group without SCI	After FES training, subjects with SCI regained 30% of the bone lost in the distal femur and proximal tibia. Rate of increased bone mass was quicker in the limb undergoing FES with resistance training
Nawoczenski et al ⁷⁶	II	Prospective comparative n= 41 8wk home exercise program in wheelchair users with SCI with shoulder pain vs. asymptomatic controls	Intervention group showed significant improvements in pain reduction, function, and satisfaction, whereas asymptomatic control group remained stable
Yildirim et al ⁷⁷	II	RCT n= 26 6wk upper extremity circuit resistance training (CRT) program vs conventional rehabilitation in people with SCI	CRT had positive effects on upper extremity strength and the physical disability component of the Functional Independence Measure (FIM), with no significant improvement in quality of life scores.
Murphy et al ⁹⁸	IV	Case series n=5 Outcomes in children who underwent osteocartilagenous capping of a residual limb. Mean follow-up 6.5 years	All bone flaps survived. No development of bone spiking. All patients had bony union. One patient required additional debridement of partial flap necrosis
Shimizu et al ⁸⁰	IV	Cross sectional n= 22	Deep tissue injuries in sacrum and ischium found

		Female wheelchair basketball players on Japanese national team	in 62% of players. More frequent in those with central nervous system disease vs musculoskeletal system disease, use of wheelchair in daily life, lower blood pressure and lower creatinine
Zleik et al ⁶⁸	IV	Systematic review n= 226 Studies examining prevention of osteoporosis and fractures in persons with SCI	7/10 studies evaluating exercise as preventative tool found improved bone mineral density with exercise. However, studies too varied to determine most beneficial type and duration of exercise. Bisphosphanates improved bone density in all but one study.

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED SACKS ET AL. PARASPORT: EFFECTS ON MUSCULOSKELETAL FUNCTION AND INJURY PATTERNS http://dx.doi.org/10.2106/JBJS.21.01504 Page 10

References

- 1. American with Disabilities Act National Network. What is the definition of disability under the ADA? https://adata.org/faq/what-definition-disability-under-ada. Published 2022. Accessed March 20, 2022.
- 2. Tuakli-Wosornu YA, Mashkovskiy E, Ottesen T, Gentry M, Jensen D, Webborn N. Acute and chronic musculoskeletal injury in para sport: A critical review. *Phys Med Rehabil Clin NAm.* 2018;29(2):205-243. doi:10.1016/j.pmr.2018.01.014
- 3. IPC Classification Paralympic Categories & Classifications | International Paralympic Committee. IPC Handbook. IPC; 2013. Policy on Eligible Impairments in the Paralympic Movement; section 2, chapter 3.13, Section 2. https://www.paralympic.org/sites/default/files/document/141113170238135_2014_10_13 +Sec+ii+chapter+3_13+IPC+Policy+on+Eligible+Impairments+in+the+Paralympic+Mov ement.pdf
- 4. Guttman L. *Textbook of Sport for the Disabled*. Aylesburg. England: HM&M Publishers; 1976.
- 5. Côté-Leclerc F, Boileau Duchesne G, Bolduc P, et al. How does playing adapted sports affect quality of life of people with mobility limitations? Results from a mixed-method sequential explanatory study. *Health Qual Life Outcomes*. 2017;15(1):22. doi:10.1186/s12955-017-0597-9
- 6. Feitosa LC, Muzzolon SRB, Rodrigues DCB, Crippa ACS, Zonta MB. The effect of adapted sports in quality of life and biopsychosocial profile of children and adolescents with cerebral palsy. *Rev Paul Pediatr*. 35(4):429-435. doi:10.1590/1984-0462/;2017;35;4;00001
- 7. Groff DG, Lundberg NR, Zabriskie RB. Influence of adapted sport on quality of life: perceptions of athletes with cerebral palsy. *Disabil Rehabil*. 2009;31(4):318-326. doi:10.1080/09638280801976233
- 8. Sahlin KB, Lexell J. Impact of organized sports on activity, participation, and quality of life in people with neurologic disabilities. *PM R*. 2015;7(10):1081-1088. doi:10.1016/j.pmrj.2015.03.019
- 9. Te Velde SJ, Lankhorst K, Zwinkels M, et al. Associations of sport participation with selfperception, exercise self-efficacy and quality of life among children and adolescents with a physical disability or chronic disease-a cross-sectional study. *Sport Med - open*. 2018;4(1):38. doi:10.1186/s40798-018-0152-1
- 10. Moll AM, Bester G. Factors that relate to sport participation of adolescents with a mobility impairment. *African J Disabil.* 2019;8:614. doi:10.4102/ajod.v8i0.614

- Richter KJ, Gaebler-Spira D, Adams Mushett C. Sport and the person with spasticity of cerebral origin. *Dev Med Child Neurol*. 1996;38(9):867-870. doi:10.1111/j.1469-8749.1996.tb15123.x
- 12. Murphy NA, Carbone PS. Promoting the participation of children with disabilities in sports, recreation, and physical activities. *Pediatrics*. 2008;121(5):1057-1061. doi:10.1542/peds.2008-0566
- 13. Ross SA, Yount M, Ankarstad S, et al. Effects of participation in sports programs on walking ability and endurance over time in children with cerebral palsy. *Am J Phys Med Rehabil*. 2017;96(12):843-851. doi:10.1097/PHM.00000000000767
- 14. Di Russo F, Bultrini A, Brunelli S, et al. Benefits of sports participation for executive function in disabled athletes. *J Neurotrauma*. 2010;27(12):2309-2319. doi:10.1089/neu.2010.1501
- 15. Willick SE, Webborn N, Emery C, et al. The epidemiology of injuries at the London 2012 Paralympic Games. *Br J Sports Med.* 2013;47(7):426-432. doi:10.1136/bjsports-2013-092374
- 16. Fagher K, Lexell J. Sports-related injuries in athletes with disabilities. *Scand J Med Sci Sports*. 2014;24(5):e320-31. doi:10.1111/sms.12175
- 17. Wind WM, Schwend RM, Larson J. Sports for the physically challenged child. *J Am Acad Orthop Surg*. 2004;12(2):126-137. doi:10.5435/00124635-200403000-00008
- 18. Lai AM, Stanish WD, Stanish HI. The young athlete with physical challenges. *Clin Sports Med*. 2000;19(4):793-819. doi:10.1016/S0278-5919(05)70238-6
- 19. Heuberman G. Organized sports activity with cerebral palsy adolescents. *Rehabil Lit.* 1976;37:103-106.
- 20. Dodd KJ, Taylor NF, Graham HK. A randomized clinical trial of strength training in young people with cerebral palsy. *Dev Med Child Neurol*. 2003;45(10):652-657. doi:10.1017/S0012162203001221
- 21. Fleeton JRM, Sanders RH, Fornusek C. Strength training to improve performance in athletes with cerebral palsy: A systematic review of current evidence. *J strength Cond Res.* 2020;34(6):1774-1789. doi:10.1519/JSC.00000000003232
- 22. Damiano D, Kelly L, Vaughn C. Effects of quadriceps femoris muscle strengthening on crouch gait in children with spastic diplegia. *Phys Ther.* 1995;76(658-671).
- Baik K, Byeun JK, Baek JK. The effects of horseback riding participation on the muscle tone and range of motion for children with spastic cerebral palsy. *J Exerc Rehabil*. 2014;10(5):265-270. doi:10.12965/jer.140124

- López-Ortiz C, Gaebler-Spira DJ, Mckeeman SN, Mcnish RN, Green D. Dance and rehabilitation in cerebral palsy: a systematic search and review. *Dev Med Child Neurol*. 2019;61(4):393-398. doi:10.1111/dmcn.14064
- 25. Hemachithra C, Meena N, Ramanathan R, Felix AJW. Immediate effect of horse riding simulator on adductor spasticity in children with cerebral palsy: A randomized controlled trial. *Physiother Res Int.* 2020;25(1). doi:10.1002/PRI.1809
- Whalen CN, Case-Smith J. Therapeutic effects of horseback riding therapy on gross motor function in children with cerebral palsy: A systematic review. *Phys Occup Ther Pediatr*. 2012;32(3):229-242. doi:10.3109/01942638.2011.619251
- 27. Herrero P, Gomez EM, Asensio MA, et al. Study of the therapeutic effects of a hippotherapy simulator in children with cerebral palsy: a stratified single-blind randomized controlled trial. *Clin Rehabil*. 2012;26(12):1105-1113. doi:10.1177/0269215512444633
- 28. Debuse D, Changler C, Gibb C. An esploration of german and british physiotherapists' views on the effects of hippotherapy and their measurement. *Physiother Theory Pr*. 2005;21:219-242.
- 29. Herrero P, Asensio A, Garcia E, et al. Study of the therapeutic effects of an advanced hippotherapy simulator in children with cerebral palsy: A randomized controlled trial. *BMC Musculoskelet Disord*. 2010;11:71.
- 30. López-Ortiz C, Gladden K, Deon L, Schmidt J, Girolami G, Gaebler-Spira D. Dance program for physical rehabilitation and participation in children with cerebral palsy. *Arts Health*. 2012;4(1):39. doi:10.1080/17533015.2011.564193
- 31. Sterba JA, Rogers BT, France AP, et al. Horseback riding in children with cerebral palsy: Effect on gross motor function. *Dev Med Child Neurol*. 2002;44:301-308. doi:10.1111/j.1469-8749.1996.tb15123.x
- 32. Lakes KD, Sharp K, Grant-Beuttler M, et al. A six week therapeutic ballet intervention improved gait and inhibitory control in children with cerebral palsy-A pilot study. *Front Public Heal*. 2019;7(JUN). doi:10.3389/fpubh.2019.00137
- 33. Patatoukas D, Farmakides A, Aggeli V, et al. Disability-related injuries in athletes with disabilities. *Folia Med (Plovdiv)*. 53(1):40-46. doi:10.2478/v10153-010-0026-x
- 34. Blauwet CA, Cushman D, Emery C, et al. Risk of injuries in paralympic track and field differs by impairment and event discipline: A prospective cohort study at the London 2012 Paralympic Games. *Am J Sports Med.* 2016;44(6):1455-1462. doi:10.1177/0363546516629949

- 35. Klenck C, Gebke K. Practical management: Common medical problems in disabled athletes. *Clin J Sport Med.* 2007;17(1):55-60. doi:10.1097/JSM.0b013e3180302587
- Athanasopolous S, Mandalidis F, Tsakoniti A, et al. The 2004 Paralympic Games: physiotherapy services in the Paralympic Village polyclinic. *Open Sport Med J*. 2009;3:1-8. doi:10.1136/BJSM.2007.035204
- 37. Webborn N, Cushman D, Blauwet CA, et al. The Epidemiology of Injuries in Football at the London 2012 Paralympic Games. *PM R*. 2016;8(6):545-552. doi:10.1016/J.PMRJ.2015.09.025
- 38. Derman W, Schwellnus MP, Jordaan E, et al. High incidence of injury at the Sochi 2014 Winter Paralympic Games: a prospective cohort study of 6564 athlete days. *Br J Sports Med.* 2016;50(17):1069-1074. doi:10.1136/BJSPORTS-2016-096214
- 39. Chung WM, Yeung S, Wong AYL, et al. Musculoskeletal injuries in elite able-bodied and wheelchair foil fencers--a pilot study. *Clin J Sport Med*. 2012;22(3):278-280. doi:10.1097/JSM.0B013E31824A577E
- 40. Webborn N, Willick S, Emery CA. The injury experience at the 2010 Winter Paralympic Games. *Clin J Sport Med.* 2012;22(1):3-9. doi:10.1097/JSM.0B013E318243309F
- 41. Webborn N, Willick S, Reeser JC. Injuries among disabled athletes during the 2002 Winter Paralympic Games. *Med Sci Sports Exerc*. 2006;38(5):811-815. doi:10.1249/01.MSS.0000218120.05244.DA
- 42. Hawkeswood J, Finlayson H, O'Connor R, Anton H. A pilot survey on injury and safety concerns in international sledge hockey. *Int J Sports Phys Ther*. 2011;6(3):173. /pmc/articles/PMC3163997/. Accessed November 29, 2021.
- 43. Chung WM, Yeung S, Wong AYL, et al. Musculoskeletal injuries in elite able-bodied and wheelchair foil fencers-a pilot study. *Clin J Sport Med.* 2012;22(3):278-280. doi:10.1097/JSM.0B013E31824A577E
- 44. Holm NJ, Møller T, Adamsen L, Dalsgaard LT, Biering-Sorensen F, Schou LH. Health promotion and cardiovascular risk reduction in people with spinal cord injury: physical activity, healthy diet and maintenance after discharge- protocol for a prospective national cohort study and a preintervention- postintervention study. *BMJ Open*. 2019;9(12):e030310. doi:10.1136/bmjopen-2019-030310
- 45. Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. *Am J Phys Med Rehabil*. 2007;86(2):142-152. doi:10.1097/PHM.0b013e31802f0247
- 46. Dolbow DR, Gorgey AS, Daniels JA, Adler RA, Moore JR, Gater DR. The effects of

spinal cord injury and exercise on bone mass: a literature review. *NeuroRehabilitation*. 2011;29(3):261-269. doi:10.3233/NRE-2011-0702

- 47. Edgerton VR, Leon RD, Harkema SJ, et al. Retraining the injured spinal cord. *J Physiol*. 2001;533(Pt 1):15-22. doi:10.1111/j.1469-7793.2001.0015b.x
- 48. Rojas Vega S, Abel T, Lindschulten R, Hollmann W, Bloch W, Strüder HK. Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans. *Neuroscience*. 2008;153(4):1064-1070. doi:10.1016/j.neuroscience.2008.03.037
- 49. Côté M-P, Azzam GA, Lemay MA, Zhukareva V, Houlé JD. Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. *J Neurotrauma*. 2011;28(2):299-309. doi:10.1089/neu.2010.1594
- 50. Dallmeijer AJ, van der Woude LH, Hollander PA, Angenot EL. Physical performance in persons with spinal cord injuries after discharge from rehabilitation. *Med Sci Sports Exerc*. 1999;31(8):1111-1117. doi:10.1097/00005768-199908000-00006
- 51. Fliess-Douer O, Vanlandewijck YC, Van der Woude LH. Most essential wheeled mobility skills for daily life: an international survey among paralympic wheelchair athletes with spinal cord injury. *Arch Phys Med Rehabil.* 2012;93(4):629-635. doi:10.1016/j.apmr.2011.11.017
- 52. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. *Calcif Tissue Int*. 1995;57(5):344-358. doi:10.1007/BF00302070
- 53. Troy KL, Morse LR. Measurement of bone: Diagnosis of SCI-induced osteoporosis and fracture risk prediction. *Top Spinal Cord Inj Rehabil*. 2015;21(4):267-274. doi:10.1310/sci2104-267
- 54. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF. Supralesional and sublesional bone mineral density in spinal cord-injured patients. *Bone*. 2000;27(2):305-309. doi:10.1016/s8756-3282(00)00326-4
- 55. Biering-Sørensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. *Eur J Clin Invest*. 1990;20(3):330-335. doi:10.1111/j.1365-2362.1990.tb01865.x
- 56. Finsen V, Indredavik B, Fougner KJ. Bone mineral and hormone status in paraplegics. *Paraplegia*. 1992;30(5):343-347. doi:10.1038/sc.1992.80
- 57. Freehafer AA, Hazel CM, Becker CL. Lower extremity fractures in patients with spinal cord injury. *Paraplegia*. 1981;19(6):367-372. doi:10.1038/sc.1981.69
- 58. Keating JF, Kerr M, Delargy M. Minimal trauma causing fractures in patients with spinal cord injury. *Disabil Rehabil.* 14(2):108-109. doi:10.3109/09638289209167081

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED SACKS ET AL. PARASPORT: EFFECTS ON MUSCULOSKELETAL FUNCTION AND INJURY PATTERNS http://dx.doi.org/10.2106/JBJS.21.01504 Page 15

- 59. Burnham RS, May L, Nelson E, Steadward R, Reid DC. Shoulder pain in wheelchair athletes. The role of muscle imbalance. *Am J Sports Med.* 21(2):238-242. doi:10.1177/036354659302100213
- 60. Kulig K, Rao SS, Mulroy SJ, et al. Shoulder joint kinetics during the push phase of wheelchair propulsion. *Clin Orthop Relat Res.* 1998;(354):132-143. doi:10.1097/00003086-199809000-00016
- 61. Akbar M, Brunner M, Ewerbeck V, et al. Do overhead sports increase risk for rotator cuff tears in wheelchair users? *Arch Phys Med Rehabil*. 2015;96(3):484-488. doi:10.1016/j.apmr.2014.09.032
- 62. Hastings J, Goldstein B. Paraplegia and the shoulder. *Phys Med Rehabil Clin N Am.* 2004;15(3):vii, 699-718. doi:10.1016/j.pmr.2003.12.005
- 63. Wheeler G, Malone L, VanVlack S, Nelson E, Steadward R. Retirement from disability sport: A pilot study. *Adapt Phys Act Q*. 1996;13(4):382-399.
- 64. Bundon A, Ashfield A, Smith B, Goosey-Tolfrey V. Struggling to stay and struggling to leave: The experiences of elite para-athletes at the end of their sport careers. *Psychol Sport Exerc.* 2018;37:296-305.
- 65. Nemunaitis GA, Mejia M, Nagy JA, Johnson T, Chae J, Roach MJ. A descriptive study on vitamin D levels in individuals with spinal cord injury in an acute inpatient rehabilitation setting. *PM R*. 2010;2(3):202-208; quiz 228. doi:10.1016/j.pmrj.2010.01.010
- 66. Coskun Benlidayi I, Basaran S, Seydaoglu G, Guzel R. Vitamin D profile of patients with spinal cord injury and post-stroke hemiplegia: All in the same boat. *J Back Musculoskelet Rehabil.* 2016;29(2):205-210. doi:10.3233/BMR-150615
- 67. Dutton RA. Medical and musculoskeletal concerns for the wheelchair athlete: A review of preventative strategies. *Curr Sports Med Rep.* 2019;18(1):9-16. doi:10.1249/JSR.00000000000560
- 68. Zleik N, Weaver F, Harmon RL, et al. Prevention and management of osteoporosis and osteoporotic fractures in persons with a spinal cord injury or disorder: A systematic scoping review. *J Spinal Cord Med*. 2019;42(6):735-759. doi:10.1080/10790268.2018.1469808
- 69. Anderson D, Park AJ. Prophylactic treatment of osteoporosis after SCI: promising research, but not yet indicated. *Spinal Cord Ser Cases*. 2019;5(1):25. doi:10.1038/s41394-019-0166-z
- 70. Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. *Curr Osteoporos Rep.*

2012;10(4):278-285. doi:10.1007/s11914-012-0117-0

- 71. Ioannis SP, Chrysoula LG, Aikaterini K, et al. The use of bisphosphonates in women prior to or during pregnancy and lactation. *Hormones (Athens)*. 2011;10(4):280-291. doi:10.14310/HORM.2002.1319
- 72. Bélanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? *Arch Phys Med Rehabil.* 2000;81(8):1090-1098. doi:10.1053/apmr.2000.7170
- 73. Hagiwara T, Bell WH. Effect of electrical stimulation on mandibular distraction osteogenesis. *J Craniomaxillofac Surg*. 2000;28(1):12-19. doi:10.1054/jcms.1999.0104
- Zerath E, Canon F, Guezennec CY, Holy X, Renault S, Andre C. Electrical stimulation of leg muscles increases tibial trabecular bone formation in unloaded rats. *J Appl Physiol*. 1995;79(6):1889-1894. doi:10.1152/jappl.1995.79.6.1889
- 75. Soo Hoo J. Shoulder pain and the weight-bearing shoulder in the wheelchair athlete. *Sports Med Arthrosc.* 2019;27(2):42-47. doi:10.1097/JSA.00000000000241
- 76. Nawoczenski DA, Ritter-Soronen JM, Wilson CM, Howe BA, Ludewig PM. Clinical trial of exercise for shoulder pain in chronic spinal injury. *Phys Ther*. 2006;86(12):1604-1618. doi:10.2522/ptj.20060001
- 77. Yildirim A, Sürücü GD, Karamercan A, et al. Short-term effects of upper extremity circuit resistance training on muscle strength and functional independence in patients with paraplegia. *J Back Musculoskelet Rehabil*. 2016;29(4):817-823. doi:10.3233/BMR-160694
- 78. Aytar A, Zeybek A, Pekyavas NO, Tigli AA, Ergun N. Scapular resting position, shoulder pain and function in disabled athletes. *Prosthet Orthot Int.* 2015;39(5):390-396. doi:10.1177/0309364614534295
- 79. Ferrero G, Mijno E, Actis MV, et al. Risk factors for shoulder pain in patients with spinal cord injury: a multicenter study. *Musculoskelet Surg.* 2015;99 Suppl 1:S53-6. doi:10.1007/s12306-015-0363-2
- 80. Shimizu Y, Mutsuzaki H, Tachibana K, et al. A survey of deep tissue injury in elite female wheelchair basketball players. *J Back Musculoskelet Rehabil*. 2017;30(3):427-434. doi:10.3233/BMR-150457
- 81. Gabos PG, El Rassi G, Pahys J. Knee reconstruction in syndromes with congenital absence of the anterior cruciate ligament. *J Pediatr Orthop*. 2005;25(2):210-214. doi:10.1097/01.BPO.0000153874.74819.29
- 82. van Schaik L, Geertzen JHB, Dijkstra PU, Dekker R. Metabolic costs of activities of daily

living in persons with a lower limb amputation: A systematic review and meta-analysis. *PLoS One*. 2019;14(3). doi:10.1371/JOURNAL.PONE.0213256

- 83. Deans SA, McFadyen AK, Rowe PJ. Physical activity and quality of life: A study of a lower-limb amputee population. *Prosthet Orthot Int*. 2008;32(2):186-200. doi:10.1080/03093640802016514
- 84. Wetterhahn KA, Hanson C, Levy CE. Effect of participation in physical activity on body image of amputees. *Am J Phys Med Rehabil*. 2002;81(3):194-201. doi:10.1097/00002060-200203000-00007
- 86. Pitetti K, Snell P, Stray-Gundersen J, Gottschalk F. Aerobic training exercises for individuals who had amputation of the lower limb. *J Bone Jt Surg Am*. 1987;69(6):914-921.
- 87. Chin T, Sawamura S, Fujita H, et al. Effect of endurance training program based on anaerobic threshold (AT) for lower limb amputees. *J Rehabil Res Dev.* 2001;38(1):7-11.
- Chin T, Sawamura S, Fujita H, et al. The efficacy of the one-leg cycling test for determining the anaerobic threshold (AT) of lower limb amputees. *Prosthet Orthot Int*. 1997;21(2):141-146. doi:10.3109/03093649709164542
- 89. Kurdyballo S, Bogatykh V. Swimming as a means of enhancing the adaptive potential of the disabled after amputation of the lower extremities. *Vopr Kurortol Fizioter Lech Fiz Kult*. 1997;1:25-28.
- 90. Kars C, Hofman M, Geertzen JHB, Pepping GJ, Dekker R. Participation in sports by lower limb amputees in the Province of Drenthe, The Netherlands. *Prosthet Orthot Int*. 2009;33(4):356-367. doi:10.3109/03093640902984579
- 91. Heneghan NR, Collacott E, Martin P, Spencer S, Rushton A. Lumbosacral injuries in elite Paralympic athletes with limb deficiency: a retrospective analysis of patient records. *BMJ Open Sport Exerc Med.* 2021;7(1):e001001. doi:10.1136/BMJSEM-2020-001001
- 92. Fagher K, Jacobsson J, Timpka T, Dahlström Ö, Lexell J. The Sports-Related Injuries and Illnesses in Paralympic Sport Study (SRIIPSS): a study protocol for a prospective longitudinal study. *BMC Sports Sci Med Rehabil*. 2016;8(1). doi:10.1186/S13102-016-0053-X
- Russell Esposito E, Wilken JM. The relationship between pelvis-trunk coordination and low back pain in individuals with transfemoral amputations. *Gait Posture*. 2014;40(4):640-646. doi:10.1016/J.GAITPOST.2014.07.019

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED SACKS ET AL. PARASPORT: EFFECTS ON MUSCULOSKELETAL FUNCTION AND INJURY PATTERNS http://dx.doi.org/10.2106/JBJS.21.01504 Page 18

- 94. Devan H, Hendrick P, Ribeiro DC, A Hale L, Carman A. Asymmetrical movements of the lumbopelvic region: is this a potential mechanism for low back pain in people with lower limb amputation? *Med Hypotheses*. 2014;82(1):77-85. doi:10.1016/J.MEHY.2013.11.012
- 95. Heneghan NR, Heathcote L, Martin P, Spencer S, Rushton A. Injury surveillance in elite Paralympic athletes with limb deficiency: a retrospective analysis of upper quadrant injuries. *BMC Sports Sci Med Rehabil.* 2020;12(1). doi:10.1186/S13102-020-00183-Y
- 96. Nyland J, Snouse SL, Anderson M, Kelly T, Sterling JC. Soft tissue injuries to USA paralympians at the 1996 summer games. *Arch Phys Med Rehabil*. 2000;81(3):368-373. doi:10.1016/S0003-9993(00)90086-8
- 97. Aytar A, Pekyavas NO, Ergun N, Karatas M. Is there a relationship between core stability, balance and strength in amputee soccer players? A pilot study. *Prosthet Orthot Int.* 2012;36(3):332-338. doi:10.1177/0309364612445836
- 98. Murphy AD, Atkins SE, Thomas DJ, McCombe D, Coombs CJ. The use of vascularised bone capping to prevent and treat amputation stump spiking in the paediatric population. *Microsurgery*. 2017;37(6):589-595. doi:10.1002/MICR.30160
- 99. Firth GB, Masquijo JJ, Kontio K. Transtibial Ertl amputation for children and adolescents: a case series and literature review. *J Child Orthop*. 2011;5(5):357. doi:10.1007/S11832-011-0364-0
- Sakkers R, van Wijk I. Amputation and rotationplasty in children with limb deficiencies: current concepts. *J Child Orthop*. 2016;10(6):619-626. doi:10.1007/S11832-016-0788-7/FIGURES/5
- 101. Tuakli-Wosornu YA, Sun Q, Gentry M, et al. Non-accidental harms ('abuse') in athletes with impairment ('para athletes'): A state-of-the-art review. *Br J Sports Med.* 2020;54(3):129-138. doi:10.1136/bjsports-2018-099854
- Vertommen T, Schipper-van Veldhoven N, Wouters K, et al. Interpersonal violence against children in sport in the Netherlands and Belgium. *Child Abuse Negl*. 2016;51:223-236. doi:10.1016/J.CHIABU.2015.10.006
- 103. Rutland EA, Suttiratana SC, da Silva Vieira S, Janarthanan R, Amick M, Tuakli-Wosornu YA. Para athletes' perceptions of abuse: a qualitative study across three lower resourced countries. *Br J Sports Med.* January 2022:bjsports-2021-104545. doi:10.1136/BJSPORTS-2021-104545
- 104. Mountjoy M, Brackenridge C, Arrington M, et al. International Olympic Committee consensus statement: harassment and abuse (non-accidental violence) in sport. Br J Sports Med. 2016;50(17):1019-1029. doi:10.1136/BJSPORTS-2016-096121

- 105. Yell ML, Katsiyannis A, Rose CA, Houchins DE. Bullying and harassment of students with disabilities in schools: Legal considerations and policy formation. *https://doi.org/101177/0741932515614967*. 2016;37(5):274-284. doi:10.1177/0741932515614967
- 106. Parent S, Demers G. Sexual abuse in sport: A model to prevent and protect athletes. *Child Abus Rev.* 2011;20(2):120-133. doi:10.1002/CAR.1135
- 107. International Paralympic Committee. IPC Policy on Non-Accidental Violence and Abuse in Sport. In: *IPC Handbook*. ; 2016:Section 2.