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Supplementary Methods S1

Patients
Prior to training and testing of AAP prediction models, we divided data from the CEU PdL cohort into two datasets; one dataset used for training (N=1290) and one dataset used for independent hold-out of the model (N=100). The hold-out validation dataset included 50 cases of AAP and 50 non-AAP cases (controls) where the 37 patients that had re-exposure to asparaginase (hereof 13 with second AAP) were included. Thus, the machine learning models were trained on a subset of the study cohort with European ancestry (N=1290, whereof 155 patients developed AAP) and the remaining 100 patients with European ancestry (50 cases and 50 controls) and 174 patients with non-European ancestry (39 cases and 135 controls) were used for hold-out validation. 

A subset of the PTWG cohort originated from the Nordic Society of Pediatric Hematology and Oncology (NOPHO) study group which included 815 controls who had received up to 15 doses of Pegylated asparaginase (1,000 IU/ml intramuscularly) and 77 cases of AAP. For these patients, additional clinical biomarkers such as anthropometrics, ALL risk group (standard (SR), intermediate (IR) or high risk (HR)), white blood cell count at ALL diagnosis, minimal residual disease (MRD), and the cumulative amount of asparaginase dosages were available.
Figure A gives an overview of the patients available for the study and which features were available in all samples for modelling.. 
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[bookmark: _Ref24361274]Figure A: Overview of number patient cohorts of AAP cases and controls and data available from the PdL and NOPHO study with European ethnicity. Additional clinical features in the NOPHO study (with European genetic background) include country, weight, length, immunophenotype, risk stratification group (SR: standard risk, IR: intermediate risk, HR: high risk), white blood cell count at diagnosis (WBC), minimal residual disease (MRD, measured with flow cytometry (FC) and polymerase chain reaction (PCR) at day 29 (d29)) and asparaginase dosage information (dosage interval of two or six weeks interval and total number of asparaginase dosages).



Machine learning setup and model parameters
Prior to training and testing of AAP prediction models, we divided data from the PdL cohort into two datasets; one dataset used for training (N=1290) and one dataset used for independent hold-out of the model (N=100). The hold-out validation dataset included 50 cases of AAP and 50 non-AAP cases (controls) where the 37 patients that had re-exposure to asparaginase (hereof 13 with second AAP) were included. Thus, the machine learning models were trained on a subset of the study cohort with European ancestry (N=1290, whereof 155 patients developed AAP) and the remaining 100 patients (50 cases and 50 controls) were used for hold-out validation. The age of patients with AAP was significantly higher than those without in the training and hold-out test dataset (training dataset N=1290: cases: 8.7
A five-fold cross-validation with splits stratified by AAP case classes repeated across 100 different random model initializations was applied on the training set. The classes based on AAP cases were balanced using down-sampling of the controls (non-AAP patients) in the training set. For patients experiencing a second AAP, a leave-one-out cross-validation was applied. Categorical variables are divided into one-out-of-K encoded binary variables, and binary variables remained binary. Age was binned into features of different age groups; years 1−7 (Y1−Y7), years 7−11 (Y7−Y11), and  years 11−17 (Y11−Y17). Continuous input features for the models were standardized by subtracting the mean and dividing with the standard deviation from the training set. All machine learning models can combine multiple variants with clinical data to improve the predictability of AAP. Machine learning techniques overcome the need for hypothesis testing and thus multiple test correction. Internal validation and estimation of variability of machine learning models can be evaluated through cross-validation techniques and with different random seeding of the models to establish robustness of the machine learning models. Each model provides an individual prediction score (0−1) corresponding to the probability of AAP ranging 0−100% which was used to identify subgroups of high risk of AAP and low risk of a second AAP with high confidence.
The logistic regression models were made using the Scikit-learn class LogisticRegression() with the algorithm extension SAGA of the Stochastic Average Gradient descent algorithm for optimization of the log loss function (solver='saga') and no penalty (penalty='none'). 
The random forests were created with the Scikit-learn class RandomForestClassifier(), where the Gini function was used as the measure of impurity (criterion='gini') and minimum decrease in impurity after a split was set to 0.001, i.e. the minimum decrease in Gini impurity for a split to be made (min_impurity_decrease=0.001). Furthermore, the maximum number of features to consider when making each split was set to the square root of the total number of input features (max_features='sqrt'), and the minimum number of samples required to make a split was set to 2.5% of the input samples (min_samples_split=0.025). The random forests were optimized for number of trees in the forest (n_estimators=[5, 10, 15, 20, 25, 50, 100]). 
AdaBoost1 models were trained with the Scikit-learn class AdaBoostClassifier() to get the models to learn the ‘hard-to-classify’ observations. This model was optimized for number of random forest base estimators (n_estimators=[ 2, 3, 4, 5, 10, 50]). The algorithm for boosting was the SAMME.R real boosting algorithm (algorithm='SAMME.R'), which is able to boost the base estimators using the class probabilities instead of the binary classification outcome. 
The Scikit-learn class MLPClassifier() was used to build the artificial neural networks (ANN). Two types of ANNs were made with one and two hidden layers, respectively, where the networks with a single hidden layer were optimized for the number of hidden neurons (hidden_layer_sizes=[(5,), (10,), (15,), (20,), (25,), (50,)]) and the ANNs with two hidden layers always had 25 neurons in each hidden layer (hidden_layer_sizes=(25,25)). The ANNs with a single hidden layer used mostly default parameters from the scikit-learn function, but with the logistic activation function (activation='logistic'), stochastic gradient descent as optimization method (solver='sgd'), batch size of 20 samples (batch_size=20) and the maximum number of iterations to train the model was 500 (max_iter=500). The ANNs with two hidden layers also used default parameters except for logistic activation function (activation='logistic'), batch size of 20 samples (batch_size=20), a learning rate of 0.001 and a maximum number of iterations to train the model was 500 (max_iter=500). 
The LASSO (least absolute shrinkage and selection operator) model applied same settings as for the logistic regression, but with the addition of L1 penalty (penalty=’l1’), and was optimized for the strength of L1 regularization through cross validation (C=[1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1, 10]).

Processing and annotation of genetic variants
Data pre-processing of genotypes was done using R (version 3.2.5)2 and PLINK (version plink2/1.90beta3)3. SNPs were annotated to genes ±50kB of a gene boundary using Variant Effect Predictor GCRCh374. 


Statistical analyses
Statistical analyses were performed using a t-test or Wilcoxon rank sum test for continuous variables given a Gaussian or non-gaussian distribution. Categorical variables were analyzed by Pearson's Chi-squared test in R (version 3.2.5)2.

Functional consequence ranking of genetic variants
The functional consequences of genetic variants were annotated from Variant Effect Predictor4 (build 37) in order to create a ranking of the magnitude of effect that the presence of a variant would cause. The consequences were ranked from 1−4 where 1 is the most severe, such as a variant resulting in a frameshift or a gained stop codon (Table S.A). The variants were matched using the chromosome and position, as well as the “rs” ID when available. Only variants with 1 or 2 in severity was prioritized.

Table S.A: Consequences ranked by severity. 
	Consequence
	Severity 

	frameshift_variant
	1

	splice_acceptor_variant
	1

	splice_donor_variant
	1

	splice_region_variant
	1

	start_lost
	1

	stop_gained
	1

	stop_lost
	1

	inframe_deletion
	2

	inframe_insertion
	2

	missense_variant
	2

	protein_altering_variant
	2

	TF_binding_site_variant
	2

	3_prime_UTR_variant
	3

	5_prime_UTR_variant
	3

	mature_miRNA_variant
	3

	NMD_transcript_variant
	3

	start_retained_variant
	3

	stop_retained_variant
	3

	synonymous_variant
	3

	downstream_gene_variant
	4

	intergenic_variant
	4

	intron_variant
	4

	non_coding_transcript_exon_variant
	4

	non_coding_transcript_variant
	4

	upstream_gene_variant
	4




Genetic feature selection
We upfront selected which genetic features to be included in the models. The following sections describes the name of the dataset and how this was generated. Linkage disequibrillium (LD) based SNP pruning LD pruning was done using ‘--indep 50 5 2’ in PLINK (version plink2/1.90beta3)3.
Genotype-Tissue Expression (GTEx) data5 [https://gtexportal.org/home/] downloaded by ensemble tools [https://rest.ensembl.org/]6 using GTEx version 6pGTEx annotation was selected from pancreatitis tissue and log(p) > 0.75.

Four datasets of SNPs previously associated with AAP or pancreatitis
Previously validated pancreatitis SNPs
We tested how predictive previously identified and validated GWAS SNPs associated with chronic pancreatitis in alcoholic and non-alcoholic pancreatitis or AAP were within linear and non-linear machine learning models. Not all previously validated SNPs were available in the PdL genotype data. Included SNPs were rs13228878 (PRSS1/PRSS2), rs17107315 (SPINK1), rs10273639 (PRSS1/PRSS2) and rs12688220 (CLDN2/MORC4). rs13228878 (PRSS1/PRSS2) was previously validated in the Children’s Oncology Group’s AALL0232 cohort7, while rs10273639 (PRSS1/PRSS2) has been identified and validated in several GWAS studies of alcoholic and non-alcoholic pancreatitis8–10. rs17107315 (SPINK1)9 and rs12688220 (CLDN2/MORC4)8–10 were identified as hits or hits in LD with previous findings of alcoholic and non-alcoholic pancreatitis.


Wolthers et al 2019
In 2019, Wolthers et al identified SNPs associated with AAP in the PdL cohort, where no genetic background was used to subset the data (n=244 cases of AAP, n=1320 controls)7. This is genotype data used for modelling of the machine learning models. The top thirty P-value SNPs associated with AAP were included for modelling; rs10273639, rs12494164, rs12582343, rs13228878, rs1505495, rs16848986, rs16996276, rs170623, rs1791520, rs2167730, rs34375180, rs368819120, rs4655107, rs4769201, rs5010616, rs55634345, rs61734424, rs62228228, rs62228230, rs62228256, rs6477109, rs7139808, rs7155612, rs7270119, rs74109922, rs75245362, rs7851954, rs80170196, rs934350, rs9912225. Of these 30 SNPs, rs13228878 and rs10273639 were significantly associated with the risk of developing pancreatitis in the AALL0232 cohort7.

Liu et al 2016
In 2016, Liu et al identified SNPs associated with acute pancreatitis in patients diagnosed with ALL in 117 cases and 5068 controls11. 49 SNPs were reported with an rsID by Liu et al were available in the PdL genotype data. These included; rs1023840, rs1034347, rs10831758, rs10979693, rs112141546, rs113207856, rs11606424, rs116191233, rs11961305, rs12589386, rs1341861, rs139875564, rs141452852, rs141708090, rs142728074, rs143348702, rs144556038, rs146053779, rs146796996, rs147501499, rs15176341, rs1564947, rs16892294, rs16907254, rs16945382, rs16953067, rs16955095, rs17053225, rs17117423, rs17377657, rs1768056, rs18247836, rs19187532, rs199695765, rs200495769, rs2010463, rs201734206, rs202124287, rs41463245, rs45461499, rs67047829, rs6721376, rs6724701, rs7544262, rs7826058, rs78283108, rs79537388, rs9849262, rs9859201. This set was further reduced by pruning of SNPs, resulting in 10 SNPs included for modelling: rs1023840, rs10831758, rs1564947, rs16892294, rs16907254, rs16945382, rs17053225, rs17117423, rs41463245, rs67047829.

Abaji et al 2017
In 2017, Abaji et al identified genetic risk factors by whole exome sequencing associated with AAP in the Quebec childhood ALL cohort12. Five SNPs were significant associated with AAP;  rs11556218, rs34708521, rs3809849, rs72755233, rs9908032. In our dataset four SNPs were available: rs11556218, rs34708521, rs72755233 and rs9908032.

Six datasets of SNPs annotated to eight genes involved in pancreatitis pathway
Six datasets of SNPs annotated to the genes involved in pancreatitis (PRSS1, PRSS2, SPINK1, CTRC, CASR, CFTR, CPA1, and CLDN2) were used for modelling. The datasets were by different strategies. One dataset was reduced by linkage disequilibrium-pruning of all SNPs annotated to the eight pancreatitis genes (Eight candidate genes dataset) and was further reduced by the SNPs with the predicted most severe consequence (Eight candidate genes (functional consequence prioritized) dataset). Genetic variants were further expanded by significant eQTLs of these eight genes in pancreatic tissue (Eight candidate genes - GTEx eQTL dataset) which were also ranked by most severe functional consequence (Eight candidate genes - GTEx eQTL (functional consequence prioritized) dataset). Another dataset was based on reducing the variance of all SNPs to three principal components (Three principal components of eight pancreatitis SNP-annotated genes dataset). Finally, within the eight genes in the pancreatitis pathway, six SNPs that were most strongly associated with AAP in the PTWG AAP GWAS cohort7 were selected for modelling as separate SNPs (six candidate SNPs dataset). The datasets are described in further details below. 

Eight candidate genes
Zator et al described genes involved in pancreatic disease; PRSS1, PRSS2, SPINK1, CTRC, CASR, CFTR, CPA1 and CLDN213. We annotated SNPs to these genes in our dataset resulting in 1517 SNPs. These were pruned and resulted in 377 SNPs for modelling; exm1651845, exm1651859, exm2262902, kgp22732487, kgp22736019, kgp22804168, kgp22819526, kgp22829942, rs1008248, rs10226236, rs10230435, rs10239213, rs10247427, rs10256541, rs10272052, rs10273043, rs10488188, rs10511409, rs10803377, rs10927713, rs10927749, rs10927751, rs10927797, rs10954269, rs111278301, rs111793536, rs1119800, rs112627346, rs112861203, rs112896741, rs112977751, rs1136995, rs113741816, rs114175678, rs114433626, rs114531821, rs114571236, rs114658781, rs114697189, rs114796420, rs114959849, rs115020348, rs115153864, rs115182091, rs115243436, rs115251799, rs1153084, rs115324868, rs115395979, rs1154729, rs116027795, rs116190983, rs116576422, rs116688903, rs116900477, rs117052523, rs117080455, rs117099609, rs117141465, rs117220554, rs11765940, rs117700687, rs117913533, rs118021467, rs11924218, rs12014762, rs12038868, rs12058287, rs12070915, rs12106790, rs12123804, rs12136606, rs12486849, rs12534580, rs12562216, rs12562412, rs12669592, rs12672166, rs12672889, rs12673576, rs12706936, rs12853674, rs1285712, rs12857932, rs13154671, rs13154930, rs1316277, rs13221882, rs13222308, rs13226446, rs13229221, rs13230593, rs13239073, rs13244661, rs13320117, rs1368412, rs1393198, rs1422990, rs1432823, rs1432975, rs143955465, rs144142335, rs1467513, rs149960437, rs1524140, rs16833165, rs16851387, rs16851463, rs16851662, rs16851665, rs16851946, rs17106906, rs17106994, rs17106995, rs17107315, rs17133172, rs17139584, rs17139774, rs17139904, rs17140425, rs17164720, rs17164729, rs17203488, rs17253746, rs17266628, rs17281995, rs17330912, rs17388190, rs17405463, rs17415991, rs17494960, rs1751998, rs17538716, rs17547485, rs17561784, rs17703848, rs17718041, rs17774502, rs1780595, rs1800076, rs1800095, rs1800907, rs1862329, rs1883757, rs189486222, rs189800017, rs200747551, rs201477143, rs201691901, rs202012741, rs2067080, rs2116766, rs213938, rs2141329, rs2193264, rs2242337, rs2253372, rs2285544, rs2287371, rs2291457, rs2308941, rs2308950, rs2367618, rs2400439, rs2402268, rs2436340, rs2496313, rs2496328, rs2496331, rs2681401, rs2681420, rs2681425, rs2715259, rs2734060, rs28743073, rs2880013, rs33914662, rs34042920, rs34094595, rs34122809, rs34137539, rs34178491, rs34206873, rs34345120, rs34474469, rs34548758, rs34587783, rs35014830, rs35018893, rs35320768, rs35453239, rs35549389, rs35562243, rs35766781, rs35795032, rs35815704, rs35986679, rs36072711, rs36105551, rs361487, rs367603516, rs367791466, rs367920631, rs3734122, rs3753314, rs3765370, rs3800562, rs3800563, rs3806925, rs3807340, rs3816830, rs3817599, rs3823582, rs38895, rs38896, rs38901, rs38903, rs38904, rs38913, rs4059, rs4100170, rs41269443, rs4252372, rs4252522, rs4363128, rs4470444, rs4498456, rs4661330, rs4661599, rs4731674, rs4731678, rs4974398, rs504775, rs558251, rs55847691, rs55875822, rs55899454, rs55930828, rs56219492, rs56227115, rs56273492, rs57339232, rs5962770, rs60310027, rs60394478, rs62469442, rs62473589, rs62491331, rs62617115, rs6438692, rs6438707, rs6466615, rs6622104, rs6658612, rs66697073, rs6680738, rs66839817, rs66850376, rs6693417, rs67003441, rs67023840, rs6769765, rs6803240, rs6871771, rs6884703, rs6889194, rs6942670, rs6947134, rs6972479, rs6975391, rs71579229, rs71579242, rs72643647, rs72643677, rs72835117, rs72835141, rs72835180, rs72875728, rs73170640, rs73181898, rs73184032, rs73186075, rs73186082, rs73211993, rs73213827, rs73215983, rs73269110, rs73274040, rs7355209, rs73724326, rs739693, rs74668887, rs74974914, rs74993149, rs75118026, rs7512971, rs75222399, rs7525279, rs7533567, rs7536482, rs7549759, rs75598696, rs75700249, rs75793153, rs75911963, rs75945259, rs75980868, rs76039184, rs76124003, rs7618747, rs76249487, rs76368460, rs7637874, rs7647405, rs76509354, rs76516385, rs76613504, rs76659336, rs76707403, rs76788357, rs76860590, rs76908136, rs76919727, rs77041199, rs77045691, rs7704889, rs7713010, rs7725292, rs7729260, rs77385877, rs77448606, rs77688344, rs77808099, rs77859819, rs7786419, rs7789559, rs7796359, rs78000398, rs7800765, rs78074583, rs78113236, rs78135358, rs78641803, rs78660569, rs78681108, rs79042346, rs79156986, rs79190650, rs79243435, rs79280654, rs79463568, rs79736961, rs79845433, rs80009321, rs80099942, rs80213789, rs80221012, rs80298935, rs8175963, rs8176044, rs8176058, rs8176063, rs8177107, rs8177146, rs8177171, rs874742, rs901799, rs9282641, rs9289191, rs937629, rs949425, rs975494, rs9817571, rs9826770, rs9829181, rs9839875, rs9867460.

Eight candidate genes (functional consequence prioritized)
We prioritized genetic variants with the most severe consequence; therefore, we selected the variants with consequences ranked at 1 and 2 of all SNPs annotated to the eight genes involved in adult pancreatitis (See Supplementary Methods). This resulted in a prioritized set of 60 SNPs; rs1010294, rs1029396, rs1042077, rs1042636, rs10489962, rs1052571, rs1129055, rs1132312, rs113966492, rs11580170, rs11583306, rs11761888, rs11979330, rs12126178, rs12706927, rs17107315, rs17164867, rs17208, rs17248, rs17260, rs17267, rs17388190, rs17589, rs17854248, rs1800076, rs1800095, rs1801725, rs1801726, rs2020902, rs213950, rs2171492, rs2250145, rs2308941, rs2308950, rs2681417, rs34173813, rs34474469, rs34587586, rs35795032, rs361359, rs361439, rs3765356, rs3766163, rs4252372, rs4252499, rs4661330, rs4728190, rs4731668 rs3915061, rs486557, rs4987667, rs4987682, rs55709813, rs62617115, rs6429757, rs763821, rs7722926, rs8176058, rs8177146, rs9282641.

Eight candidate genes - GTEx eQTL
The eight genes associated involved in pancreatic disease pathways were used a basis to expand the eQTL variants associated with these genes in pancreatic tissue from GTEx given the selected parameters described previously. This resulted 7176 SNPs, where 1197 were available in our genotype data. These were further LD-pruned to 449 SNPs; rs10064194, rs10068916, rs1008248, rs10084650, rs10215972, rs10216068, rs10216140, rs10224011, rs10245094, rs10253715, rs1025489, rs10256541, rs10256879, rs10258170, rs10265693, rs10266621, rs10266895, rs10270056, rs10270974, rs10273043, rs10273639, rs10276606, rs1042720, rs10477360, rs10487372, rs10487399, rs10489962, rs10491403, rs1049334, rs10511414, rs10515588, rs10754866, rs10755876, rs1079221, rs10803309, rs10927452, rs10927530, rs10927543, rs10927571, rs10927578, rs10927632, rs10927670, rs10927676, rs10927765, rs10934612, rs1114086, rs11167957, rs11168048, rs111850617, rs1119800, rs1124213, rs112445433, rs11260738, rs1127343, rs1136995, rs114340813, rs114433626, rs1144986, rs1153084, rs115324868, rs115395979, rs1155458, rs115618685, rs11585810, rs116752872, rs11709496, rs11760434, rs11760909, rs11764066, rs11766819, rs11770721, rs11771082, rs117780183, rs118046556, rs11921048, rs11950634, rs11958839, rs11973084, rs11973869, rs11975899, rs11978185, rs11982223, rs11982376, rs11983414, rs11983741, rs12057512, rs12085004, rs12117872, rs12127407, rs12129618, rs12130370, rs12141069, rs12409399, rs12486849, rs12489855, rs12494271, rs12521378, rs12532165, rs12533442, rs12537777, rs12539323, rs12654852, rs12655663, rs12660014, rs12667732, rs12671578, rs12673576, rs12695429, rs12738424, rs12757909, rs1285965, rs13064281, rs13073767, rs13074706, rs13099843, rs13154930, rs13157587, rs13159091, rs1316257, rs13186402, rs13222576, rs13223756, rs13224443, rs13229581, rs13231609, rs13234660, rs13357143, rs1346945, rs1354162, rs1395249, rs1404061, rs1422636, rs1424414, rs1432654, rs1432691, rs1432823, rs1480163, rs149107492, rs157933, rs1588770, rs160971, rs1665105, rs16850907, rs16851358, rs16851463, rs16873935, rs16873941, rs17106850, rs17139364, rs17139904, rs17140425, rs17160984, rs17162946, rs17165134, rs17209173, rs1721831, rs17262, rs17266628, rs17333054, rs17495305, rs1752021, rs17538716, rs17589, rs1763611, rs1763612, rs1763632, rs17639329, rs17639735, rs17688079, rs17691111, rs17704764, rs17718041, rs1864944, rs1867530, rs1877377, rs1881995, rs1909808, rs1919554, rs1966438, rs1976714, rs199688150, rs2040369, rs2049819, rs205725, rs205763, rs2074136, rs2082395, rs2111209, rs2137639, rs213969, rs2140904, rs2152458, rs2178158, rs2178313, rs221035, rs2253372, rs2271545, rs2272256, rs2280680, rs2285544, rs2293748, rs2305327, rs2312535, rs2332240, rs2402993, rs2436410, rs2473357, rs2480057, rs2486774, rs2570407, rs2670494, rs2803397, rs2807555, rs28491601, rs28497047, rs2855896, rs2862154, rs28743073, rs287624, rs2913326, rs2949766, rs2960760, rs2963075, rs2966701, rs30312, rs31031, rs31033, rs319143, rs3213858, rs34206873, rs34407651, rs34654409, rs34785444, rs34861031, rs34941082, rs35023707, rs350638, rs35182759, rs35196193, rs35230862, rs35233872, rs35441766, rs35653352, rs35903225, rs36003690, rs3792390, rs3800567, rs3800990, rs3807994, rs3823483, rs3823577, rs3823582, rs3845598, rs38825, rs3909553, rs40238, rs41782, rs4252372, rs4269476, rs4338012, rs4341084, rs4363128, rs4385705, rs4441917, rs4443601, rs4445168, rs4454229, rs4469397, rs4574533, rs4607527, rs4661293, rs4661543, rs4661667, rs4661702, rs4676683, rs4676686, rs4678013, rs4705036, rs4705045, rs4725617, rs4726642, rs4731771, rs486958, rs514370, rs542008, rs55699789, rs55837101, rs55899454, rs56219258, rs56234747, rs56284241, rs56289897, rs56358766, rs56409029, rs58212949, rs586362, rs58720091, rs58740854, rs60207331, rs60300478, rs60395301, rs60465931, rs60875013, rs61772194, rs61772283, rs61773640, rs61782448, rs62261554, rs62263867, rs62387740, rs62471584, rs62471973, rs62473545, rs62477619, rs62489337, rs62491280, rs6429661, rs6464544, rs6467293, rs6467327, rs6467347, rs6580582, rs6681120, rs66850376, rs6764971, rs6786208, rs68056147, rs68056161, rs6863426, rs6880853, rs6881655, rs6943541, rs6945268, rs6949709, rs6963381, rs6965643, rs6967528, rs6971551, rs6971899, rs6973013, rs6975771, rs702019, rs71545384, rs71594546, rs72640776, rs72643677, rs72833326, rs72834757, rs72862082, rs73146781, rs73152868, rs73157670, rs73159891, rs73159900, rs73170664, rs73179904, rs73181898, rs73195652, rs73211994, rs73213827, rs732470, rs73452827, rs73452898, rs73523902, rs73722742, rs73855492, rs739557, rs742362, rs742363, rs742662, rs74558393, rs74564230, rs74801905, rs74827221, rs75098848, rs7514440, rs75147459, rs7515681, rs75258377, rs7525851, rs7529561, rs7530236, rs7531035, rs7534010, rs7539884, rs7553794, rs75570697, rs75631290, rs75932939, rs7628062, rs7637874, rs7645033, rs76706972, rs7707452, rs7714069, rs77153860, rs7715716, rs7726085, rs7731196, rs7734352, rs7783273, rs7794533, rs7799105, rs7800811, rs7802940, rs7803075, rs7805545, rs7806322, rs7807308, rs7812207, rs78336569, rs78403305, rs78425975, rs78592190, rs78618574, rs78696877, rs79853540, rs80117059, rs80156131, rs80221012, rs80227654, rs80298935, rs804132, rs8175963, rs863219, rs867522, rs869839, rs8713, rs877741, rs879003, rs879211, rs887574, rs8935, rs895072, rs895074, rs896153, rs910104, rs916725, rs9325026, rs9325057, rs9429230, rs9641562, rs970472, rs970952, rs974558, rs9812472, rs9839593, rs9839656, rs9848900.

Eight candidate genes - GTEx eQTL (functional consequence prioritized)
We prioritized the most variants with the most severe consequence; therefore, we selected the variants with consequences ranked at 1 and 2 of all eQTLs to the eight genes involved in adult pancreatitis (See Supplementary Methods).  This resulted in 27 SNPs; rs10043775, rs1010294, rs10489962, rs1076726, rs10803354, rs12186491, rs12669721, rs12706927, rs1464890, rs17208, rs17589, rs17849995, rs1801726, rs2070179, rs2171492, rs2234001, rs2234002, rs35196193, rs35903225, rs3777134, rs4252372, rs4725617, rs4808, rs6948695, rs7645033, rs8940, rs9968193.

Three principal components of eight pancreatitis SNP-annotated genes 
In order to reduce the high-dimensional data set containing all SNPs annotated to the eight genes associated with AAP but still capture the variation of these, a principle component analysis (PCA) was performed to reduce the feature input space that was available for modelling. We implemented the PCA in the models in the machine learning setup, such that the PCA was performed on the training and test sets separately within the five-fold cross-validation. A filter was set to capture only SNPs with minor allele frequencies of 5% (--MAF 0.05). The PCA was implemented using the plink "--pca" flag that by default creates 20 components of which we extracted the first three.  

Six candidate SNPs
Finally, six SNPs rs17107315 (SPINK1, OR=2.849, P=0.004235), rs56296320 (CFTR, OR=0.2995, P=0.04325), rs12853674 (CLDN2, OR=1.687, P=0.008564), rs13228878 (PRSS1/PRSS2, OR=0.6261, P=1.275e-05), rs16832787 (CASR, OR= 0.7662, P= 0.04101) and rs10436957 (CTRC, OR= 0.6643, P=0.00199) were identified as most significant SNPs in candidate genes of pancreatitis13 in the PdL AAP genome-wide association study (GWAS)7.

Feature representation of genetic variants
Genetic variants were encoded following the additive, dominant and recessive genetic models14, and by a binary non-additive manner according to the presence of the major allele or minor allele (‘binary allele’) (Tables S.B and S.C). The minor allele was assumed to be the allele of effect in the genetic model representations. 

Table S.B: Encoding representations for genetic models. 
	Encoding of genetics\
Genotype
	Additive
	Dominant
	Recessive

	Homozygotes major allele
	0
	0
	0

	Heterozygotes 
	1
	1
	0

	Homozygotes minor allele
	2
	1
	1



Table S.C: Binary encoding of genetic features.
	Encoding of genetics\
Genotype
	SNP minor allele
	SNP major allele

	Homozygotes major allele
	0
	1

	Heterozygotes 
	1
	1

	Homozygotes minor allele
	1
	0



The additive genetic encoding was {0,1,2} according to the number of minor alleles. For the dominant and recessive genetic encodings, variants where encoded with {0, 1} according to genotype. Using dominant encoding, homozygotes for the major allele received 0, and heterozygotes or homozygotes for the minor allele received 1. Using recessive encoding, homozygotes for the major allele or heterozygotes received 0, and homozygotes for the minor allele received 1. Missing values for genotype features were imputed with -1.

Model performance evaluation
Results of the machine learning models were evaluated using ROC-AUC, sensitivity and specificity, positive predictive value (PPV) and negative predictive value (NPV). 









Models were determined to overfit if the training ROC-AUC performance reached 1 during parameter optimization. To evaluate the tested models, the prediction outcome label (AAP case/control) was permuted 100 times to get distribution of random ROC-AUC performances. 

Feature importance evaluation
Features were correlated using Spearman’s correlation coefficient, R2. A cut-off of -0.5 > R2 < 0.5 was applied to cluster correlated features. The feature importance for selected models was evaluated based on a ‘leave-one-out’ approach for each highly correlated group or single variable. The groups were set to zero and the model trained with the optimized parameters, which gave a new partial ROC-AUC test performance. The feature importance was reported as the change in ROC-AUC when leaving out each group against the performance of the model trained on the full set of features: 
∆ = ROC-AUCpartial — ROC-AUCfull
Therefore, ∆ < 0 corresponds to an important feature that improves the model, while ∆ ≥ 0 is a feature of no importance or a feature that worsens the model. 

Hold-out GWAS
As the model based on the PdL GWAS reported by Wolthers et al7 provided the best predictive performance, we tested if the performance could be achieved by retraining the best models on SNPs with P < 10-5 when re-doing the logistic regression GWAS on 70% of the CEU-ancestry data (N=973) using age and sex as covariates. The retrained models were validated on a 30% hold-out validation set (N=417).

Forward feature selection on most important SNPs
As the model based on the PTWG GWAS reported by Wolthers et al7 provided the best predictive performance, we also tested the minimal set of genetic variants needed using a forward selection algorithm. Age, sex and features for the variants rs150549 and rs465510 was used as seed for the forward selection. The forward selection is performed by adding one feature at a time from the defined pool of selectable features. The feature selected in each round is the one that increases ROC-AUC performance the most. If no feature manages to do so for consecutive iterations, the selection process is terminated and the optimal set of predictive features is found. 

Personalized AI ensemble model strategy
By comparing all models (except the models trained with three principal components of eight pancreatitis SNP-annotated genes due to low performance compared to other trained models), the top 50 machine learning models based on sensitivity were selected to gain as much predictive power as possible. The ensemble was made with a combined scoring approach using the predictions of the individual models in the ensemble. Three types of scoring the predictions were applied, in order to calculate a combined prediction per sample, which could then be used to estimate a collective performance of the ensemble model. 1) The mean of scores was a simple mean per sample of the predictions made by each model in the ensemble. 2) The majority voting approach rounded each prediction to either 0 or 1 at a threshold of 0.5, and then determined the prediction for each sample as the one selected most often. 3) The mean of confident scores uses only the predictions that are confident enough to calculate the mean per sample. The confidence of a prediction was set by a threshold, e.g. t=0.70, meaning that scores ≤ 0.30 and scores ≥ 0.70 are included when estimating the mean prediction score per sample. 

Supplementary Table S.2: Asparaginase-associated pancreatitis (AAP) incidence and distribution of age and sex.

The age of patients with AAP was significantly higher than those without in the training and the two hold-out test datasets (training dataset N=1290: hold-out test CEU dataset N=100, hold-out test non-CEU dataset N=174), while no significant difference was found for sex (N=1290: hold-out test CEU dataset N=100, hold-out test non-CEU dataset N=174). There was no difference in age and sex distribution of patients with a second AAP (N=37).

Table S.2: AAP incidence and distribution of age and sex across cross-validated dataset with European ancestry (N=1290), hold-out test set with European ancestry (N=100), hold-out test set with non-European ancestry (N=174) and hold-out test set 2nd AAP (N=37, only European ancestry).
	
	Incidence of AAP or second AAP
	Cases
age
	Controls
age
	P
	Cases
Sex
	Controls
Sex
	P

	Cross-validated subset with European ancestry (N=1290, 155 cases and 1135 controls)
	12%
	8.74.8
	6.24.5
	P=9.26e-11
	M: 81
F: 74
	M: 617
F: 518
	P=0.68

	Hold-out test set with European ancestry (N=100, 50 cases and 50 controls)
	50%
	8.75.0
	6.74.9
	P=0.04
	M: 32
F: 18
	M: 23
F:27
	P=0.11

	Hold-out test set with non-European ancestry (N=174, 39 cases and 135 controls)
	22%
	8.94.6
	6.24.5
	P=0.0009
	M: 20
F: 19
	M: 84
F: 51
	P=0.30

	Hold-out test set 2nd AAP (N=37, 13 cases and 24 controls) 
	35%
	8.44.5
	6.94.7
	P=0.32
	M: 5
F: 8
	M: 17
F: 7
	P=0.12




Supplementary Table S.3: Genome-wide association study of asparaginase-associated pancreatitis in patients with European ancestry.
Table S.3: Genome-wide association study of asparaginase-associated pancreatitis in patients with European ancestry. Methods are similar to Wolthers et al, 20197, which we refer to for the original GWAS on this patient cohort.

	CHR
	SNP
	BP
	Effect allele
	OR (95% CI)
	P
	Gene (distance from gene)

	21
	rs2829112
	25854433
	A
	2.13 (1.58 - 2.88)
	8.73E-07
	LOC101927869(+160.7kb)

	12
	rs368819120
	71747240
	A
	1.74 (1.39 - 2.19)
	2.01E-06
	LGR5(-86.31kb)|TSPAN8(+195.5kb)

	13
	rs934350
	103589776
	G
	1.79 (1.41- 2.27)
	2.08E-06
	BIVM(+95.89kb)|BIVM-ERCC5(+61.42kb)|
CCDC168(+178.4kb)|ERCC5(+61.42kb)|
KDELC1(+138.4kb)|METTL21C(+242.9kb)|
METTL21EP(+41.39kb)|SLC10A2(-106.6kb)|TEX30(+163.6kb)

	20
	rs7270119
	50436587
	G
	3.34 (2.02 - 5.55)
	3.02E-06
	ATP9A(+51.68kb)|
LOC101927678(-11.75kb)|
SALL4(+17.54kb)

	8
	rs2167730
	78103417
	G
	0.54 (0.42 - 0.70)
	3.26E-06
	PEX2(+190.1kb)

	4
	rs55634345
	19846813
	A
	1.70 (1.36 - 2.12)
	3.59E-06
	

	9
	rs170623
	101984936
	C
	1.77 (1.39 - 2.25)
	3.72E-06
	ALG2(+0.69kb)|
COL15A1(+151.9kb)|
NAMA(-132.7kb)|
SEC61B(0)|TGFBR1(+68.46kb)

	19
	rs61734424
	50747533
	G
	2.89 (1.84 - 4.53)
	4.05E-06
	EMC10(-232.2kb)|
FAM71E1(-222.5kb)|
FLJ26850(+177.5kb)|
IZUMO2(+81kb)|
KCNC3(-67.66kb)|
MYBPC2(-188.6kb)|
MYH14(0)|
NAPSA(-114.2kb)|
NAPSB(-89.52kb)|
NR1H2(-132.1kb)|
POLD1(-140kb)|
SNAR-A3(+115.8kb)|
SNAR-A4(+115.8kb)|
SNAR-A5(+115.8kb)|
SNAR-A6(+115.8kb)|
SNAR-A7(+115.8kb)|
SNAR-A8(+115.8kb)|
SNAR-A9(+115.8kb)|
SNAR-A10(+115.8kb)|
SNAR-A11(+115.8kb)|
SNAR-A14(+115.8kb)|
SNAR-B1(+105kb)|
SNAR-B2(+105kb)|
SNAR-D(+104kb)|
SPIB(-174.7kb)|
VRK3(+218.7kb)|
ZNF473(+195.5kb)

	9
	rs78120578
	93793900
	A
	5.24 (2.59 - 10.59)
	4.13E-06
	AUH(-182.2kb)|LOC100129316(-31.68kb)|SYK(+133.1kb)

	19
	rs80170196
	50747159
	A
	2.90 (1.84 - 4.56)
	4.23E-06
	EMC10(-232.6kb)|
FAM71E1(-222.9kb)|
FLJ26850(+177.1kb)|
IZUMO2(+80.62kb)|
KCNC3(-68.04kb)|
MYBPC2(-189kb)|
MYH14(0)|
NAPSA(-114.6kb)|
NAPSB(-89.9kb)|
NR1H2(-132.5kb)|
POLD1(-140.4kb)|
SNAR-A3(+115.4kb)|
SNAR-A4(+115.4kb)|
SNAR-A5(+115.4kb)|
SNAR-A6(+115.4kb)|
SNAR-A7(+115.4kb)|
SNAR-A8(+115.4kb)|
SNAR-A9(+115.4kb)|
SNAR-A10(+115.4kb)|
SNAR-A11(+115.4kb)|
SNAR-A14(+115.4kb)|
SNAR-B1(+104.7kb)|
SNAR-B2(+104.7kb)|
SNAR-D(+103.6kb)|
SPIB(-175kb)|
VRK3(+218.4kb)|
ZNF473(+195.1kb)

	21
	rs8133171
	25894930
	G
	2.03 (1.50 - 2.74)
	4.39E-06
	LOC101927869(+201.2kb)

	21
	rs2186435
	25884428
	A
	2.03 (1.50 - 2.74)
	4.41E-06
	LOC101927869(+190.7kb)

	20
	rs62228230
	50445082
	A
	3.25 (1.96 - 5.37)
	4.65E-06
	ATP9A(+60.17kb)|
LOC101927678(-3.253kb)|
SALL4(+26.03kb)

	20
	rs62228256
	50454447
	A
	3.34 (1.99 -5.59)
	4.67E-06
	ATP9A(+69.54kb)|
LOC101927678(0)|
SALL4(+35.4kb)|
ZFP64(-246.1kb)

	12
	rs12582343
	71766297
	G
	1.69 (1.35 - 2.11)
	5.25E-06
	LGR5(-67.25kb)|
TSPAN8(+214.5kb)|
ZFC3H1(-237.1kb)

	8
	rs10504645
	78057807
	C
	0.51 (0.38 - 0.68)
	5.44E-06
	PEX2(+144.5kb)

	20
	rs16996276
	50455925
	C
	3.29 (1.97 - 5.51)
	5.61E-06
	ATP9A(+71.02kb)|
LOC101927678(0)|
SALL4(+36.88kb)|
ZFP64(-244.6kb)

	18
	rs1791520
	22118315
	G
	1.73 (1.36 - 2.20)
	6.74E-06
	HRH4(+58.39kb)|
IMPACT(+84.82kb)|
LOC729950(-89.83kb)|
MIR320C2(+216.6kb)|
OSBPL1A(+140.5kb)

	11
	rs150996648
	66359489
	A
	4.52 (2.33 - 8.77)
	8.05E-06
	ACTN3(+28.69kb)|
B3GNT1(+244.3kb)|
BBS1(+58.4kb)|
BRMS1(+246.9kb)|
C11orf80(-152.7kb)|
CCDC87(0)|CCS(-1.2kb)|
CTSF(+23.44kb)|
DPP3(+82.36kb)|
MRPL11(+153.2kb)|
NPAS4(+165.3kb)|
PELI3(+114.7kb)|
RBM4(-46.6kb)|
RBM4B(-72.98kb)|
RBM14(-24.56kb)|
RBM14-RBM4(-24.56kb)|
SLC29A2(+220.2kb)|
SPTBN2(-93.23kb)|
ZDHHC24(+45.82kb)

	8
	rs201098980
	78071384
	G
	0.52 (0.39 - 0.69)
	8.06E-06
	PEX2(+158.1kb)

	12
	rs5010616
	71748290
	A
	1.67 (1.33 - 2.09)
	8.35E-06
	LGR5(-85.26kb)|TSPAN8(+196.5kb)

	12
	rs139644396
	109527872
	G
	3.43 (1.99 - 5.89)
	8.50E-06
	ACACB(-49.33kb)|
ALKBH2(0)|
DAO(+233.2kb)|
FOXN4(-187.9kb)|
SVOP(+68.83kb)|
UNG(-7.526kb)|
USP30(+2.041kb)|
USP30-AS1(+36.1kb)

	14
	rs12588955
	64303754
	G
	2.06 (1.50 - 2.83)
	8.62E-06
	MIR548AZ(-115.3kb)|
SGPP1(+109kb)|
SYNE2(-15.93kb)|
WDR89(+195.1kb)

	10
	rs12259354
	107217381
	A
	1.99 (1.47 -2.69)
	9.37E-06
	SORCS3(+192.4kb)

	13
	rs74109922
	103582300
	G
	2.25 (1.57 - 3.22)
	9.45E-06
	BIVM(+88.41kb)|
BIVM-ERCC5(+53.95kb)|
CCDC168(+170.9kb)|
ERCC5(+53.95kb)|
KDELC1(+130.9kb)|
METTL21C(+235.4kb)|
METTL21EP(+33.92kb)|
SLC10A2(-114kb)|
TEX30(+156.1kb)

	12
	rs34375180
	71779640
	A
	1.65 (1.32 - 2.06)
	9.52E-06
	LGR5(-53.91kb)|
TSPAN8(+227.9kb)|
ZFC3H1(-223.7kb)

	14
	rs75245362
	95990645
	A
	2.39 (1.62 - 3.52)
	1.01E-05
	CLMN(+204.4kb)|
GLRX5(-10.68kb)|
LINC00341(+114.2kb)|
LOC101929080(+188.8kb)|
SCARNA13(-9.046kb)|
SNHG10(-8.603kb)|
SYNE3(+48.47kb)|
TCL1A(-185.7kb)|
TCL1B(-162.1kb)|
TCL6(-126.9kb)

	20
	rs62228228
	50443845
	A
	3.19 (1.91 - 5.34)
	1.01E-05
	ATP9A(+58.94kb)|
LOC101927678(-4.49kb)|
SALL4(+24.8kb)

	8
	rs11987897
	78067578
	A
	0.52 (0.39 - 0.70) 
	1.02E-05
	PEX2(+154.3kb)

	14
	rs856263
	97426365
	G
	1.87 (1.42 - 2.47)
	1.03E-05
	LINC00618(+14.63kb)|
VRK1(+78.41kb)








Supplementary Table S.42: ROC-AUC of clinical baseline models with age and sex
Table S.42: Performance of logistic regression, random forest, AdaBoost and artificial neural networks with and without down-sampling of the case/control ratio on the PdL training cohort (N=1290). The performance metrics are reported as mean ± standard deviation by ROC-AUC, sensitivity, specificity and Matthew’s correlation coefficient (MCC).

	Model type
	ROC-AUC (N=1290)
	Sensitivity
	Specificity
	MCC

	Logistic regression
No down-sampling
	0.61 ± 0
	0 ± 0
	1 ± 0
	0 ± 0

	Random forest
No down-sampling
	0.63 ± 0
	0 ± 0
	1 ± 0
	0 ± 0

	AdaBoost
No down-sampling
	0.62 ± 0
	0 ± 0
	1 ± 0
	0 ± 0

	Artificial neural network (1 hidden layer)
No down-sampling
	0.62 ± 0
	0 ± 0
	1 ± 0
	0 ± 0

	Artificial neural network (2 hidden layers)
No down-sampling
	0.62 ± 0
	0 ± 0
	1 ± 0
	0 ± 0

	Logistic regression 
down-sampling
	0.62 ± 0.01
	0.57 ± 0.01
	0.68 ± 0.01
	0.18 ± 0

	Random forest 
down-sampling
	0.62 ± 0.01
	0.56 ± 0.02
	0.69 ± 0.01
	0.18 ± 0.01

	AdaBoost
down-sampling
	0.62 ± 0.01
	0.57 ± 0.02
	0.68 ± 0.01
	0.18 ± 0

	Artificial neural network (1 hidden layer) down-sampling
	0.62 ± 0.01
	0.57 ± 0.01
	0.68 ± 0
	0.18 ± 0

	Artificial neural network (2 hidden layers) down-sampling
	0.62 ± 0.01
	0.57 ± 0.01
	0.68 ± 0
	0.18 ± 0



ROC-AUC for all trained clinical baseline models with sex and age ranged: 0.61−0.63, however, the models falsely classified every patient to be never develop AAP as specificity is 1 and the MCC indicate random performance (MCC = 0) in all cross-validated models. This tables shows that down-sampling of the majority class is needed (non-AAP controls are needed for training of the models). Implementation of down-sampling on the training sets show that all models obtain similar ROC-AUC performances, but the models do now not misclassify all patients as never developing AAP. 

Supplementary Table S.53: Performances of all trained models across 100 model initializations in five-fold cross-validation.
Table S.53: ROC-AUC reported as mean ± standard deviation for the following machine learning models; logistic regression, random forest, AdaBoost, artificial neural networks (ANN, 1 and 2 hidden layers respectively) with age, sex and different sets of genetic variants encoded by dimensionality reduction methods incl. PCA or by single effect of SNPs by additive, dominant, recessive, or binary encoded according to the presence of the major or minor allele genetic models. Hid = hidden layers.
	ROC-AUC (N=1290)
	Logistic regression
	Random forest
	AdaBoost
	ANN (1 hid)
	ANN (2 hid)

	Dimensionality reduction

	Three principal components of eight pancreatitis SNP-annotated genes
	0.47 ± 0.01
	0.51 ± 0.02
	0.51 ± 0.02
	0.51 ± 0.01
	0.47 ± 0.01

	Additive encoding of genetics

	Six candidate SNPs
	0.66 ± 0.01
	0.64 ± 0.01
	0.66 ± 0.01
	0.67 ± 0.01
	0.66 ± 0.01

	Eight candidate genes
	0.58 ± 0.02
	0.57 ± 0.02
	0.60 ± 0.02
	0.58 ± 0.02
	0.58 ± 0.02

	Eight candidate genes (functional consequence prioritized)
	0.55 ± 0.02
	0.59 ± 0.01
	0.59 ± 0.02
	0.56 ± 0.02
	0.54 ± 0.02

	Eight candidate genes - GTEx eQTL
	0.56 ± 0.02
	0.55 ± 0.03
	0.58 ± 0.02
	0.57 ± 0.02
	0.57 ± 0.02

	Eight candidate genes - GTEx eQTL (functional consequence prioritized)
	0.57 ± 0.02
	0.61 ± 0.01
	0.61 ± 0.01
	0.58 ± 0.01
	0.56 ± 0.02

	Wolthers et al 2019
	0.80 ± 0.01
	0.79 ± 0.01
	0.81 ± 0.01
	0.81 ± 0.01
	0.80 ± 0.01

	Liu et al 2016
	0.61 ± 0.01
	0.61 ± 0.01
	0.63 ± 0.01
	0.63 ± 0.01
	0.62 ± 0.01

	Abaji et al 2017
	0.61 ± 0.01
	0.61 ± 0.01
	0.62 ± 0.01
	0.61 ± 0.01
	0.61 ± 0.01

	Previously validated pancreatitis SNPs

	0.66 ± 0.01

	0.64 ± 0.01

	0.66 ± 0.01

	0.66 ± 0.01

	0.66 ± 0.01

	Dominant encoding of genetics

	Six candidate SNPs
	0.66 ± 0.01
	0.65 ± 0.01
	0.67 ± 0.01
	0.66 ± 0.01
	0.66 ± 0.01

	Eight candidate genes
	0.58 ± 0.02
	0.57 ± 0.02
	0.60 ± 0.02
	0.58 ± 0.02
	0.58 ± 0.02

	Eight candidate genes (functional consequence prioritized)
	0.57 ± 0.02
	0.61 ± 0.02
	0.61 ± 0.01
	0.58 ± 0.02
	0.56 ± 0.02

	Eight candidate genes - GTEx eQTL
	0.57 ± 0.02
	0.56 ± 0.03
	0.60 ± 0.02
	0.58 ± 0.02
	0.57 ± 0.02

	Eight candidate genes - GTEx eQTL (functional consequence prioritized)
	0.58 ± 0.01
	0.61 ± 0.01
	0.61 ± 0.01
	0.59 ± 0.01
	0.57 ± 0.02

	Wolthers et al 2019
	0.79 ± 0.01
	0.78 ± 0.01
	0.80 ± 0.01
	0.80 ± 0.01
	0.79 ± 0.01

	Liu et al 2016
	0.61 ± 0.01
	0.61 ± 0.01
	0.63 ± 0.01
	0.63 ± 0.01
	0.62 ± 0.01

	Abaji et al 2017
	0.61 ± 0.01
	0.61 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01

	Previously validated pancreatitis SNPs

	0.65 ± 0.01

	0.65 ± 0.01

	0.66 ± 0.01

	0.66 ± 0.01

	0.65 ± 0.01

	Recessive encoding of genetics

	Six candidate SNPs
	0.63 ± 0.01
	0.63 ± 0.01
	0.64 ± 0.01
	0.63 ± 0.01
	0.63 ± 0.01

	Eight candidate genes
	0.57 ± 0.02
	0.61 ± 0.02
	0.62 ± 0.02
	0.57 ± 0.02
	0.56 ± 0.02

	Eight candidate genes (functional consequence prioritized)
	0.55 ± 0.02
	0.57 ± 0.02
	0.59 ± 0.01
	0.56 ± 0.02
	0.54 ± 0.02

	Eight candidate genes - GTEx eQTL
	0.53 ± 0.02
	0.58 ± 0.02
	0.59 ± 0.02
	0.53 ± 0.02
	0.53 ± 0.02

	Eight candidate genes - GTEx eQTL (functional consequence prioritized)
	0.58 ± 0.02
	0.61 ± 0.01
	0.62 ± 0.01
	0.60 ± 0.01
	0.59 ± 0.02

	Wolthers et al 2019
	0.67 ± 0.01
	0.68 ± 0.01
	0.70 ± 0.01
	0.69 ± 0.01
	0.68 ± 0.01

	Liu et al 2016
	0.62 ± 0.01
	0.61 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01

	Abaji et al 2017
	0.60 ± 0.01
	0.61 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01
	0.61 ± 0.01

	Previously validated pancreatitis SNPs

	0.65 ± 0.01

	0.63 ± 0.01

	0.65 ± 0.01

	0.65 ± 0.01

	0.66 ± 0.01

	Binary encoding of genetics

	Six candidate SNPs
	0.66 ± 0.01
	0.65 ± 0.01
	0.67 ± 0.01
	0.67 ± 0.01
	0.67 ± 0.01

	Eight candidate genes
	0.59 ± 0.02
	0.56 ± 0.02
	0.58 ± 0.02
	0.58 ± 0.02
	0.59 ± 0.02

	Eight candidate genes (functional consequence prioritized)
	0.57 ± 0.02
	0.59 ± 0.02
	0.59 ± 0.01
	0.58 ± 0.02
	0.56 ± 0.02

	Eight candidate genes - GTEx eQTL
	0.57 ± 0.02
	0.55 ± 0.02
	0.58 ± 0.02
	0.57 ± 0.02
	0.57 ± 0.02

	Eight candidate genes - GTEx eQTL (functional consequence prioritized)
	0.57 ± 0.01
	0.61 ± 0.01
	0.61 ± 0.01
	0.58 ± 0.02
	0.57 ± 0.02

	Wolthers et al 2019
	0.78 ± 0.01
	0.79 ± 0.01
	0.81 ± 0.01
	0.80 ± 0.01
	0.79 ± 0.01

	Liu et al 2016
	0.61 ± 0.01
	0.61 ± 0.01
	0.63 ± 0.01
	0.63 ± 0.01
	0.62 ± 0.01

	Abaji et al 2017
	0.61 ± 0.01
	0.61 ± 0.01
	0.62 ± 0.01
	0.62 ± 0.01
	0.61 ± 0.01

	Previously validated pancreatitis SNPs

	0.66 ± 0.01

	0.65 ± 0.01

	0.66 ± 0.01

	0.67 ± 0.01

	0.66 ± 0.01




Supplementary Figure S.64: ROC curves and permutation tests across 100 model initializations.
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Figure S.64: A) ROC curves of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding according to the presence of the major or minor allele. Features: age, sex and six candidate SNPs. B) Permutation test for ROC-AUC of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding of genetics. Features: age, sex and six candidate SNPs. C) ROC curves of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding of genetics. Features: age, sex, and previously validated SNPs.  D) Permutation test for ROC-AUC of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding of genetics. Features: age, sex, and previously validated SNPs. E) ROC curves of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding of genetics. Features: age, sex, and top 30 SNPs associated with AAP from Wolthers et al, 20197. F) Permutation test for ROC-AUC of artificial neural networks (1-layer) across 100 model initializations (N=1290) with down-sampling and used binary encoding of genetics. Features: age, sex, and top 30 SNPs associated with AAP from Wolthers et al, 20197.




Supplementary Table S.75
Supplementary Table S.75: Exploration of the model based on the top 30 SNPs associated with AAP in the PdL GWAS cohort..**Validation was performed on a 30% hold-out validation dataset (N=417).
	Data type
	Model 
	ROC-AUC (N=1290)
	ROC-AUC validation (N=100)
	ROC-AUC validation 2nd AAP (N=37)

	Wolthers et al 2019 top 30 P-value SNPs + previously validated SNPs (rs12688220 & rs17107315) (Additive encoding)
	Logistic regression
Random forest
AdaBoost
ANN (1 hidden layer)
ANN (2 hidden layers)
	0.80 ± 0.01
0.78 ± 0.01
0.80 ± 0.01
0.81 ± 0.01
0.79 ± 0.01
	0.84 ± 0.01
0.82 ± 0.01
0.84 ± 0.01
0.84 ± 0.01
0.83 ± 0.02
	0.57 ± 0.03
0.56 ± 0.04
0.53 ± 0.03
0.55 ± 0.03
0.56 ± 0.05

	GWAS approach, covariates; age + sex. P-value threshold of P < 10-5 applied for selection of SNPs (30 selected).  (Additive encoding)
	Logistic regression
Random forest
AdaBoost
ANN (1 hidden layer)
ANN (2 hidden layers)
	NA
	0.58 ± 0.01**
0.59 ± 0.02**
0.58 ± 0.02**
0.58 ± 0.02**
0.58 ± 0.02**
	NA

	GWAS approach, covariates; age + sex. P-value threshold of P < 10-5 applied for selection of SNPs (30 selected).  (Dominant encoding)
	Logistic regression
Random forest
AdaBoost
ANN (1 hidden layer)
ANN (2 hidden layers)
	NA
	0.58 ± 0.02**
0.59 ± 0.02**
0.58 ± 0.01**
0.58 ± 0.01**
0.57 ± 0.02**
	NA

	GWAS approach, covariates; age + sex. P-value threshold of P < 10-5 applied for selection of SNPs (30 selected).  (Recessive encoding)
	Logistic regression
Random forest
AdaBoost
ANN (1 hidden layer)
ANN (2 hidden layers)
	NA
	0.50 ± 0.02**
0.51 ± 0.01**
0.51 ± 0.01**
0.51 ± 0.01**
0.50 ± 0.02**
	NA

	GWAS approach, covariates; age + sex. P-value threshold of P < 10-5 applied for selection of SNPs (30 selected).  (Binary encoding)
	Logistic regression
Random forest
AdaBoost
ANN (1 hidden layer)
ANN (2 hidden layers)
	NA
	0.55 ± 0.02**
0.59 ± 0.02**
0.57 ± 0.02**
0.56 ± 0.02**
0.56 ± 0.02**
	NA

	Wolthers et al 2019 top 30 P-value SNPs (Binary allele encoding)
	ANN (1 hidden layer)
24.86 features included on average across 100 model initializations. Forward selection, starting with age, sex, rs1505495 and rs4655107).
	0.82 ± 0.01

	0.81 ± 0.02

	0.61 ± 0.04







Supplementary Figure S.86
Supplementary Figure S.86: Prediction comparisons. A) Predictions on the test set (N = 1290) for ensemble model with mean scoring vs the predictions of Wolthers et al 2019 ANN with binary encoding of genetics. B) Predictions on the test dataset (N = 1290) for ensemble model with confident mean scoring (threshold = 0.70) vs the predictions of Wolthers et al 2019 ANN with binary allele encoding of genetics. C) Predictions on the hold-out validation set (N = 100) for ensemble model with confident mean scoring (threshold = 0.70) vs the predictions of Wolthers et al 2019 ANN with binary encoding of genetics. D) Predictions of second AAP (N = 37) for ensemble model with confident mean scoring (threshold = 0.70) vs the predictions of Wolthers et al 2019 ANN with binary allele encoding of genetics. Blue = controls, orange = cases, black dashed lines = prediction threshold 0.5.
[image: ]


Supplementary Table S.97: Test performances for models predicting cases of AAP when re-exposed to asparaginase therapy.


Table S.97: Performance of random forest and neural network model for a second AAP following re-exposure to asparaginase. The genetic features were binary encoded according to the presence of the major or minor allele.
	Model type
	ROC-AUC
	Sensitivity
	Specificity

	Logistic regression, Six candidate SNPs
	0.49 ± 0
	0.31 ± 0
	0.67 ± 0

	Random forest, Six candidate SNPs
	0.63 ± 0.03
	0.40 ± 0.09
	0.76 ± 0.07

	Artificial neural network (1 hidden layer), Six candidate SNPs
	0.56 ± 0
	0.23 ± 0.02
	0.78 ± 0.03

	Logistic regression, Previously validated pancreatitis SNPs

	0.65 ± 0
	0.62 ± 0
	0.79 ± 0

	Random forest, Previously validated pancreatitis SNPs

	0.69 ± 0.02
	0.51 ± 0.06
	0.82 ± 0

	Artificial neural network (1 hidden layer), Previously validated pancreatitis SNPs
	0.57 ± 0.01
	0.37 ± 0.03
	0.85 ± 0.02

	Logistic regression, Wolthers et al 2019
	0.59 ± 0
	0.38 ± 0
	0.75 ± 0

	Random forest, Wolthers et al 2019
	0.58 ± 0.08
	0.29 ± 0.12
	0.75 ± 0.09

	Artificial neural network (1 hidden layer), Wolthers et al 2019
	0.58 ± 0.03
	0.29 ± 0.05
	0.70 ± 0.03








Supplementary Figure S.108
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Supplementary Figure S.108: Results of logistic regression models (Features: age, sex and previously validated pancreatitis SNPs) predicting cases of AAP when re-exposed to asparaginase therapy (N=37) with leave-one-out cross-validation and used binary encoding of genetic. A) ROC curves of logistic regression models across 100 model initializations B) Permutation test with randomly permutated label for ROC-AUC of logistic regression across 100 model initializations.









Supplementary Table S.11 Clinical features in NOPHO cohort.
The NOPHO cohort subset of patients with European genetic ancestry (N = 892, whereof 77 had AAP) had more clinical features available of country, weight, length, immunophenotype, risk stratification group, white blood cell count at diagnosis (WBC), minimal residual disease (MRD, measured with flow cytometry (FC) and polymerase chain reaction (PCR) at day 29) and asparaginase dosage information (dosage interval and total dosages).

Table S.11: Distribution of clinical features available from the NOPHO CEU patient subset (N=892) amongst AAP cases (N=77) and controls (N=815). M/F=Male/female, minimal residual disease (MRD, measured with flow cytometry (FC) and polymerase chain reaction (PCR) at day 29 (d29). SR: standard risk, IR: intermediate risk, HR: high risk. HR-hSCT: high risk and hematopoietic stem-cell transplantation. PegAsp: pegylated asparaginase.

	
	Cases (N=77)
	Controls (N=815)

	Age
	7.0 4.7
	5.74.3

	Sex
	M: 44
F: 33
	M: 440
F: 375

	Country
	Denmark: 26
Estonia: 1
Finland: 11
Iceland: 1
Lithuania: 2
Norway: 11
Sweden: 25
	Denmark: 157
Estonia: 10
Finland: 180
Iceland: 12
Lithuania: 59
Norway: 131
Sweden: 266

	Weight [kg]
	30.219.3
	25.016.7

	Length [cm]
	125.629.9
	116.827.0

	White blood cell count at ALL diagnosis [x10^9/L]
	55.8102.7
	49.7114.7

	MRD d29 flow
	<0.1%: 1
>=0.1% - <5%: 55
>=5%: 17
No marker found and/or monitoring not feasible: 4
Sample not taken: 0
	<0.1%: 16
>=0.1% - <5%: 580
>=5%: 181
No marker found and/or monitoring not feasible: 35
Sample not taken: 3

	MRD d29 PCR
	<0.1%: 47
>=0.1% - <5%: 15 
>=5%: 3
No marker found and/or monitoring not feasible: 10
Sample not taken: 2
	<0.1%: 495
>=0.1% - <5%: 154 
>=5%: 61
No marker found and/or monitoring not feasible: 71 
Sample not taken: 34

	Immunophenotype
	B-precursor: 68
T-cell: 9
	B-precursor: 712
T-cell: 103

	Risk group
	SR+IR: 66
HR-hSCT+HR: 11
	SR+IR: 715
HR-hSCT+HR: 100

	Randomization of asparaginase group (2 or 6 weeks interval)
	NA: 53
PegAsp at 6 weeks interval (experimental arm): 5
Standard PegAsp group with 2 weeks interval: 19
	NA: 357
PegAsp at 6 weeks interval (experimental arm): 229
Standard PegAsp group with 2 weeks interval: 229

	Total dosages of asparaginase
	7.34.4
	12.83.3






Supplementary Table S.12 Performance of artificial neural network model (one hidden layer) for AAP trained on the NOPHO subset.

Predictive models were trained using an artificial neural network with one hidden layer and five-fold cross-validation on the NOPHO ALL-2008 patient subset to assess the impact of clinical and asparaginase dosing information to a model based on age, sex and SNPs (Table 2 with binary allele encoding). The models were gradually developed and first evaluated the performance of the clinical baseline model with only age and sex, followed by addition of the other feature sets (Supplementary Table S.12).

Table S.12: Performance of artificial neural network model (one hidden layer) for AAP trained on the NOPHO subset. The genetic features were binary encoded according to the presence of the major or minor allele.
	Model features
	ROC-AUC
	Sensitivity
	Specificity

	Age, sex.
	0.59 ± 0.02
	0.55 ± 0.16
	0.59 ± 0.18

	Age, sex, rs13228878, rs10436957, rs10273639, rs1505495, rs4655107.
	0.64 ± 0.01
	0.61 ± 0.07
	0.59 ± 0.05

	Age, sex, rs13228878, rs10436957, rs10273639, rs1505495, rs4655107, clinical features.
	0.61 ± 0.02
	0.58 ± 0.05
	0.58 ± 0.03

	Age, sex, rs13228878, rs10436957, rs10273639, rs1505495, rs4655107, clinical features, randomization (two or six weeks, total asparaginase dosage.
	0.86 ± 0.01
	0.80 ± 0.03
	0.77 ± 0.02





Supplementary Figure S.13

[image: ]
Supplementary Figure S.13A: Leave-one-out ROC-AUC feature importance for artificial neural network model (one hidden layer) for AAP trained on the NOPHO subset with age, sex, rs13228878, rs10436957, rs10273639, rs1505495, rs4655107, clinical features, randomization (two or six weeks, total asparaginase dosage as features in the model.
[image: ]
Supplementary Figure S.13B: Coefficients of LASSO regression models trained on the NOPHO subset with age, sex, rs13228878, rs10436957, rs10273639, rs1505495, rs4655107, clinical features, randomization (two or six weeks), total asparaginase dosage as features in the model.
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