Body composition results†

The descriptive values are presented in Table. Both groups increased significantly the appendicular lean soft tissue after nine weeks of resistance training (N-VAR = +3.5% vs. VAR = +3.1%), with no significant difference (P = 0.52) between groups. Similarly, both groups increased the skeletal muscle mass (N-VAR = +3.6% vs. VAR = +3.2%), with no significant differences between groups (P = 0.53).

Table. Changes in body composition observed in the N-VAR and VAR groups after nine weeks of RT.

	N-VAR (n = 11)	VAR (n = 12)
ALST (kg)		
Pre	30.6 ± 3.6	27.6 ± 3.5
Post	$31.6 \pm 3.4*$	$28.4 \pm 3.2*$
Δ (95% CI)	1.05 (0.49–1.56)	0.81 (0.32–1.34)
ES	0.29	0.24
SMM (kg)		
Pre	35.3 ± 4.2	31.7 ± 4.1
Post	$36.5 \pm 3.9*$	$32.7 \pm 3.8*$
Δ (95% CI)	1.24 (0.58–1.84)	0.95 (0.37–1.58)
ES	0.30	0.26

Note. N-VAR = non-varied exercise; VAR = varied exercise; ALST = appendicular lean soft tissue; SMM = skeletal muscle mass; ES = effect size. * = P < 0.05 pre versus post. Pre- and post-training data are presented as mean and standard deviation, whereas the mean difference (Δ) as mean and confidence interval.

†The comparisons of the group effects (N-VAR versus VAR) on body composition parameters were performed from analysis of covariance (ANCOVA) of the raw difference between preintervention and postintervention measures with baseline values as a covariate to eliminate possible influence of initial scores variances on outcomes. Interpretation of data was based on 95% confidence intervals (CIs) of the change score (ie., when CI 95% of the raw delta did not overlap the 0, there was a difference between the baseline score). The effect size (ES) was calculated as post-training mean minus pre-training mean, divided by pooled pre-training standard deviation.