TABLE 4. Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | Population | Design | Intervention | |---|--|--| | | | | | 30 M, 66 F, \geq 65 y without orthopedic problems or history of falling | RCT | Exercises performed 5-min BID for 10 wk Warm-up pre
and post: 4 side-steps, 3 front-back steps, un-weighted
hip flexion ×4
(1) Stretch: static stretch hip-lunge stretch for hip flexors
30-s, repeat ×4 | | | | (2) Control: stretch deltoid, with same warm-up and timing | | Eighteen trained power lifters, no | RCT pre-post | Eight wk of training | | previous stretching, in off-season | | Stretch: stretches done mostly as holding at extreme ROM on normal strength training exercises, holding 8–20 s, 2 sets of 6–9 reps. Continue regular off-season strength training. Total time ~10–15 min, performed after regular weight training | | | | Control: regular off-season strength training
Stretches: decline pushups, dumbell flies, chest stretches,
shoulder flexion. Total time | | | | | | | | | | 145-M physical education university students | RCT, pre-post | Eight wk training, 5 groups (1) Inactive (2) Sprint (3) Sprint then stretch (4) Sprint then weights (5) Sprint then stretch then weights Sprint training 3 days/wk, began long slow distance type training and then speed work later 8 static stretches, total of 20 min 3×/wk | | | 30 M, 66 F, ≥65 y without orthopedic problems or history of falling Eighteen trained power lifters, no previous stretching, in off-season | 30 M, 66 F, ≥65 y without RCT orthopedic problems or history of falling Eighteen trained power lifters, no previous stretching, in off-season RCT pre-post | **TABLE 4.** (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | | Results | | | Comments | |--|--|---|--------------------------------------|---| | Hip extension in same position as stretch Gait analysis Power from force platform Mean of 6 trials used for gait analysis and power calculations | Hip extension ROM increased in stretch group at rest and during walking At slow walking, hip external extension torque increased from 0.47 to 0.52 in Stretch group but not control (<i>P</i> < 0.003). At fast speed, hip external extension unchanged in stretch group but decreased in control Comfortable walking speed (m/s) identical increases in both groups. | | | Age group and limitations of this group mean that any extrapolation to performance issues in athletes are purely hypothesis-generating Adherence 94% | | | Stretch
Control | Pre 1.19 ± 0.18 1.19 ± 0.17 | Post 1.23 ± 0.18 1.23 ± 0.18 | | | ROM (best of 3 trials) Musculotendinous stiffness Rebound bench press 1RM Pure concentric bench press 1RM | ROM increased by 13% in stretch group Musculotendinous stiffness during activity decreased only at high loads | | | Two controls did not return Stretch subjects stretched using weights that could have a strength training effect. However, these were minimal weights compared to regular loads | | | Rebound bench p | Pre | Post | In controls, velocity for rebound bench press did not change, but pure concentric bench press actually | | | Stretch
Control | 133.3 ± 24.6 129.2 ± 14.1 | 140.6 ± 24.2 129.9 ± 20.4 | decreased. Therefore, stretching seemed to prevent
decline in velocity rather than improve velocity
Encouragement to perform included by training friends | | | Pure concentric b
Stretch
Control | pench press
118.3 ± 24.3
116.4 ± 12.8 | 123.6 ± 25.6
117.1 ± 18.5 | | | ROM Fifty-yd dash with a running start (mean of 3 | for rebound be $P = 0.1$). Then | ench press only (15.8%)
e were no changes in | | The author mentions 2 master's theses from 1960 and 1961. These were not available for the current | | trials) MVC quads (mean of 3 trials) | Fifty-yd dash | Pre | Post | analysis. The authors report that stretching did not affect speed in one, but ankle dorsiflexion jumping | | | Inactive | 6.32 ± 0.43 | 6.29 ± 0.41 | height did improve in the other | | | Sprint | 6.31 ± 0.37 | 5.98 ± 0.33 | | | | Sprint and stretch | 6.42 ± 0.51 | 6.00 ± 0.47 | | | | Sprint and weights | 6.52 ± 0.51 | 6.04 ± 0.39 | | | | Sprint and
stretch and
weights | 6.54 ± 0.50 | 6.01 ± 0.35 | | | | MVC quads | | | • | | | Inactive | 590 ± 185 | 597 ± 181 | | | | Sprint | 604 ± 182 | 639 ± 181 | | | | Sprint and | 607 ± 230 | 636 ± 210 | | | | stretch
Sprint and | 576 ± 196 | 714 ± 188 | | | | weights | | | | weights and stretch versus sprint alone TABLE 4. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | Study | Population | Design | Intervention | |---|---|---------------------------------|--| | Hunter and Marshall ³⁸ | 50 M, recreational sports (mostly basketball and volleyball), no resistive training, no stretching or plyometrics | RCT, pre-post | Ten wk training, 4 groups: power, stretch, power and stretch, control Power: dead lift, squat, plyometrics, weighted CM jumps, 2×/wk Stretching: 1 supervised session/wk and 3 unsupervised session/wk. Included hamstrings, quadriceps, hip (extension, adduction, abduction), plantarflexors. Stretch until mild discomfort, 20-s repeat ×3 at start, and gradually increase duration to 60 s over training period. After the fourth wk, contract-relax 10 s stretching added Power and stretch: as above, combine programs Control: no change in activity | | Handel et al ³⁰ | 16-M athletes (swimmers, runners, soccer), in 20s | Right-left comparison, pre-post | Warm-up ×2 min. Then stretch only 1 side Stretch: contract-relax 10-s contraction, 1-2 s relax, 10-15 s stretch, repeat ×8 (2 quad and 2 hams). 3 days/wk ×8 wk | | Pre-post
Worrell et al ³⁹ | 10 M, 9 F university students with tight hamstrings | Pre-post, right-left comparison | Three wk training 5 days/wk with hamstring static stretching 1 side and hamstring PNF stretching the other side Static: standing hamstring 15–20 s hold, 15 s rest, repeat ×4 PNF: 5 s hamstring contraction then 5 s quadriceps contraction, repeated ×4 | | Hortobagyi et al ⁴⁰ | 12 M, active high | Pre-post | Seven wk of training. Static stretches 3×/wk after warm-up (not defined). Stretches were for quadriceps, hip flexors and hip extensors. Each stretch held 10 s and repeated twice | **TABLE 4.** (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | Outcome | Results | | | Comments | |---|---|------------------------------------|------------------|--| | ROM after 5-min cycle warm-up Drop jump: at 30, 60 and 90 cm with hands on hips. Minimize ground contact time | ROM: hamstrings increase 29° stretch vs. 6° control; quadriceps increase 10° stretch vs. 0° control | | | Lost to follow-up: 1 power and stretch, 1 control, 4 power and 4 stretch Order of jumps not randomized | | CM jump | | Pre | Post | Order of Jumps not fandomized | | Best of 3 trials used, and jump height calculated | CM jump | | | | | from force platform data | Control | 37.0 ± 5.7 | 36.7 ± 5.7 | | | Muscle stiffness | Stretch | 35.1 ± 5.4 | 36.4 ± 5.9 | | | | Power | 36.6 ± 4.8 | 39.5 ± 6.0 | | | | Power and stretch | 38.5 ± 5.3 | 43.4 ± 6.2 | | | | For drop jumps, no statistically significant differences. Also, mean of stretch group not consistently better than mean of control group | | | | | | Stiffness changes | not consistent | | | | Measures at both 4 and 8 wk, after 5 min warm-up | ROM increased by | $y \sim 3-4^{\circ}$ at 4 wk and 0 | 5° at 8-wk | Authors note that contract-relax stretches involve | | with no stretching | | | | isometric training | | ROM with hip flexed and extended | | Absolute Torque (| - | Authors observed 0.8 cm ± 1.1 cm increase in thigh circumference after 8 wk. They suggest this is | | sometric force at 108° (flex), 83°, 58°, 33°, 8° (ext) | Eccentric | Extensors | Flexors | comparable to other isometric programs | | Eccentric isokinetic torque at 60°/s and 120°/s | 60°/s | 55.9 ± 43.7 | 25.8 ± 22.7 | comparable to other isometric programs | | Concentric isokinetic torque at 60°/s, 120°/s, | 120°/S | 49.7 ± 44.8 | 29.4 ± 26.7 | | | 80°/s and 240°/s | Isometric | 22.1 ± 40.9 | 19.1 ± 19.7 | | | urface EMG | Concentric | | | | | Used mean of the best 3/5 trials | 60°/s | 15.5 ± 3.0 | 13.5 ± 10.0 | | | | 120°/s | 0.9 ± 17.6 | 5.4 ± 18.1 | | | | 180°/s | 6.0 ± 9.6 | 9.0 ± 6.0 | | | | 240°/s | 2.6 ± 12.9 | 10.3 ± 10.6 | | | | EMG increased in eccentric torque only. No changes in unstretched leg At high velocities, maximum torque occurred at position of greater stretch | | | - | | Warm-up prior to testing with progressive | | increased 8° static 9 | 5° PNF but not | No control group to compare no stretching | | resistance ROM: active knee extension Hamstring concentric and eccentric isokinetic | ROM hamstrings increased 8° static, 9.5° PNF but not significantly different Authors combined 2 modes of stretching for analysis | | | Changes in torque refer to both PNF and static groups because ROM was the same, but PNF group involve isometric contractions as part of training | | corque at 60 and 120°/s | | Pre | Post | isometric contractions as part of duming | | | 60°/s concentric | 115.8 ± 37.0 | 118.7 ± 37.7 | | | | 60°/s eccentric | 110.1 ± 37.0 | 119.5 ± 43.4 | | | | 120°/s | 112.3 ± 35.3 | 124.9 ± 40.3 | | | | concentric
120°/s eccentric | 111.7 ± 39.1 | 126.7 ± 41.3 | | | ROM: front-rear splits, side splits, distance shoulder-patella during leg-to-chest movement | ROM increased (e.g., symphysis pubis-floor distance decreased from 36.3 ± 3.3 to 28.3 ± 4.1) | | | This study was done in active high school students wit
no control group. One would expect to see increase | | MVC at 130° (180° = extension) Fast isometric contraction (FIC), relaxation time | | Pre | Post | in strength and speed in this age group over this
duration if they were performing any type of strengt | | $(T_{1/2})$ | MVC | 113.3 | 117.4 | or sport-specific training | | Maximal stride frequency during 10s run-on-spot | $T_{1/2}$ | 0.16 | 0.11 | MVC was tested at 130°. The studies on the effects of | | Speed of contraction at 0, 25, 50, 75, 100, and 125 | Max | 3.75 | 4.09 | acute stretches suggest performance decrements only | | kg | stride freq | | | occur closer to terminal extension | | Used best of 3 trials | FIC | 935 | 1092 | | | | Contraction speed | | | | | | 0 kg | 515 | 610 | | | | 25 kg | 380 | 475 | | | | 50 kg | 360 | 400 | | | | 75 kg | 440 | 450 | | | | 100 kg | 340 | 350 | | | | 125 kg | 320 | 340 | | **TABLE 4.** (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | Study | Population | Design | Intervention | |----------------------------|---|--|--| | Stretching no effect | | | | | Nelson et al ⁴¹ | 16 M, 16 F college students, trained
(run 30 min/d
5 d/wk, accustomed to treadmill)
but not regular stretchers | RCT pre-post changes, stratified on gender | Static stretches ×10 wks. Hold 15 s, repeat ×3 (include
both assisted and unassisted), 15 different exercises.
Stretching lasted ~40 min,
3 d/wk
Stretches were sit and reach, quads and triceps surae | | Godges et al ⁴² | 25 M college recreational athletes with tight hip flexors on Thomas test. Intensity of outcome required fitness in upper 20% of age and gender-matched population values | RCT, pre-post | Three wk of training (1) Control group (2) Static stretch of hip flexors for 2 min (<15% body weight) and rest ×2-min, repeat ×3, 2×/wk (3) Leg lowering exercise 5 min BID | TABLE 4. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Not Immediately Before Exercise Improves Performance | Outcome | Results | | Comments | | |--|---|----------------------------|----------------|---| | Sit and reach | ROM increased 9% on sit and reach test, no change in control | | | Only measured sit and reach and hip rotation for ROM. Authors state that these are majo | | Running economy at 70% VO ₂ peak (6 mph | Virtually identical running economy pre-post (results only given in | | | | | 2% grade for males, 5 mph at 2% grade for | figure) | | | predictors of running economy in | | females) | VO _{2peak} unchanged | | | cross-sectional research studies | | VO_{2peak} | · · · · | | | | | ROM | Leg-lowering group results not reported as not pertinent to this | | | Used same program as with the effects from | | Walking economy at 108 m/min at 108 m/min | study's question | | | acute stretching. ³² However, whereas the authors found improvements in economy of | | Running economy at 200 m/min | ROM hip extension increased only in stretching group | | | | | Trunk performance (same as training motion) | | | | motion with an acute bout of stretching, | | | | Pre | Post | there was no difference with 3 wk of | | | Walking economy | | | training | | | Stretch | $17.9 \pm 1.317.8 \pm 0.9$ |) | | | | Control | 17.9 ± 1.2 | 16.4 ± 2.2 | | | | Running economy | | | | | | Stretch | 39.5 ± 1.7 | 38.7 ± 1.7 | | | | Control | 39.3 ± 2.8 | 38.0 ± 2.7 | |