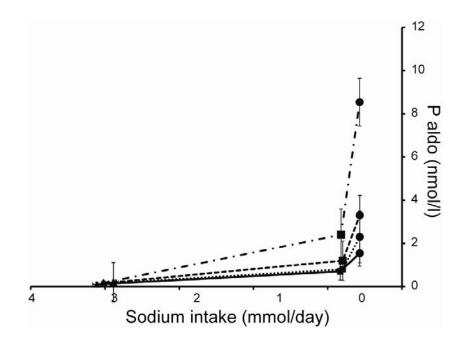
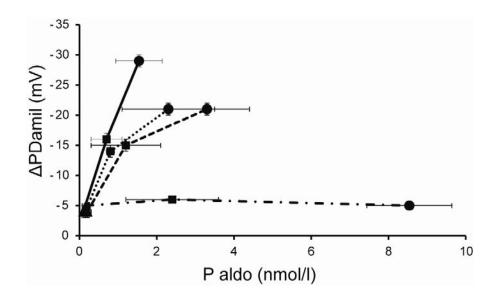

Supplementary Figure 1. Colon histology in $Scnn1a^{KO}$ mice

Light photomicrographs of representative distal colon sections from age-matched (2 months old) $Scnn1a^{Lox}$, $Scnn1a^{Het}$ and $Scnn1a^{KO}$ littermates (H&E-staining); n=3 animals/genotpye. Scale bar, 200 μ m.


Supplementary Figure 2. Normal colon histology and intestinal permeability in $Prss8^{KO}$ mice

(A) Light photomicrographs of representative proximal and distal colon sections from $Prss8^{Lox}$, $Prss8^{Het}$ and $Prss8^{KO}$ littermates stained with haematoxylin and eosin; for each genotype, 3 independent animals were analyzed. Scale bar, 200 µm (B) Measurement of intestinal permeability in $Prss8^{Lox}$ (n=8, closed circles), $Prss8^{Het}$ (n=8, half-open circles) and $Prss8^{KO}$ (n=10, open circles) mice. Horizontal bar indicates the average.


Supplementary Figure 3. Expression of ENaC subunits in kidney and distal colon of $Prss8^{KO}$ mice

(**A and B**), Quantification of α (left), β (middle) and γ ENaC mRNA transcript expression in (**A**) distal colon and (**B**) kidney by quantitative RT-PCR from $Prss8^{Lox}$ (white), $Prss8^{Het}$ (grey) and $Prss8^{KO}$ (black bar) mice. Results are expressed as the ratio of ENaC mRNA subunits to β -actin mRNA (n \leq 6 mice per group); *, P< 0.05. Representative immunoblot showing the expression of alpha (93kDa) (**C**), beta (95kDa) (**D**) and gamma ENaC (95kDa) (**E**) subunit and β -actin protein in scraped colon cells from $Prss8^{Lox}$, $Prss8^{Het}$ and knockouts $Prss8^{KO}$; (n=3 mice per group). (**F**) Quantification of α , β and γ ENaC protein in $Prss8^{Lox}$, $Prss8^{Het}$ and $Prss8^{KO}$ colon samples. β -actin expression is shown as loading control; in each experiment, 3 mice were used per group. Values are mean \pm S.E.M.

Supplementary Figure 4. Plasma aldosterone levels in response to salt intake in $Scnn1a^{KO}$ mice

Plasma aldosterone values were done from animals maintained on a high (\blacktriangle), regular (\blacksquare) or low (\bullet) salt diet. For each genotype, $Scnn1a^{Lox}$ mice (n= 6; —), $Scnn1a^{Het}$ (n= 7; ---), $Scnn1a^{Het}$ (n=6; …) and $Scnn1a^{KO}$, (n=7; -----) animals, the average P_{Aldo} values are plotted against the corresponding average sodium intake values (vertical and horizontal bars indicate S.E.M values).

Supplementary Figure 5. Mineralocorticoid resistance in $Scnn1a^{KO}$ mice

 ΔPD_{-Amil} and P_{Aldo} values were taken from the experiments summarized in Fig. 2 and 3. For each genotype ($Scnn1a^{Lox}$ (n= 6; —), $Scnn1a^{Het}$ (n= 7; —), $Scnn1a^{Hetc}$ (n=6; —) and $Scnn1a^{KO}$ (n=7; —), the average ΔPD_{amil} values are plotted against the corresponding average P_{aldo} values from animals maintained on a high (\triangle), regular (\blacksquare) or low (\bullet) salt diet (vertical and horizontal bars indicate S.E.M. values). Linear regression of the mean values revealed a significantly (P < 0.05) flatter slope in $Scnn1a^{KO}$ animals compared with the $Scnn1a^{Lox}$, $Scnn1a^{Het}$, $Scnn1a^{Hetc}$ mice.