Recruitment of patients and clinical investigation A total of 69 patients affected by sporadic (i.e. not familial), non-syndromic and non-congenital nephrotic syndrome (NS) referred to Meyer Children's Hospital of Florence (Italy) between 2000 and 2013 and who provided informed consent were included in the study (Supplementary Table 1). Only patients affected by NS that did not exhibit extra-renal symptoms, that did not have a familial history of renal disease or of consanguinity, and that did not have a congenital NS were included in this study. Steroid-resistance was defined as failure to achieve remission after 8 weeks of prednisone 60 mg/m²/day or 2 mg/kg/day for 4 weeks followed by 40 mg/m² or 1.5 mg/kg on alternate days for 4 weeks, according to Kidney Disease: Improving Global Outcomes (KDIGO) guidelines.¹ None of these patients exhibited a phenotype of late-responder to steroid treatment. Complete remission was defined as urine protein:creatinine ratio (uPCR) <200 mg/g or <1+ of protein on urine dipstick for 3 consecutive days; partial remission was defined as proteinuria reduction of 50% or greater from the presenting value and absolute uPCR between 200 and 2,000 mg/g; finally, no remission was defined as failure to reduce urine protein excretion by 50% from baseline or persistent excretion uPCR >2,000 mg/g, according to KDIGO guidelines.¹ On the basis of these criteria, we selected 31 cases of steroid-resistant NS (SRNS), as well as 38 patients with the same clinical phenotype but that were sensitive to steroid treatment. All information about clinical features, disease onset, response to treatment, histologic findings and final outcome were collected retrospectively. Relatives were either included prior to this study or requested to participate after the identification of potentially causative variants in the proband. The study protocol was approved by the local Ethics Committee of the Meyer Children's Hospital and informed written consent was obtained from the parents or legal guardians of each study participant.

Exon sequencing array design The probe design was made by Roche NimbleGen Inc. (Roche, Madison, Wisconsin, USA) in a solution based method to capture all coding exons and flanking regions of 46 genes. These genes comprised the 19 known genes responsible for SRNS and 27 candidate genes associated with onset of proteinuria in animal models and expressed in the glomerular filtration barrier (Supplementary Table 2A-B). The probe design comprised a total of 110,884 bases targeting 46 genes consisting of 610 coding exons.

DNA Sequencing DNA was extracted from peripheral blood using a QIAamp® DNA Mini Kit (Qiagen, Hilden, Germany). The DNA library were prepared and were hybridized to the exon sequencing array according to the manufacturer's protocol (NimbleGen Arrays User's Guide: 454 Optimized Sequence Capture). To characterize simultaneously different patients, Roche FLX Titanium MID-Adapter oligonucleotides were ligated to the ends of the libraries fragments. The enriched libraries were sequenced using the Roche 454 sequencing FLX platform according to the Roche manufacturer's protocols (emPCR Method Manual-Lib-L LV-Sequencing Method Manual). We obtained an average of 125,742 mapped reads *per* sample, resulting in an evenly distributed average depth of 71X *per* sample. On average, 84% of all bases were covered at least 10X. Among the 610 targeted exons, only 23 exons (4%) were poorly covered, due either to high GC content or the abundant presence of repetitive sequences. The poorly covered regions were successively resequenced by Sanger method. According to the literature,² the accuracy of our probe design was 95%.

Assembly and Variant Calling Reads were mapped to the reference human genome (UCSC build hg19) with the GS Mapper software version 2.6 (Roche Diagnostic, Basel, Switzerland). Variants were annotated with chromosome location, genomic coordinate, reference and variant nucleotide, absolute number and percentage of reads containing variant nucleotide, reference and variant amino acid, coding frame, gene name and overlap with a known single nucleotide polymorphism from dbSNP 135. Coverage statistics and mean depth were extracted from the mapping output files using custom scripts.

Identification of pathogenic variants In order to identify genetic variants with a possible pathogenic significance, the following criteria were applied: variants were either non-synonymous, short insertion/deletion or splice-site variants (60 bp splice acceptor, 60 bp splice donor); variants were not included in dbSNP135 unless they were reported in HGMD (<u>www.hgmd.cf.ac.uk</u>), were previously demonstrated to alter the function of the mutated protein or represented the second mutated allele in presence of a surely pathogenic variant;³ variants did not occur in healthy controls within the "1000 Genomes Project" database (<u>www.1000genomes.org</u>) at a frequency greater than 5%; variants did not occur within the Kaviar-hg19 database (<u>http://db.systemsbiology.net/kaviar/</u>) at a frequency greater than 5%; variants were not found in the "Exome Variant Server" of the "NHLBI Exome Sequencing Project (ESP)"

(http://evs.gs.washington.edu/EVS/, release version: v.0.0.10) at a frequency greater than 5%. Subsequently, a systematic classification scheme was applied using a combination of prediction programs. The missense variants were analyzed with the dedicated softwares, PolyPhen (http://genetics.bwh.harvard.edu/pph2/), and PMut (http://mmb.pcb.ub.es/PMut/PMut.jsp) in order to distinguish potentially damaging variants from those predicted to have neutral effect. Intronic variants localized ≤ 60 bp were analyzed with Netgene2 (http://genes.mit.edu/GENSCAN.html) and **BDGP** splice site prediction (http://www.fruitfly.org/seq_tools/splice.html web server). The in silico analysis was performed to assess the effect of sequence variants identified on structure and function of respectively encoded proteins. For the missense variants identified we used dedicated prediction tools such as PolyPhen-2 and PMut. PolyPhen-2 (Polymorphism Phenotyping v2) is a software which predicts possible impact of amino acid substitutions on the structure and function of human proteins using straightforward physical and evolutionary comparative considerations. Detailed results of the PolyPhen-2 analysis for a single variant query included:- the strength of the putative damaging effect of the variant classified as probably damaging, possibly damaging, or benign (assessed using the HumDiv-trained predictor, preferred for evaluating rare alleles, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection), -the multiple sequence alignment that displays a fixed 75-residue wide window surrounding the variant position, -3Dprotein structure loaded and zoomed into the mutation residue. PMut is a prediction tool based on the use of evolutionary and structure information with residue properties. All these informations are input to a neural network that provides the final prediction on whether the target mutation is pathological, or neutral. The comparison of the aminoacidic sequence of all newly identified variants with those of phylogenetically distant species was performed using CLUSTALW algoritm. On the basis of the results, the variants were classified as potentially pathogenic variants, variants of unknown clinical significance, or benign variants, in accordance with the interpretation guidelines of the American College of Medical Genetics and Genomics (ACMG).⁴⁻⁶

Sanger sequencing A total of 17 potentially pathogenic variants detected by 454 FLX analyzer were selected and confirmed by Sanger sequencing (Supplementary Table 4). Parental samples, if available, were also analyzed to determine whether the mutated allele had been transmitted.

Immunofluorescence and Confocal Microscopy Confocal microscopy was performed on 5-µm sections of frozen renal biopsies,⁷ using a Leica TCS SP5-II laser confocal microscope (Leica, Milan, Italy). The anti-podocin pAb (Abcam, Cambridge, UK) was used as primary antibody and Alexa Fluor goat anti-rabbit 488 was used as secondary antibody (Invitrogen). For the detection of nuclei, staining of cells with To-pro-3 (Molecular Probes from Invitrogen) was performed.

Statistical analysis Statistical analysis was performed using SPSS software (SPSS, Inc., Evanston, IL). Frequencies between groups were compared by χ^2 test, applying Yate's correction when appropriate. Between-group comparisons were made by means of Student t test for unpaired data or Mann–Whitney U-test owing to normal or nonparametric distribution. A p-value <0.05 was considered as statistically significant.

Patient	Туре	Age at onset	Gender	Ethnicity	Lenght of Follow-up	Time to ESRD	Age at Tx
Case 1	SRNS	3 yr	М	Caucasian	3 yr, 5 m	no	no
Case 2	SRNS	4 m	F	Caucasian	2 yr, 2 m	no	no
Case 3	SRNS	1 yr, 2 m	М	Caucasian	Caucasian 3 yr, 11 m 4 yr, 8 m		no
Case 4	SRNS	6 yr, 4 m	М	Caucasian	2 yr, 3 m	no	no
Case 5	SRNS	5 yr	F	Caucasian	10 yr	no	no
Case 6	SRNS	18 m	F	Caucasian	20 yr, 6 m	18 m	I:2 yr, 6 m II:8 yr
Case 7	SRNS	3 m	F	Caucasian	11 yr	3 yr	4 yr
Case 8	SRNS	7 yr, 7 m	F	Caucasian	6 yr, 5 m	8 yr, 9 m	11 yr, 11 m
Case 9	SRNS	3 yr, 8 m	F	Caucasian	9 m	yes	no
Case 10	SRNS	7 yr, 5 m	М	Tunisian	1 yr, 5 m	no	no
Case 11	SRNS	6 yr	М	Caucasian	5 yr, 8 m	no	no
Case 12	SRNS	9 yr	М	Brazilian	7 yr, 1 m	no	no
Case 13	SRNS	4 yr	F	Caucasian	4 yr, 5 m	no	no
Case 14	SRNS	5 yr, 5 m	F	Caucasian	15 yr, 3 m	16 yr, 6 m	19 yr, 7 m
Case 15	SRNS	2 yr, 3 m	М	Caucasian	8 yr, 11 m	11 yr	no
Case 16	SRNS	5 yr	М	Caucasian	6 yr	no	no
Case 17	SRNS	9 yr	F	Caucasian	7 yr	no	no
Case 18	SRNS	12 yr	М	Caucasian	9 yr	15 yr	17 yr
Case 19	SRNS	2 yr	F	Caucasian	16 yr	no	no
Case 20	SRNS	8 m	F	Moroccan	4 yr, 4 m	1 yr, 9 m	2 yr, 6 m
Case 21	SRNS	2 yr, 6 m	F	Caucasian	4 yr, 6 m	no	no
Case 22	SRNS	2 yr, 6 m	F	Caucasian	6 yr, 7 m	6 yr, 4 m	no
Case 23	SRNS	3 yr, 5 m	F	Caucasian	13 yr	5 yr, 6 m	5 yr, 9 m
Case 24	SRNS	2 yr, 8 m	М	Caucasian	4 yr	no	no
Case 25	SRNS	13 yr	F	Caucasian	7 yr	15 yr	15 yr
Case 26	SRNS	1 yr, 8 m	М	Caucasian	3 yr, 1 m	no	no
Case 27	SRNS	4 yr, 2 m	М	Caucasian	11 yr, 4 m	no	no
Case 28	SRNS	13 yr, 11 m	М	Caucasian	6 yr, 6 m	no	no
Case 29	SRNS	13 yr, 8 m	F	Caucasian	7 yr	no	no
Case 30	SRNS	15 yr	М	Caucasian	4 yr, 6 m	no	no
Case 31	SRNS	9 yr, 6 m	F	Caucasian	1 yr	no	no
Case 32	SSNS	4 yr, 5 m	F	Caucasian	7 yr, 7 m	no	no
Case 33	SSNS	7 yr, 8 m	М	Caucasian	7 yr, 3 m	no	no
Case 34	SSNS	16 m	F	Caucasian	7 yr, 8 m	no	no
Case 35	SSNS	3 yr, 3 m	F	Caucasian	7 yr, 4 m	no	no
Case 36	SSNS	3 yr, 2 m	F	Moroccan	11 yr, 8 m	no	no
Case 37	SSNS	5 yr, 2 m	М	Caucasian	4 yr, 7 m	no	no
Case 38	SSNS	2 yr, 9 m	F	Caucasian	2 yr, 6 m	no	no
Case 39	SSNS	4 yr	М	Moroccan	2 yr, 3 m	no	no
Case 40	SSNS	3 yr, 5 m	F	Caucasian	7 yr, 4 m	no	no
Case 41	SSNS	3 yr, 5 m	М	Caucasian	3 yr, 7 m	no	no
Case 42	SSNS	6 yr, 5 m	М	Caucasian	11 m	no	no
Case 43	SSNS	11 yr, 6 m	М	Caucasian	4 yr, 10 m	no	no
Case 44	SSNS	3 yr	F	Chinese	9 yr, 11 m	no	no
Case 45	SSNS	10 yr, 3 m	М	Chinese	5 yr, 7 m	no	no
Case 46	SSNS	2 yr, 1 m	М	Caucasian	4 yr, 5 m	no	no
Case 47	SSNS	8 yr, 8 m	М	Albanian	7 yr, 5 m	no	no
Case 48	SSNS	5 yr, 7 m	М	Caucasian	9 m	no	no
Case 49	SSNS	1 yr, 9 m	М	Caucasian	8 m	no	no
Case 50	SSNS	2 yr	F	Caucasian	5 yr, 9 m	no	no
Case 51	SSNS	4 yr, 5 m	М	Indian	8 yr, 1 m	no	no
Case 52	SSNS	2 yr, 9 m	F	Caucasian	3 yr, 4 m	no	no
Case 53	SSNS	7 ys, 5 m	F	Senegalese	1 yr,	no	no

Case 54	SSNS	10 yr, 11 m	F	CapeVerdean	6 m	no	no
Case 55	SSNS	3 yr, 4 m	М	Caucasian	2 yr, 8 m	no	no
Case 56	SSNS	3 yr, 6 m	F	Caucasian	2 yr, 9 m	no	no
Case 57	SSNS	2 yr, 11 m	М	Caucasian	1 yr, 4 m	no	no
Case 58	SSNS	10 yr	М	Caucasian	10 m	no	no
Case 59	SSNS	2 yr, 6 m	М	Macedonian	13 yr, 2 m	no	no
Case 60	SSNS	3 yr, 2 m	F	Caucasian	8 yr, 9 m	no	no
Case 61	SSNS	9 yr, 2 m	М	Caucasian	7 yr	no	no
Case 62	SSNS	2 yr, 1 m	F	Caucasian	1 yr, 5 m	no	no
Case 63	SSNS	2 yr, 9 m	М	Caucasian	2 yr	no	no
Case 64	SSNS	5 yr, 11 m	М	Caucasian	2 yr, 3 m	no	no
Case 65	SSNS	4 yr, 5 m	М	Chinese	10 m	no	no
Case 66	SSNS	3 yr, 2 m	М	Caucasian	2 yr, 8 m	no	no
Case 67	SSNS	4 yr, 11 m	М	Caucasian	3 m	no	no
Case 68	SSNS	2 yr, 7 m	М	Caucasian	2 yr, 7 m	no	no
Case 69	SSNS	4 yr, 1 m	М	Caucasian	4 yr	no	no

Supplementary Table 1. Clinical profile of patients. SRNS, steroid-resistant nephrotic syndrome; SSNS, steroid-sensitive nephrotic syndrome; ESRD, end-stage renal disease; Tx, transplant; yr, years; m, months; M, male; F, female.

Gene	Protein	Locus	Exons	RefSeq	Reference
WT1	Wilms tumor	chr11:32409325-32457087	10	NM_024426	8
LMX1B	LIM homeobox transcription factor 1, beta	chr9:129376748-129463311	8	NM_002316	9-10
NPHS1	nephrin	chr19:36316274-36342739	29	NM_004646	11
NPHS2	podocin	chr1:179519677-179545084	8	NM_014625	12
CD2AP	CD2-associated protein	chr6:47445525-47594994	18	NM_012120	13
ACTN4	actinin, alpha 4	chr19:39138327-39221170	21	NM_004924	14-15
INF2	inverted formin 2	chr14:105155943-105185947	23	NM_022489	16
ITGA3	integrin alpha 3	chr17:48133340-48167848	26	NM_002204	17
TRPC6	transient receptor potential cation channel,6	chr11:101322296-101454659	13	NM_004621	18
LAMB2	laminin, beta 2	chr3:49158548-49170599	33	NM_002292	19
PLCE1	phospholipase C, epsilon 1	chr10:95753746-96088146	32	NM_016341	20
SCARB2	scavenger receptor class B, member 2	chr4:77079894-77135035	12	NM_005506	21
CoQ2	para-hydroxybenzoate- polyprenyltransferase,	chr4:84184979-84205964	7	NM_015697	22
PDSS2	prenyl diphosphate synthase, subunit 2	chr6:107473761-107780779	8	NM_020381	23
SMARCAL1	SWI/SNF-related matrix-associated	chr2:217277473-217347772	18	NM_001127207	24
ZMPSTE24	zinc metallo-peptidase STE24	chr1:40723733-40759855	10	NM_005857	25
МҮН9	myosin, heavy polypeptide 9, non- muscle	chr22:36677324-36784063	42	NM_002473	26
PTPRO	receptor-type protein tyrosine phosphatase O	chr12:15475487-15750335	27	NM_030667	27
MYO1E	myosin IE	chr15:59428564-59665071	28	NM_004998	28

Supplementary Table 2A. List of known genes responsible for nephrotic syndrome included in the sequencing array.

Gene	Protein	Locus	Exons	RefSeq	Reference
WTIP	Wilms tumor 1 interacting protein	chr19:34972880-34992084	10	NM_001080436	29
BASP1	brain abundant, membrane attached signal protein	chr5:17217750-17276935	2	NM_006317	30
PAX2	paired box protein 2	chr10:102505468-102589697	10	NM_003990	31
LDB1	LIM domain binding 1	chr10:103867327-103880210	11	NM_001113407	32
TCF21	transcription factor 21	chr6:134210259-134213391	2	NM_003206	33-34
MAFB	transcription factor MAFB	chr20:39314519-39317876	1	NM_005461	35
FOXC2	forkhead box C2	chr16:86600857-86602535	1	NM_005251	36
CITED2	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	chr6:139693397-139695785	2	NM_006079	37
NF-Kb1	nuclear factor kappa-B, subunit 1	chr4:103422486-103538458	24	NM_003998	38
SMAD7	SMAD family member 7	chr18:46446224-46477081	4	NM_005904	38
TGFB	transforming growth factor, beta 1	chr19:41836651-41859816	7	NM_000660	38-39
ZHX1	zinc fingers and homeoboxes 1	chr8:124260697-124286547	4	NM_007222	40
ZHX2	zinc fingers and homeoboxes 2	chr8:123793901-123986755	4	NM_014943	40
ZHX3	zinc fingers and homeoboxes 3	chr20:39807089-39928739	4	NM_015035	40
RBPJ-K	recombining binding protein suppressor of hairless	chr4:26322448-26433278	11	NM_203284	41
SYNPO	synaptopodin	chr5:150020220-150038792	3	NM_007286	42
PALLD	palladin	chr4:169418217-169849607	21	NM_016081	43
ITGB1BP1	integrin cytoplasmic domain- associated protein 1	chr2:9545823-9563643	7	NM_004763	44-45
CTSL1	cathepsin L1	chr9:90340974-90346382	8	NM_145918	46

KIRREL	kin of IRRE like protein1	chr1:157963063-158065842	15	NM_018240	47
KIRREL3	kin of IRRE like protein 3	chr11:126293397-126870766	16	NM_032531	48
PODXL	podocalyxin	chr7:131185023-131241376	8	NM_005397	49
CoQ10A	coenzyme Q10 homolog A	chr12:56660642-56664748	5	NM_144576	50
CoQ10B	coenzyme Q10 homolog B	chr2:198318231-198339851	5	NM_025147	50
CD151	CD151 antigen	chr11:832952-838834	9	NM_004357	51
LMNA	lamin A	chr1:156084461-156109878	12	NM_170707	52
NOTCH1	notch1	chr9:139388897-139440238	34	NM_017617	53

Supplementary Table 2B. List of candidate genes associated with onset of proteinuria in animal models and expressed in the glomerular filtration barrier, included in the sequencing array.

D. 41	C	D-41-1	Т	Immunosuppressive drugs								Domination		
Patient	Gene	Pathol	Type	CnIs	R	CF	R	MMF	R	Rtx	R	KA5-15	к	Remission
Case 1	NPHS2	MCD	SRNS	0		1	0	0		0		1	1	С
Case 2	NPHS2	no	SRNS	0		0		0		0		1	0	Ν
Case 3	NPHS2	FSGS	SRNS	0		0		0		0		1	0	Ν
Case 4	NPHS2	FSGS	SRNS	0		0		0		0		1	1	Р
Case 5	NPHS2	FSGS	SRNS	1	0	1	0	0		0		1	0	N
Case 6	PLCE1	FSGS	SRNS	0		1	0	0		0		1	0	Ν
Case 7	PLCE1	DMS	SRNS	0		0		0		0		1	0	Ν
Case 8	ACTN4	FSGS	SRNS	1	0	1	0	0		0		1	0	N
Case 9	ACTN4	FSGS	SRNS	1	0	0		0		0		0		Ν
Case 10	LMX1B	MCD	SRNS	1	0	0		0		0		1	1	Р
Case 11	none	FSGS	SRNS	1	1	1	0	1	0	1	1	1	1	Р
Case 12	none	MCD	SRNS	1	1	1	0	0		0		0		C
Case 13	none	FSGS	SRNS	0		1	1	0		0		1	1	C
Case 14	none	FSGS	SRNS	1	0	1	0	0		1	0	1	0	N
Case 15	none	FSGS	SRNS	1	0	1	0	1	0	0	0	1	0	N
Case 16	none	MCD	SRNS	1	1	0		0		0		0		С
Case 17	none	FSGS	SRNS	1	0	1	0	0		1	0	1	0	Ν
Case 18	none	FSGS	SRNS	1	0	1	0	0		0		1	0	Ν
Case 19	none	FSGS	SRNS	0		0		0		0		1	0	Ν
Case 20	none	DMS	SRNS	0		0		0		0		1	0	Ν
Case 21	none	FSGS	SRNS	1	0	1	Ø	0		0		1	1	С
Case 22	none	MCD	SRNS	1	1	0		1	0	1	0	1	0	Ν
Case 23	none	FSGS	SRNS	1	0	1	0	0		0		1	0	Ν
Case 24	none	FSGS	SRNS	0		1	0	1	0	0		1	1	Р
Case 25	none	FSGS	SRNS	0		0		0		1	0	1	0	Ν
Case 26	none	no	SRNS	1	0	0		0		1	1	0		С
Case 27	none	FSGS	SRNS	1	1	1	0	1	1	0		1	1	С
Case 28	none	DMS	SRNS	1	1	1	0	0		0		1	1	Р
Case 29	none	MCD	SRNS	1	1	0		0		0		0	0	С
Case 30	none	no	SRNS	0		1	1	0		0		1	1	С
Case 31	none	DMS	SRNS	1	1	0		0		0		1	1	Р
Case 32	none	no	SSNS	1	1	0		0		0		0		С
Case 33	none	no	SSNS	1	1	0		1	1	0		0		С
Case 34	none	no	SSNS	0		0		0		0		0		С
Case 35	none	no	SSNS	1	1	0		1	Ø	0		0		С
Case 36	none	no	SSNS	1	1	1	Ø	1	1	1		0		С
Case 37	none	no	SSNS	0		0		0		0		0		С
Case 38	none	no	SSNS	0		0		0		0		0		С
Case 39	none	no	SSNS	1		0		0		0		0		С
Case 40	none	no	SSNS	0		0		0		0		0		С
Case 41	none	no	SSNS	1	1	1	1	0		0		0		С
Case 42	none	no	SSNS	1	—	0		0		0		0		С
Case 43	none	no	SSNS	1	0	1	1	1	0	1		0		С
Case 44	none	no	SSNS	1	1	0		0		0		0		С
Case 45	none	no	SSNS	1	0	1	1	1	1	0		0		С
Case 46	none	no	SSNS	0		0		0		1	_	0		С
Case 47	none	no	SSNS	1	1	0		0		1		0		С
Case 48	none	no	SSNS	0		0		0		0		0		С
Case 49	none	no	SSNS	0		0		0		0		0		С
Case 50	none	no	SSNS	1	1	0		0		0		0		С
Case 51	none	no	SSNS	0		0		0		0		0		С

Case 52	none	no	SSNS	1	1	0		0	0	0	С
Case 53	none	no	SSNS	0		0		0	0	0	С
Case 54	none	no	SSNS	0		0		0	0	0	С
Case 55	none	no	SSNS	0		0		0	0	0	С
Case 56	none	no	SSNS	1	1	0		0	0	0	С
Case 57	none	no	SSNS	0		1	_	0	0	0	С
Case 58	none	no	SSNS	0		0		0	0	0	С
Case 59	none	no	SSNS	1	1	1	1	0	0	0	С
Case 60	none	no	SSNS	1	1	1	1	0	0	0	С
Case 61	none	no	SSNS	1	1	0		0	0	0	С
Case 62	none	no	SSNS	1	1	0		0	0	0	С
Case 63	none	no	SSNS	0		1	1	0	0	0	С
Case 64	none	no	SSNS	0		1	1	0	0	0	С
Case 65	none	no	SSNS	1	1	0		0	0	0	С
Case 66	none	no	SSNS	0		1	1	0	0	0	С
Case 67	none	no	SSNS	0		0		0	0	0	С
Case 68	none	no	SSNS	0		0		0	0	0	C
Case 69	none	no	SSNS	0		0		0	0	0	С

Supplementary Table 3. Genotype in relation to pathology, response to treatment and outcome in patients affected by SRNS and SSNS. Pathol, pathology; FSGS, focal segmental glomerulosclerosis; MCD, minimal-change disease; DMS, diffuse mesangial sclerosis; SRNS, steroid-resistant nephrotic syndrome; SSNS, steroid-sensitive nephrotic syndrome; CnIs, calcineurin inhibitors; CF, cyclophosphamide; MMF, mycophenolate mofetil; Rtx, rituximab; RAS-Is, renin-angiotensin system inhibitors; R, type of response; 1, response; 0, no response; —, response not evaluable because the drug has been started too recently; Ø, suspension of the drug because of the onset of major side effects; C, complete remission; P, partial remission; N, no remission.

Gene	Forward	Reverse
ACTN4 ex4	5'TAACGACCTTCTGCCCTCTG-3'	5'-CAGGAAGAGGCTTGAAGCAT-3'
ACTN4 ex8	5'-TCACTCTGCAGGTCCCTCTC-3'	5'-CGTCTGCAAGAGAAATGAGG-3'
PLCE1 ехб	5'GAATTTAGGCTCCTTGCTGTAAAC-3'	5'-GACAGGGCCTGATGAGACAG -3'
PLCE1ex7	5'-TCCAGGAAAAGCTCCTTGAA-3'	5'-GTGGCAGGTTTTGATGAGGT-3'
PLCE1ex17	5'-CGA GGC TTT ATC TCC AGG TG -3'	5'-AACAGAGCGAGAACCCG -3'
PLCE1ex19	5'-GGCATTGATTGTATGTTTTCCTT-3'	5'-TAGGCACACTGCCTTTTCAT-3'
LMX1B ex6	5'-GCCAGAAGACTACGGTCCAG-3'	5'-CTTGGTGGAAGGCTTTTGAG-3'
NPHS2 ex1	5'-GCAGCGACTCCACAGGGACT-3'	5'-GAACCTGAGCATCCAGCAAT-3'
NPHS2 ex3	5'-TCTTATGCCAAGGCCTTTTG-3'	5'-CCAATTCTCTCTCTTGGCTACC-3'
NPHS2 ex4	5'-CCCAGTTTGCTGGGATAATC-3'	5'-CCCTAGATTGCCTTTGCACT-3'
NPHS2 ex5	5'-GACCTGGTTTGGAATCAACTG-3'	5'-GCTATGAGCTCCCAAAGGGA-3'
NPHS2 ex8A	5'-GTCTCCCCAGCTCAAGACC-3'	5'-GGATGGTGCATTGTGACTTC-3'

Supplementary Table 4. Primer Sequences. Primer sequences used to confirm potentially pathogenic variants identified with next generation sequencing.

Supplementary Figure 1. Immunofluorescence staining for podocin on human biopsies of SRNS patients with *NPHS2* mutations. Representative micrograph of kidney sections stained with podocin (green) on human biopsies of children affected by SRNS with potentially pathogenic variants in *NPHS2* gene, as assessed by confocal microscopy. A healthy glomerulus is shown as a comparison. To-pro-3 counterstains nuclei (blue). Bars 20µm.

NPHS2	CASE 5 Hono Danio Ratus Hus Orcinus Taeniopygia Nomascus	Scionphe KVSPH take acknasses infinae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli kvsph take gekaasse i krimae i scippa av olry lift losis tekp styvi p i p foli	PLCE	CASE 6 Ratus Hus Callithrix Callithrix Canis Bos Danio Dicentrarchus	
PLCE1	CASE 7 Rattus Humo Callithrix Canis Bos Danio Dicentrarchus	Chitaga SSHNTYLTCHQLKGESSVELVSQVLLQGCRSTELDCUD GDDGMPILYHGHTLTTKLPFK SSHNTYLTCHQLKGESSVELVSQVLLQGCRSTELDCUD GDDGMPILYHGHTLTTKLPFK SSHNTYLTCHQLKGESSVELVSQVLLQGCRSVELDCUD GDDGMPILYHGHTLTTKLPFK SSHNTYLTCHQLKGESSVELVSQVLLQGCRSVELDCUD GDDGMPILYHGHTLTTKLPFK SSHNTYLTCHQLKGESSVELVSQVLLQGCRSVELDCUD GDDGMPILYHGHTLTTKLPFK SSHNTYLTCHQLKGESSVELVSQVLLQGCRSVELDCUD GDDGMPILYHGHTLTTKLPFK	ACTN4	CASE 8 Homo Callithrix Bos Rattus Mus Gallus Xenopus	
ACTN4	CASE 9 Homo Callithrix Bos Ratus Hus Gallus Xenopus		LMX1E	CASE 10 Canis Sus Homo Hacaca Hus Xenopus Danio	

Supplementary Figure 2. Comparison of the aminoacidic sequences of all newly identified variants (*NPHS2, PLCE1, ACTN4* and *LMX1B*) with those of phylogenetically distant species, illustrating the degree of conservation of the altered amino acid residue.

Supplementary Figure 3. X-ray exams of patients with *LMX1B* **mutation (case 10).** Radiologic examinations showing lack of iliac horns (upper left), bilateral normal kneecaps (down left, arrows) and bilateral lack of ossification of the proximal radial epiphysis (*).

Supplementary bibliography

1. KDIGO Clinical Practice Guideline for Glomerulonephritis. http://www.kdigo.org. June 2012

2. McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, Feather S, Gilbert RD, Krischock L, Jones C, Sinha MD, Webb NJ, Christian M, Williams MM, Marks S, Koziell A, Welsh GI, Saleem MA e Group, RADAR the UK SRNS Study. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. *Clin J Am Soc Nephrol* 8: 637-648, 2013

3. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. *Sci Transl Med*, 3:65ra4, 2011

4. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, Lyon E, Ward BE e Committee, Molecular Subcommittee of the ACMG Laboratory Quality Assurance. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. *Genet Med*, 10: 294-300, 2008

5. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. *N Engl J Med* 369: 1502-1511, 2013

6. Jacob HJ. Next-generation sequencing for clinical diagnostics. N Engl J Med 369: 1557-1558, 2013

7. Angelotti ML1, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, Parente E, Gacci M, Carini M, Rotondi M, Fogo AB, Lazzeri E, Lasagni L, Romagnani P. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. *Stem Cells* 30: 1714-1725, 2012

8. Mucha B, Ozaltin F, Hinkes BG, Hasselbacher K, Ruf RG, Schultheiss M, Hangan D, Hoskins BE, Everding AS, Bogdanovic R, Seeman T, Hoppe B, Hildebrandt F: Mucha B, Ozaltin F, Hinkes BG: Mutations in the Wilms' tumor 1gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. *Pediatr Res* 59: 325–331, 2006

Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B: Mutations in *LMX1B* cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. *Nat Genet* 19: 47–50, 1998

10. Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L, Lee B, Johnson RL: Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. *Nat Genet* 19: 51–55, 1998

11. Philippe A, Nevo F, Esquivel EL, Reklaityte D, Gribouval O, Tête MJ, Loirat C, Dantal J, Fischbach M, Pouteil-Noble C, Decramer S, Hoehne M, Benzing T, Charbit M, Niaudet P, Antignac C: Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. *J Am Soc Nephrol* 19: 1871-1878, 2008

12. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C: NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. *Nat Genet* 24:349–354, 2000

13. Gigante M, Pontrelli P, Montemurno E, Roca L, Aucella F, Penza R, Caridi G, Ranieri E, Ghiggeri GM, Gesualdo L: CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). *Nephrol Dial Transplant* 24: 1858–1864, 2009

14. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodríguez-Pérez JC, Allen PG, Beggs AH, Pollak MR: Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. *Nat Genet* 24:251-256 2000

15. Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS, Appel GB, Pollak MR: Mutational and Biological Analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. *J Am Soc Nephrol* 16:3694-36701 2005

Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR: Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. *Nat Genet* 42:72–77, 2010

17. Nicolaou N, Margadant C, Kevelam SH, Lilien MR, Oosterveld MJ, Kreft M, van Eerde AM, Pfundt R, Terhal PA, van der Zwaag B, Nikkels PG, Sachs N, Goldschmeding R, Knoers NV, Renkema KY, Sonnenberg A: Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. *J Clin Invest* 122: 4375-4387, 2012 18. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB: A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. *Science* 308:1801–1804, 2005

19. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dotsch J, Rascher W,

Maruniak-Chudek I, Lennert T, Neumann LM, Reis A: Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. *Hum Mol Genet* 13: 2625–2632, 2004

20. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Muller D, Sorli CS, Bunney TD,

KatanM, Liu J, AttanasioM, O'Toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nurnberg P, Hildebrandt F: Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. *Nat Genet* 38: 1397–1405, 2006

21. Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, Lullmann-Rauch R, Blanz J, Zhang KW, Stankovich J, Kalnins RM, Dowling JP, Andermann E, Andermann F, Faldini E,

D'Hooge R, Vadlamudi L, Macdonell RA, Hodgson BL, Bayly MA, Savige J, Mulley JC, Smyth GK, Power DA, Saftig P, Bahlo M: Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. *Am J Hum Genet* 82: 673–684, 2008

22. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, Montini G, Ghiggeri GM, Murer L, Barisoni L, Pastore A, Muda AO, Valente ML, Bertini E, Emma F: COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. *J Am Soc Nephrol* 18: 2773–2780, 2007

23. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M: Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. *Am J Hum Genet* 79: 1125–1129, 2006

24. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, Andre JL, Bogdanovic R, BurguetA, Cockfield S, Cordeiro I, Frund S, Illies F, JosephM, Kaitila I, Lama G, Loirat C, McLeod DR,Milford DV, Petty EM, Rodrigo F, Saraiva JM, Schmidt B, Smith GC, Spranger J, Stein A, Thiele H, Tizard J, Weksberg R, Lupski JR, Stockton DW: Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. *Nat Genet* 30: 215–220, 2002

25. Agarwal AK, Zhou XJ, Hall RK, Nicholls K, Bankier A, Van Esch H, Fryns JP, Garg A: Focal segmental glomerulosclerosis in patients with mandibuloacral dysplasia owing to ZMPSTE24 deficiency. *J Investig Med* 54:208–213, 2006

26. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA: MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. *Nat Genet* 40: 1175–1184, 2008

27. Ozaltin F, Ibsirlioglu T, Taskiran EZ, Baydar DE, Kaymaz F, Buyukcelik M, Kilic BD, Balat A, Iatropoulos P, Asan E, Akarsu NA, Schaefer F, Yilmaz E, Bakkaloglu A: Disruption of

PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet 89:139-147, 2011

28. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, Buelli S, Tomasoni S, Piras R, Krendel M, Bettoni S, Morigi M, Delledonne M, Pecoraro C, Abbate I, Capobianchi MR, Hildebrandt F, Otto E, Schaefer F, Macciardi F, Ozaltin F, Emre S, Ibsirlioglu T, Benigni A, Remuzzi G, Noris M: MYO1E mutations and childhood familial focal segmental glomerulosclerosis. *N Engl J Med* 365: 295–306, 2011 29. Srichai MB, Konieczkowski M, Padiyar A, Konieczkowski DJ, Mukherjee A, Hayden PS, Kamat S, El-Meanawy MA, Khan S, Mundel P, Lee SB, Bruggeman LA, Schelling JR, Sedor JR: A WT1 coregulatorcontrols podocyte phenotype by shuttling between adhesion structures andnucleus. *J Biol Chem* 279: 14398-14408, 2004

30. Green LM, Wagner KJ, Campbell HA, Addison K, Roberts SG: Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. *Nucleic Acids Res* 37: 431-440, 2009

31. Wagner KD, Wagner N, Guo JK, Elger M, Dallman MJ, Bugeon L, Schedl A: An inducible mouse model for PAX2-dependent glomerular disease: insights into a complex pathogenesis. *Curr Biol* 16: 793-800, 2006

32. Suleiman H, Heudobler D, Raschta AS, Zhao Y, Zhao Q, Hertting I, Vitzthum H, Moeller MJ, Holzman LB, Rachel R, Johnson R, Westphal H, Rascle A, Witzgall R: The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. *Dev Biol* 304: 701-712, 2007 33. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J: The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. *Development* 126: 5771-5783, 1999 34. Cui S, Li C, Ema M, Weinstein J, Quaggin SE: Rapid isolation of glomeruli coupled with gene expression profiling identifies downstream targets in Pod1 knockout mice. *J Am Soc Nephrol* 16: 3247-3255, 2005

35. Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C, Yokomizo T, Esaki R, Kuroda E, Yoh K, Kudo T, Nagata M, Greaves DR, Engel JD, Yamamoto M, Takahashi S: MafB is essential for renal development and F4/80 expression in macrophages. *Mol Cell Biol.* 26: 5715-5727, 2006

36. Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y, Samuelsson T, Mostad P, Lundin S, Miura N, Sado Y, Alitalo K, Quaggin SE, Tryggvason K, Betsholtz C: Large-scale identification of genes implicated in kidney glomerulus development and function. *EMBO J* 25: 1160-1174, 2006

37. Rascle A, Suleiman H, Neumann T, Witzgall R: Role of transcription factors in podocytes. *Nephron Exp Nephrol* 106: e60-66, 2007

38. Chugh SS: Transcriptional regulation of podocyte disease. Transl Res 149: 237-242, 2007

39. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, Böttinger EP: Apoptosis in podocytes induced by TGF-beta and Smad7. *J Clin Invest* 108: 807-816, 2001

40. Liu G, Clement LC, Kanwar YS, Avila-Casado C, Chugh SS: ZHX proteins regulate podocyte gene expression during the development of nephrotic syndrome. *J Biol Chem* 281: 39681-39692, 2006

41. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K: The Notch pathway in podocytes plays a role in the development of glomerular disease. *Nat Med* 14: 290-298, 2008

42. Asanuma K., Kim K., Oh J., Giardino L., Chabanis S., Faul C., Reiser J., Mundel P: Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. *J. Clin. Invest* 115: 1188-1198, 2005

43. Mykkänen OM, Grönholm M, Rönty M, Lalowski M, Salmikangas P, Suila H, Carpén O: Characterization of human palladin, a microfilament-associated protein. *Mol Biol Cell* 12: 3060-3073, 2001
44. Zhang XA., Hemler ME: Interaction of the integrin beta1 cytoplasmic domain with ICAP-1 protein. *J. Biol. Chem.* 274: 11-19, 1999

45. Chang DD., Hoang BQ., Liu J., Springer TAJ: Molecular basis for interaction between Icap1alpha PTB domain and beta 1 integrin." *Biol. Chem* 277: 8140-8145, 2002

46. Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re E C, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J: Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. *J. Clin. Invest* 117: 2095-2104, 2007

47. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, Mathur BN, Turner CA, Geske R, Montgomery CA, Starbuck M, Brandt M, Gupta A, Ramirez-Solis R, Zambrowicz BP, Powell DR: Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. *Mol Cell Biol* 21: 4829-4836, 2001

48. Sellin L, Huber TB, Gerke P, Quack I, Pavenstädt H, Walz G: NEPH1 defines a novel family of podocin interacting proteins. *FASEB J* 17: 115-117, 2003

49. Takeda T, McQuistan T, Orlando RA, Farquhar MG: Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. *J Clin Invest* 108: 289-301, 2001

50. Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A:The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. *J. Biol. Chem* 280: 42627-42635, 2005

51. Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee D J: CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. *Blood* 104: 2217-2223, 2004 52. Imachi H, Murao K, Ohtsuka S, Fujiwara M, Muraoka T, Hosokawa H, Ishida T: A case of Dunnigan-type familial partial lipodystrophy (FPLD) due to lamin A/C (LMNA) mutations complicated by end-stage

renal disease. Endocrine 35: 18-21, 2009

53. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K: The Notch pathway in podocytes plays a role in the development of glomerular disease. *Nat Med* 14: 290-298, 2008