Figure S1

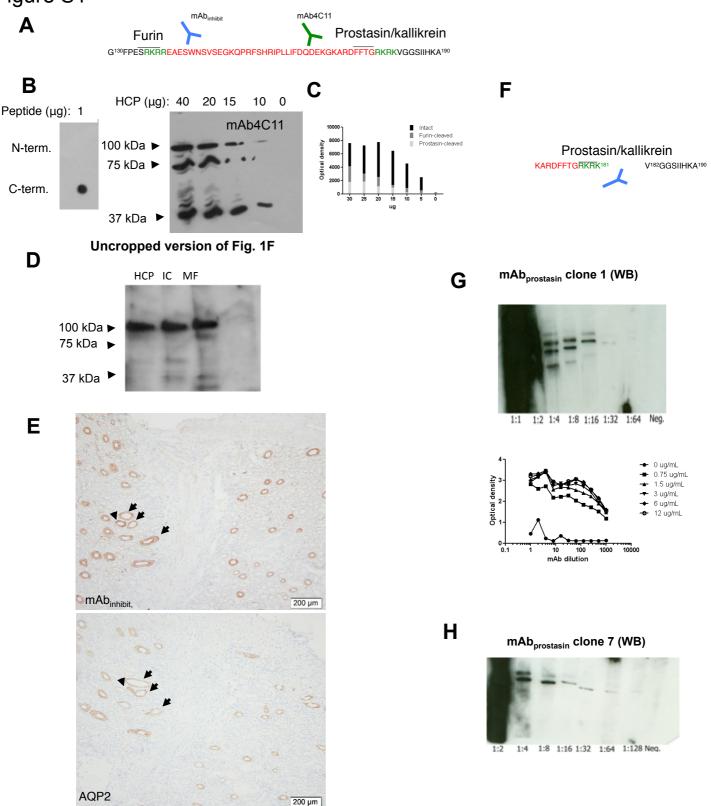
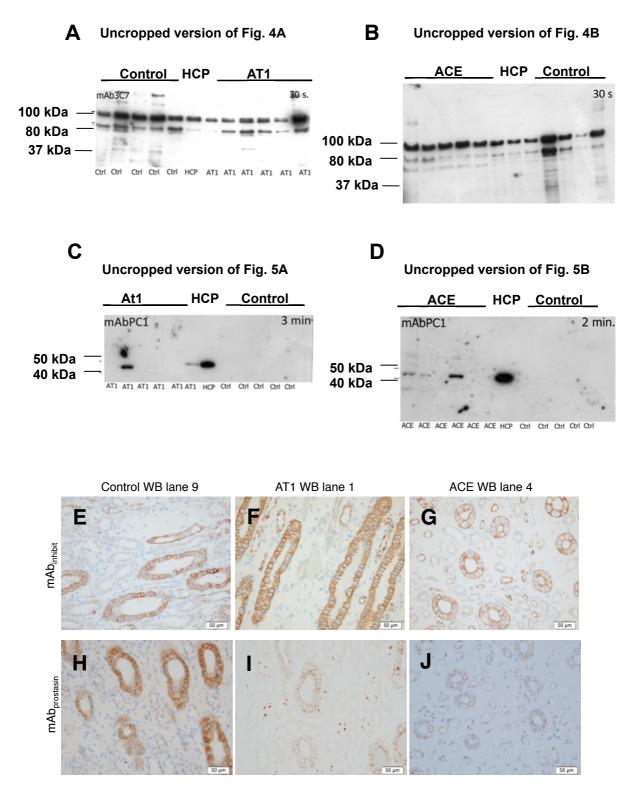



Figure S1. Characterization of mAb_{inhibit} and mAb_{prostasin} (A) The primary sequence from residue 130 – 190 of the human γ ENaC subunit is shown. The protease cleavage sites for Furin and Prostasin/kallikrein are indicated with green. The monoclonal antibody mAb_{inhibit} (blue) is directed against the N-terminal half of the inhibitory peptide (red), and mAb4c11 (green) is directed against the C-terminal half. (B) Dot blot showing that mAb4c11 only reacts with the C-terminal half of the inhibitory tract peptide (C-term), but not the N-terminal (N-term). Western blot of HCP using mAb4c11 directed against the C-terminal half of YENaC shows identical immunoreactivity as mAb_{inhbit} directed against the N-terminal half. (C) Densitometric analysis of the western blots of human kidney cortex samples in Figure 1D. (D) Uncropped version of the western blot shown in Figure 1F. (E) Serial sections of human kidney displayed labeling of the same epithelial structures with mAb_{inhibit} (top) and AQP2 (bottom). The arrows indicate examples of tubules stained in both sections. (F) The primary sequence from residue 170 - 190 of the human YENaC subunit is shown. Prostasin cleaves after residue 181 (green), generating a neo-epitope. mAb_{prostasin} (blue) is raised against this epitope. Two independent clones of mAb_{prostasin} (G and H) showed similar immunoreactivity in western blot of human kidney cortex in experiments with serial dilution of the primary antibody. (G) ELISA with the immunogenic peptide and mAb_{prostasin} using different concentration of the immunogenic peptide using various mAb concentrations.

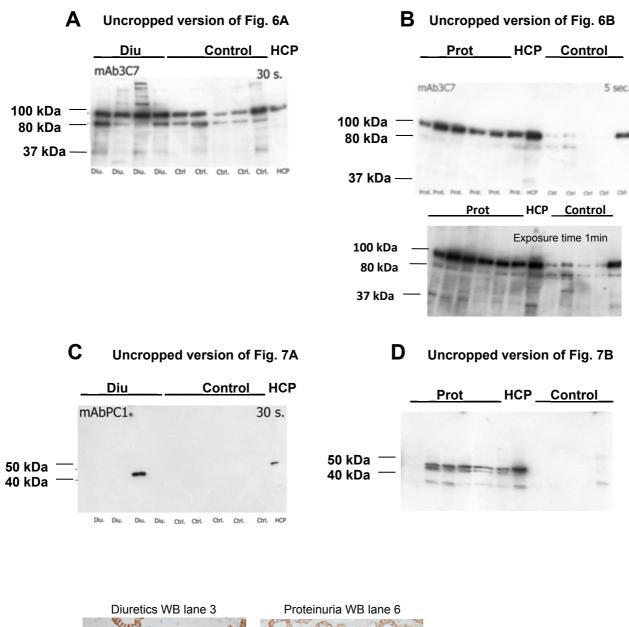

Figure S2

Figure S2. Western blots and IHC of kidney tissue from patients treated with AT1 receptor antagonist and ACE inhibitors.

(A and B) Uncropped version of the western blots shown in Figure 4A and B, respectively (C and D) Uncropped version of the western blots shown in Figure 5A and B, respectively. $mAb_{inhibit}$ staining of the medullary regions of kidney sections from (E) control, (F) AT1 blocker and (G) ACE inhibitor treated patients. $mAb_{prostasin}$ staining of medullary regions of kidney sections from (H) control, (I) AT1 blocker and (J) ACE inhibitor treated patients. Scale bar 50 μ m.

Figure S3

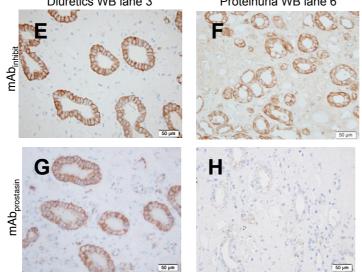


Figure S3. Western blot and IHC of kidney tissue from patients treated with diuretics and patients with proteinuria (A and B) Uncropped version of the western blots shown in Figure 6A and B, respectively. Additionally, a longer exposure time (1 min) is shown for the western blot in Figure 6B. (C and D) Uncropped version of the western blots shown in Figure 7A and B, respectively. mAb_{inhibit} staining of the medullary regions of kidney sections from (E) diuretics treated and (F) proteinuric patients. mAb_{prostasin} staining of medullary regions of kidney sections from (G) diuretics treated and (H) proteinuric patients. Scale bar 50 μ m.

Supplementary Table 1: Patient characteristics: Patients were divided into 5 groups based in their antihypertensive treatment (none, AT1 receptor antagonist, ACE inhibitors, and diuretics) and proteinuria. The antihypertensive medicine received by the individual patient is listed.

Patient number	Medication – Drug	Blood pressure (systolic/diastolic)	Age	Gender M /F	Pathological Diagnosis	
		Control				
1. 172	None	139/69	41	F	Hydronephrosis	
2. 165	None	136/91	45	М	Hydronephrosis	
3. 152	None	155/83	72	М	Renal clear cell	
					carcinoma	
4. 229	None	153/98	71	F	Renal clear cell	
					adenocarcinoma	
5. 242	None	150/78	69	F	Renal clear cell	
					carcinoma	
Angiotopsin II AT1 resentor antagonists						

Angiotensin II AT1 receptor antagonists

1.132	Losartan	125/81	60	М	Renal cyst
2.136	Losartan	175/95	69	F	Urothelial
					carcinoma
3. 182	Losartan, Amlodipin	136/83	65	М	Acute and chronic
					inflammation,
					hydronephrosis
4.184	Eprosartan,	131/79	64	F	Chronic
	Bendroflumethiazid,				inflammation,
	Lercanidipin				fibrosis
5. 185	Losartan, Amlodipin	124/86	64	F	Renal clear cell
					carcinoma

6. 218	Losartan, Bendroflume	146/81	67	F	Renal clear cell
	Furosemid				carcinoma
	Α	CE-inhibitors			
1. 126	Enalapril	128/77	68	М	Renal clear cell
					carcinoma
2. 173	Quinapril, Carvedilol,	174/77	81	М	Oncocytoma
	Furosemid, Tamsulosin				
3. 186	Ramipril, amlodipine	139/83	70	М	Renal clear cell
					carcinoma
4. 194	Lisinopril	149/79	69	М	Renal clear cell
					carcinoma
5. 223	Enalapril	109/75	67	М	Renal clear cell
					carcinoma
6. 233	Enalapril , amlodipin	145/91	69	F	Urothelial
					carcinoma
]	Diuretics only			
1.95	Thiazide	190/90	66	F	Renal clear cell
					carcinoma
2.130	Thiazide	140/90	56	F	Renal clear cell
					carcinoma
3. 227	Loop diuretic	116/60	63	F	Renal clear cell
					adenocarcinoma
4. 181	Thiazide, Doxazosin,	115/56	80	М	Papillary renal
	Metoprolol,				cell carcinoma
	Amlodipin				

Proteinuria

1.270	Losartan	172/103, 2+	58	М	Papillary,
					urothelial
					carcinoma
2.286	Amlodipine	146/73, 3+	70	F	Renal clear cell
					carcinoma
3. 289	None	152/82, 2+	72	М	Fibrosis,
					Inflammation
4.294	Amlodipine, losartan,	132/76, 2+	66	М	Renal clear cell
	Furosemide				carcinoma
5.301	Amlodipine	162/90, 3+	49	М	Papillary
					urothelial
					carcinoma
6. 299	Thiazide, Metoprolol	178/82, 2+	81	М	Renal clear cell
					carcinoma

Supplementary methods

Production and cloning of monoclonal antibodies

Thirty μ g of each peptide coupled to diphtheria toxin and mixed with Freunds incomplete adjuvant was injected into BALB/c mice subcutaneously 3 times with a 14 days interval. Three days prior to the fusion the mice received an intravenous injection with 30 μ g antigen administered with adrenalin. The fusion and selection were done as described by Kohler and Milstein.¹ Cells from the SP2/0-AG14 myeloma cell line (HGPRT negative) were used as a fusion partner and polyethylenglycol (PEG) as fusion media. Clones reacting with the immunogenic peptide corresponding to the cleaved γ ENaC, but not with the putative uncleaved form, *i.e.* peptide [CDF FTGRKRKVGGSIIHKA] for prostasin, were identified by ELISA. Cloning was performed by limited dilution. Single clones were grown in culture flasks in RPMI+10% FCS. The mAbs were subsequently purified from culture supernatant by protein A affinity chromatography using the Äkta FPLC system according to the manufacturer's instructions (Amersham Pharmacia, Uppsala, Sweden).

References

1. Kohler, G, Milstein, C: Continuous cultures of fused cells secreting antibody of predefined specificity. *Nature*, 256: 495-497, 1975.