Tables of contents

A. Complete methods for GFR measurement

GFR measurement protocol

B. Supplementary Tables

Table S1	Comparison of the median bias in eGFRcr for the CKD-EPI,	4
	Japanese and BIS equations by subgroups	
Table S2	Comparison of the median bias in eGFRcys for the CKD-EPI,	5
	Japanese and CAPA equations by subgroups	
Table S3	Comparison of the median bias in eGFRcr-cys for the CKD-EPI,	6
	Japanese and BIS equations by subgroups	
Table S4	Comparison the performance of CKD-EPI equations in the entire	7
	cohort	
Table S5	Comparison the performance of the Japanese equations in the entire	8
	cohort	
Table S6	Comparison the performance of the BIS equations in the entire	9
	cohort	
Table S7	Comparison the performance of all equations to the CKD-EPI	10
	creatinine-cystatin C equation in the entire cohort by research groups	
Table S8	GFR estimation equations	11

A. Complete methods for GFR measurement

GFR Measurement Protocol

Approximately one week prior to the study visit, each participant was contacted. Medications were reviewed with the participant. Participants were asked to avoid changes in medications that influence GFR (e.g. anti-inflammatory agents, diuretics, renin-angiotensin blocking agents). Participants taking medications that interfere with creatinine secretion (e.g. cimetidine or trimethoprim) were requested to consult with their physician to determine whether or not it is safe to discontinue medications affecting creatinine levels, and if so, were asked to stop the medications two days prior to the visit. An instruction sheet with details and pictures of the medications to stop were also provided. In addition, the study physicians obtained verbal permission from the subjects to call their physicians to confirm this. Non-diabetic subjects were asked to have a light meal the evening before and fast overnight before the morning of their study visit. All participants were verbally instructed to pass urine into the container provided on the morning of their GFR study visit at home and bring it to the study center for measurement of albuminuria. All subjects were asked to drink two to three glasses of non-alcoholic, non-caffeinated beverages prior to arrival for the study visit.

On the day of the GFR visit, two intravenous lines (Optiva 2 venflon, gauge size 20) were inserted at two different sites. After taking the baseline blood sample, 5 mL of iohexol (Omnipaque 300; 300 mg/mL of organic iodine)¹ was administered by a nurse at the Icelandic Heart Association over a period of approximately 60 seconds through one of the IV ports, followed by a flush with approximately 10 mL of 0.9% normal saline solution.²⁻⁶ A physician was present at the time of the iohexol injection. The IV line through which the iohexol was administered was removed. The syringe was weighted to the nearest tenth gram on the same scale before and after injection. Blood samples for plasma clearance measurements were obtained from the second IV line, which remained in place throughout the course of the study visit. Normal saline was administered through the second IV line after each blood draw to maintain patency. Before each blood draw, a small sample of blood was drawn and discarded before sample collection.

The administration of iohexol was considered time 0. Following the iohexol administration, blood samples were collected at approximately 120, 180, 240 and 300 minutes from the second IV line. The exact time of the sample was recorded. Participants were fed a standard lunch and were free to move around during the GFR test. The study nurse assessed study subjects approximately 1 hour following administration of the iohexol for the presence of adverse events (AE). Physician co investigators then determined whether the AE was related to the GFR protocol. After the final blood sample, the second IV line was removed; participants were observed for approximately 30 minutes before they returned home.

The iohexol dose was calculated from the difference in the syringe weights before and after administration of the iohexol multiplied by the concentration of iohexol divided by the density at room temperature (1.345 g/cm³). GFR was calculated from plasma clearance of

iohexol using the Brochner Mortensen equation⁷. GFR= $0.990778*(I/(expA/\alpha))-(0.001218*(I/(expA/\alpha))^2$ where I is dose of the iohexol (mg), exp A is the intercept of the curve and α is its corresponding slope. GFR was multiplied by the ratio of 1.73 m²/body surface area (BSA) in order to correct to 1.73 m² of BSA.

Reference

1. Package insert: Omnipaque (iohexol) Injection. In, Princeton, NJ, Amersham Health Inc., 2004.

2. Stevens, LA, Levey, AS: Measured GFR as a confirmatory test for estimated GFR. *J Am Soc Nephrol*, 20: 2305-2313, 2009.

3. Gaspari, F, Perico, N, Matalone, M, Signorini, O, Azzollini, N, Mister, M, Remuzzi, G: Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. *J Am Soc Nephrol*, 9: 310-313, 1998.

4. Gaspari, F, Perico, N, Ruggenenti, P, Mosconi, L, Amuchastegui, CS, Guerini, E, Daina, E, Remuzzi, G: Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. *J Am Soc Nephrol*, 6: 257-263, 1995.

5. Rocco, MV, Buckalew, VM, Jr., Moore, LC, Shihabi, ZK: Measurement of glomerular filtration rate using nonradioactive Iohexol: comparison of two one-compartment models. *Am J Nephrol*, 16: 138-143, 1996.

6. Nilsson-Ehle, P, Grubb, A: New markers for the determination of GFR: iohexol clearance and cystatin C serum concentration. *Kidney Int Suppl*, 47: S17-19, 1994.

7. Brochner-Mortensen, J: A simple method for the determination of glomerular filtration rate. *Scand J Clin Lab Invest*, 30: 271-274, 1972.

B. Supplementary Tables

		Age group Sex		ex	Diabetes BMI group			mGFR category							
	< 80	80-84	≥85	male	female	No	Yes	< 20	20-24	25-29	≥30	< 30	30-59	60-89	≥90
Ν	402	279	124	355	450	615	190	10	185	457	153	28	286	458	33
CKD-	-2.5	-2.7	-2.7	-1.4	-3.7	-2.8	-2.1	-3.1	-2.5	-2.8	-1.8	-2.2	-3.2	-3.0	9.1
EPI	(-3.7, 1.6)	(-3.9,-1.5)	(-5.0,-1.7)	(-2.3,-0.1)	(-4.7,-2.7)	(-3.8,-2.2)	(-3.1,0.4)	(-4.3,-2.0)	(-3.3,-1.6)	(-4.2,-1.7)	(-3.8,1.8)	(-4.1, 1.7)	(-4.5, -2.1)	(-4.2, -2.2)	(5.1, 11.1)
Japanese	12.6	9.9	6.9	10.9	10.0	10.6	10.0	10.4	10.8	10.1	1.9	1.9	7.3	13.5	21.6
equation	(11.5,13.7)	(8.9,11.0)	(5.2,8.1)	(9.8,12.2)	(9.2,11.2)	(9.8,11.6)	(8.7,11.9)	(8.2,11.6)	(9.8, 1.9)	(8.9,12.8)	(0.6, 5.4)	(0.5, 4.4)	(6.7, 8.1)	(12.8, 14.3)	(17.4, 26.1)
BIS	6.6	5.7	4.3	7.9	4.7	5.8	5.4	6.1	5.9	5.3	-3.8	-3.9	2.1	9.2	19.1
D13	(5.3,7.7)	(5.0,6.7)	(3.0,5.9)	(6.5, 9.3)	(3.4, 5.4)	(5.0, 6.8)	(3.6, 7.1)	(4.7, 7.9)	(4.9, 6.9)	(3.3, 7.1)	(-4.7, -1.0)	(-5.3, -1.1)	(1.3, 2.8)	(8.3, 10.4)	(16.7, 22.5)
Not differe	Not different from CKD-EPI				Better than CKD-EPI				Worse than CKD-EPI						

Table S1 Comparison of the median bias in eGFRcr for the CKD-EPI, Japanese and BIS equations by subgroups

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as mGFR-eGFR. Units for GFR and bias are ml/min/1.73 m².

		Age group Sex		Diabetes			BMI group			mGFR category					
	< 80	80-84	≥85	male	female	No	Yes	< 20	20-24	25-29	≥ 30	< 30	30-59	60-89	≥90
N	402	279	124	355	450	615	190	10	185	457	153	28	286	458	33
CKD-	1.4	3.2	2.5	1.7	2.0	1.4	3.3	-3.7	-0.8	1.7	5.0	2.1	1.2	2.4	6.4
EPI	(0.0, 2.2)	(1.5, 4.6)	(0.7, 4.4)	(1.1, 3.0)	(0.8, 3.2)	(0.5, 2.2)	(2.1, 5.0)	(-6.7, 4.0)	(-2.5, 1.2)	(0.8, 2.7)	(3.9, 7.7)	(0.0, 4.0)	(0.0, 2.3)	(1.4, 3.4)	(-0.1, 11.8)
Japanese	4.1	5.4	4.8	3.6	5.7	4.1	6.1	-0.8	2.8	4.3	8.3	3.5	3.6	5.7	4.5
equation	(3.4, 5.3)	(4.0, 6.7)	(2.8, 6.5)	(2.8, 4.2)	(4.6, 6.5)	(3.4, 5.2)	(4.2, 7.4)	(-7.1, 5.8)	(1.3, 4.0)	(3.5, 5.5)	(6.3,10.0)	(1.5, 5.3)	(2.6, 5.0)	(4.2, 6.8)	(-0.4, 16.6)
CAPA	-0.6	1.3	-1.1	2.4	-2.0	-0.6	1.4	-4.7	-2.2	0.1	2.7	0.3	-2.0	0.9	5.4
	(-1.6, 0.5)	(0.1, 2.4)	(-2.1, 0.4)	(1.3, 3.0)	(-3.0, -1.1)	(-1.5, 0.3)	(0.0, 2.6)	(-8.6, 3.3)	(-3.8, -1.3)	(-0.7, 1.0)	(1.1, 4.2)	(-2.9, 1.9)	(-3.1, -0.7)	(0.0, 1.6)	(1.0, 11.5)
No difference than CKD-EPI Better than CKD-EPI Worse that						Worse than	CKD-EPI								

Table S2 Comparison of the median bias in eGFRcys for the CKD-EPI, Japanese and CAPA equations by subgroups

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as mGFR-eGFR. Units for GFR and bias are ml/min/1.73 m². To convert GFR from mL/min/1.73m² to mL/s/1.73m², multiply by 0.0167.

	Age group Sex		Diabetes		BMI group			mGFR category							
	< 80	80-84	≥85	male	female	No	Yes	< 20	20-24	25-29	≥ 30	< 30	30-59	60-89	≥90
N	402	279	124	355	450	615	190	10	185	457	153	28	286	458	33
CKD-	-1.2	0.4	-0.6	-0.1	-0.9	-0.9	0.5	-5.8	-2.0	-0.2	1.6	1.4	-0.6	-1.1	4.9
EPI	(-2.0,-0.3)	(-0.5, 1.3)	(-2.0, 0.9)	(-1.0, 0.5)	(-1.9, 0.0)	(-1.7, -0.1)	(-0.4, 1.4)	(-8.3,-0.1)	(-3.5,-1.3)	(-1.1, 0.4)	(0.5, 3.1)	(-1.0, 2.9)	(-1.6, 0.4)	(-1.9, -0.1)	(0.9, 7.9)
Japanese	8.7	8.2	6.4	8.0	8.4	8.1	8.7	2.8	6.4	8.4	9.7	3.8	6.4	9.8	15.4
equation	(8.0,9.5)	(7.3, 9.1)	(5.8, 8.1)	(7.1, 8.8)	(7.8, 9.2)	(7.6, 8.7)	(7.4, 9.8)	(0.4, 6.1)	(5.6, 8.0)	(7.9, 8.9)	(8.4, 11.4)	(2.4, 5.2)	(5.8, 7.3)	(8.9, 10.3)	(9.5, 19.3)
BIS	6.0	5.3	4.3	5.9	4.8	5.3	5.7	0.4	4.3	5.4	7.4	-1.5	2.2	8.0	16.0
D12	(5.1, 6.9)	(4.6, 6.6)	(2.3, 5.5)	(5.3, 6.8)	(4.0, 6.0)	(4.8, 6.1)	(4.5, 7.5)	(-1.4, 5.5)	(3.2, 6.0)	(4.9, 6.2)	(5.3, 8.6)	(-3.1, -0.3)	(1.5, 2.8)	(7.3, 8.8)	(13.3, 20.0)
No differ	No difference than CKD-EPI				Better than CKD-EPI					Worse than CKD-EPI					

Table S3 Comparison of the median bias in eGFRcr-cys for the CKD-EPI, Japanese, and BIS equations by subgroups

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as mGFR-eGFR. Units for GFR and bias are ml/min/1.73 m².

Equations	Bias	Precision	Accuracy	Accuracy
	Median Differer	ice IQR	P ₃₀	RMSE
	(95% CI)	(95% CI)	(95% CI)	(95% CI)
aCED on ave	-0.6	10.2	96.1	0.137
eGFRcr-cys	(-1.2, 0.1)	(9.0, 11.1)	(94.8, 97.4)	(0.128, 0.145)
eGFRcr	-2.7	12.1	91.7	0.165
egrker	(-3.3, -2.1)	(11.2, 13.4)	(89.8, 93.4)	(0.154, 0.177)
CEDava	1.9	11.4	93.7	0.167
eGFRcys	(1.3, 2.8)	(10.7, 12.5)	(91.9, 95.3)	(0.157, 0.178)
Not different from	n eGFRcr-cys	Better than eGFRcr-cys	Worse than	n eGFRcr-cys

Table S4 Comparison the performance of CKD-EPI equations in the entire cohort

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as the median value of (mGFR-eGFR). IQR, interquartile range of the difference between mGFR and eGFR. P_{30} , percentage of eGFR within 30% of mGFR. RMSE, the root mean squared error for the regression of log mGFR on log eGFR. Units for GFR, bias and IQR are mL/min/1.73 m².

Equations	Bias		Precision			Accuracy
	Median Differen (95% CI)	L		P ₃₀ (95% CI)		RMSE (95% CI)
CED	8.2		9.0	Ň	93.0	0.204
eGFRcr-cys	(7.7, 8.7)		(8.2, 10.0)		1.2, 94.8)	(0.195, 0.212)
CEDar	10.5		10.9	86.3		0.251
eGFRcr	(9.8, 11.2)		(9.7, 12.1)		3.9, 88.6)	(0.241, 0.263)
CEDava	4.6		11.2	92.8		0.189
eGFRcys	(3.8, 5.6)	((10.2, 12.3) (90.9,		0.9, 94.5)	(0.179, 0.200)
Not different from	eGFRcr-cys I	Better than eGFRcr-cys			Worse than	n eGFRcr-cys

Table S5 Comparison the performance of the Japanese equations in the entire cohort

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as the median value of (mGFR-eGFR). IQR, interquartile range of the difference between mGFR and eGFR. P_{30} , percentage of eGFR within 30% of mGFR. RMSE, the root mean squared error for the regression of log mGFR on log eGFR. Units for GFR, bias and IQR are mL/min/1.73 m².

Equations	Bias	Precision	Accuracy	Accuracy
	Median Differen	ce IQR	P ₃₀	RMSE
	(95% CI)	(95% CI)	(95% CI)	(95% CI)
aCED on ava	5.3	9.6	97.9	0.152
eGFRcr-cys	(4.9, 6.1)	(8.6, 10.4)	(96.8, 98.8)	(0.145, 0.158)
•CED or	5.7	11.9	95.8	0.178
eGFRcr	(5.1, 6.4)	(10.6, 12.7)	(94.4, 97.1)	(0.169, 0.187)
Not different fro	om eGFRcr-cys B	etter than eGFRcr-cys	Worse than	n eGFRcr-cys

Table S6 Comparison the performance of the BIS equations in the entire cohort

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as the median value of (mGFR-eGFR). IQR, interquartile range of the difference between mGFR and eGFR. P_{30} , percentage of eGFR within 30% of mGFR. RMSE, the root mean squared error for the regression of log mGFR on log eGFR. Units for GFR, bias and IQR are mL/min/1.73 m².

	Bias	Precision	Accuracy	Accuracy
	Median Differen	ce IQR	P ₃₀	RMSE
	(95% CI)	(95% CI)	(95% CI)	(95% CI)
CKD-EPI				
eGFRcr-cys	-0.6	10.2	96.1	0.137
eor Ker-cys	(-1.2, 0.1)	(9.0, 11.1)	(94.8, 97.4)	(0.128, 0.145)
eGFRcr	-2.7	12.1	91.7	0.165
COLKC	(-3.3, -2.1)	(11.2, 13.4)	(89.8, 93.4)	(0.154, 0.177)
eGFRcys	1.9	11.4	93.7	0.167
corkeys	(1.3, 2.8)	(10.7, 12.5)	(91.9, 95.3)	(0.157, 0.178)
Japanese equation				
eGFRcr-cys	8.2	9.0	93.0	0.204
eor Ker-cys	(7.7, 8.7)	(8.2, 10.0)	(91.2, 94.8)	(0.195, 0.212)
eGFRcr	10.5	10.9	86.3	0.251
COLIKI	(9.8, 11.2)	(9.7, 12.1)	(83.9, 88.6)	(0.241, 0.263)
eGFRcys	4.6	11.2	92.8	0.189
eorkeys	(3.8, 5.6)	(10.2, 12.3)	(90.9, 94.5)	(0.179, 0.200)
BIS				
eGFRcr-cys	5.3	9.6	97.9	0.152
eorker-cys	(4.9, 6.1)	(8.6, 10.4)	(96.8, 98.8)	(0.145, 0.158)
eGFRcr	5.7	11.9	95.8	0.178
egrad	(5.1, 6.4)	(10.6, 12.7)	(94.4, 97.1)	(0.169, 0.187)
САРА				
eGFRcys	0.1	11.8	94.4	0.157
COFRCys	(-0.7, 0.6)	(10.8, 12.9)	(92.8, 95.9)	(0.147, 0.168)
No difference than CK	KD-EPI H	Better than CKD-EPI	Worse than	CKD-EPI
eGFRcr-cys	e	GFRcr-cys	eGFRcr-cys	5

Table S7 Comparison the performance of all equations to the CKD-EPI creatinine-cystatin C equation in the entire cohort by research groups

Non-overlapping confidence intervals were considered to represent differences. Bias was calculated as the median value of (mGFR-eGFR). IQR, interquartile range of the difference between mGFR and eGFR. P_{30} , percentage of eGFR within 30% of mGFR. RMSE, the root mean squared error for the regression of log mGFR on log eGFR. Units for GFR, bias and IQR are mL/min/1.73 m².To convert GFR from mL/min/1.73m² to mL/s/1.73m², multiply by 0.0167.

Table S8 GFR estimation equations

Research	GFR	Endogenous	Equation					
group	Measurement	Filtration markers						
	Method							
CKD-EPI	Urinary clearance	Creatinine	$eGFR = 141 \times min(Scr/\kappa, 1)^{\alpha} \times max(Scr/\kappa, 1)^{-1.209} \times 0.993^{Age} [\times 1.018 \text{ if female}] [\times 1.159]$					
	of ¹²⁵ I-iothalamate		if black]					
			where Scr is serum creatinine, κ is 0.7 for females and 0.9 for males, α is -0.329 for					
			females and -0.411 for males, min is the minimum of Scr/ κ or 1, and max is the					
			maximum of Scr/ κ or 1.					
		Cystatin C	$eGFR = 133 \times min(Scys/0.8, 1)^{-0.499} \times max(Scys/0.8, 1)^{-1.328} \times 0.996^{Age} [\times 0.932 \text{ if}]$					
			female]					
			where Scys is serum cystatin C, min indicates the minimum of Scr/ κ or 1, and max					
			indicates the maximum of Scys/ κ or 1.					
		Creatinine and	$eGFR=135 \times \min(Scr/\kappa, 1)^{\alpha} \times \max(Scr/\kappa, 1)^{-0.601} \times \min(Scys/0.8, 1)^{-0.375} \times$					
		Cystatin C	$\max(\text{Scys}/0.8, 1)^{-0.711} \times 0.995^{\text{Age}} [\times 0.969 \text{ if female}] [\times 1.08 \text{ if black}]$					
			where Scr is serum creatinine, Scys is serum cystatin C, κ is 0.7 for females and 0.9 for					
			males, α is -0.248 for females and -0.207 for males, min indicates the minimum of Scr/ κ					
			or 1, and max indicates the maximum of Scr/ κ or 1.					
Japanese	Urinary clearance	Creatinine	eGFR= 194 × Creatinine ^{-1.094} × Age ^{-0.287} × 0.739 [if female]					
	of inulin	Cystatin C	eGFR= 96 × Cystatin $C^{-1.324}$ × 0.996 ^{Age} × 0.894 [if female]					
		Creatinine and	eGFR= 92 × Cystatin C ^{-0.575} × Creatinine ^{-0.670} × 0.995 ^{Age} × 0.784 [if female]					
		Cystatin C						
BIS	Plasma clearance	Creatinine	eGFR= $3736 \times \text{Creatinine}^{-0.87} \times \text{Age}^{-0.95} \times 0.82$ [if female]					
	of iohexol	Creatinine and	eGFR= 767 × Cystatin C ^{-0.61} × Creatinine ^{-0.40} × Age ^{-0.57} × 0.87 [if female]					
		cystatin C						

Plasma clearance	Cystatin C	$eGFR = 130 \times Cystatin C^{-1.069} \times Age^{-0.117} - 7$
of iohexol, plasma		
clearance of		
⁵¹ Cr-EDTA,		
urinary clearance		
of inulin		
	of iohexol, plasma clearance of ⁵¹ Cr-EDTA, urinary clearance	of iohexol, plasma clearance of ⁵¹ Cr-EDTA, urinary clearance

Units for eGFR, serum creatinine and cystatin C are mL/min/1.73m², mg/dL and mg/L, respectively.