
Figure S1. (A) Representative IB analysis of cell extracts from podocytes exposed to control medium, ET-1 (100 nM, 15 minutes) alone or in the presence of BQ123 (1 μ M). The phosphorylation status of Src was verified by using anti anti-phospho-Src (Y416) and anti-Src antibodies. (B,C) β -arrestin-1 mRNA and protein expression evaluated by real time-PCR (B) and IB (C) in untransfected (control), scrambled (SCR) and β -arrestin-1 (si- β -arr1) siRNA transfected podocytes. *P<0.001 versus control and SCR. Anti-HSP70 antibody was used to confirm equal protein loading. Molecular mass is indicated in kilodaltons.

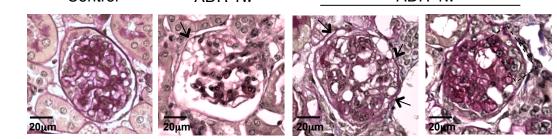
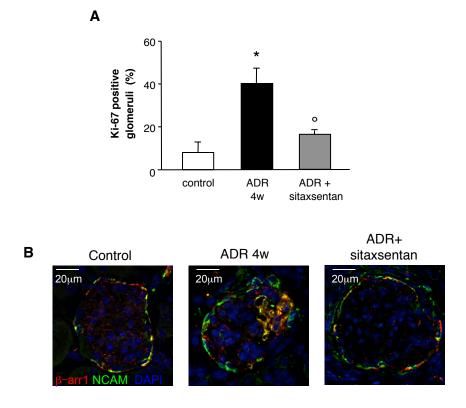


Figure S2. (A) Cell lysates from podocytes incubated with control medium or ET-1 (100 nM) for 5, 15 or 30 minutes were immunoblotted with anti-phospho- β -catenin (Ser33/37/Thr41) and anti- β -catenin antibodies. (B) The effect of the EGFR inhibitor AG1478 was analyzed by IB in podocytes exposed for 15 minutes to control medium, ET-1 (100 nM) alone or in the presence of AG1478 (1 μ M). The phosphorylation status of EGFR was assessed by using anti-phospho-EGFR (Y845) and anti-EGFR antibodies. Molecular mass is indicated in kilodaltons.


Figure S3. (A) Real time RT-PCR of synaptopodin mRNA expression (left) and quantification of α -sma immunofluorescence staining (right) in untransfected (control), scrambled (SCR) and β -arrestin-1 (si- β -arr1) siRNA transfected podocytes exposed to control medium for 6 hours. Data are mean \pm SE (n=3 experiments). (B) Wound healing assay of untransfected (control), scrambled (SCR) and β -arrestin-1 (si- β -arr1) siRNA transfected podocytes exposed to control medium. Mean values \pm SE of podocytes migrated into the wound track after 2, 6 and 10 hours (n=4 experiments). (C) Wound healing assay of untransfected (control), scrambled (SCR) and Snail (si-Snail) siRNA transfected podocytes exposed to control medium for 6 hours. Results are mean \pm SE (n=6 for control; n=8 for SCR; n=10 for si-Snail).

С

Figure S4. (A) Representative images of WT1 (red) and FITC-WGA-lectin (green) (top) or nestin (green) and rhodamine-WGA-lectin (bottom) in control and ADR-treated mice at 4 weeks receiving or not sitaxsentan. Nuclei were stained with DAPI (blue). (B) Nestin positive area evaluated as percentage of the total glomerular area (mean value \pm SE) of at least 15-20 glomeruli/animal (n=3 animals/group). *P<0.001 vs control,-P<0.01 vs ADR 4w. (C) Renal histology of control and ADR-treated mice at 1 and 4 weeks. Arrows indicate synechiae and the box defines a pseudo-crescent. Scale bars are indicated.

Figure S5. (A) ADR-induced nephrosis is characterized by glomerular cell proliferation. Percentage of glomeruli positive for the proliferation marker Ki-67 in control and ADR-treated animals at 4 weeks receiving or not sitaxsentan. Data are expressed as mean value \pm SE of at least 25 glomeruli/animal (n=3 animals/group). * P<0.01 vs control, -P<0.05 vs ADR 4w. (B) Representative images of β -arrestin-1 (red) and NCAM (green) co-staining in glomeruli from control and nephritic mice treated or not with sitaxsentan. Nuclei were stained with DAPI (blue). Scale bars are indicated.