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Figure S1. Bioanalyzer traces of library preparations resulting from the two 
microfluidic-based single cell techniques, Dropseq and inDrops. (A) cDNA trace for a 
library prepared using the Dropseq method. This method was unsuccessful in making quality 
libraries from a human biopsy tissue core sample. (B) cDNA trace for a library prepared 
using the inDrops method. Using this method we were able to create a quality cDNA library 
from a human biopsy tissue core.  
 
 
  

 



 

Figure S2. Consensus clustering of our single cell RNA-seq data using SC3. The SC3 
method is another unsupervised method used to cluster cells. This method is highly accurate 
and robust and combines multiple clustering approaches into one. Using SC3 we found that 
our initial clustering using Seurat was replicated using SC3. 
 
 
 
  

 



 
Figure S3. Minimal batch effects observed between sequencing platforms and library 
preparations. Cells processed using the inDrops method on one biopsy sample were 
collected sequentially into 4 tubes. Libraries prepared from tubes 1 to 3 were sequenced 
using the Illumina HiSeq 2500 platform and the library prepared from tube 4 was sequenced 
using the Illumina NextSeq platform. Projecting cells into one tSNE map shows that all 
clusters from each tube overlap. 
 
  
 
  

 



 
Figure S4. Comparison of cell-type specific gene expression from a P1 mouse kidney 
and a human PBMC RNAseq dataset. (A) Heatmap comparing cell-type specific gene 
expression from a P1 mouse kidney RNAseq dataset (y-axis) with our cell-type specific gene 
expression (x-axis). The results confirm our cluster annotations. Color key denotes the 
Pearson correlation score. (B) Proportion of cell types within our biopsy sample. 
  

 



 
 
 
 

Figure S5. Low power views of independent transplant biopsies stained for 
monocyte#1 and monocyte#2 subsets. FCGR3A identifies the monocyte#1 subset, and 
staining was absent from transplant biopsies with a histologic diagnosis of no rejection, but 
strong staining was present in biopsies with a histologic diagnosis of mixed rejection, and 
intermediate staining in ABMR biopsies. The monocyte#2 marker FCN1 exhibited a very 
similar pattern. The top and bottom slides were from serial sections. Scale bar 100 µm. 
  

 



 

 
 
Figure S6. Confirmation of proximal tubule, loop of Henle and collecting duct cell 
clusters. Clustering analysis of epithelial cell types from the combined biopsy and normal 
human samples show proximal tubular cell markers CUBN and LRP2 in the proximal tubule 
cluster, UMOD and SLC12A1 in the loop of Henle cluster and AQP2 and AQP3 in the 
collecting duct cluster. 
 
 
 
 
 
  

 



 
Figure S7. Upregulated TGF-β/BMP signaling signature in collecting duct cells from 
biopsy. (A) GSEA enrichment plot of the TGF-β receptor signaling pathway, one of the top 
pathways upregulated in biopsy CD when compared with the healthy CD. (B) Expression of 
selected TGF-β/BMP pathway genes were mapped to healthy vs. biopsy epithelial cell types. 
Unexpectedly, a very strong TGF-β/BMP signature was observed in collecting duct epithelia 
from the biopsy kidney sample (CD-bx) compared to healthy collecting duct (CD-h). 
Receptor-ligand pairs were identified from human the Database of Ligand−Receptor Partners 
(DLRP), IUPHAR and Human Plasma Membrane Receptome (HPMR). 
 



 
 
Figure S8. GO analysis on the EC subgroup that expressed immunoglobulins. 
The results were obtained from the ToppGene suite using differentially expressed 
genes in the activated EC subcluster (p value<0.01) as the input gene list. Note the 
enrichment for immunoglobulin binding and phagocytosis, suggesting antibody-
mediated activation of endothelial cells in this biopsy with antibody-mediated 
rejection. 
 
 
 
 
 
 
 
 



 

 

 
Figure S9. Distribution of HLA and light chain transcript expression across cell types. 
(A) The class I HLA transcripts are expressed equally across all cell types. The Class II HLA 
transcripts are predominantly expressed in the professional antigen presenting cells (APCs), 
monocyte cluster 1 and 2 and B cells. The class II transcripts corresponding to the donor 
specific antibodies circulating at the highest concentration (anti-HLA-DRB1/DRA and anti-
HLA-DRB5/DRA) are expressed highly in the APCs. (B) Light chain transcript expression in 
lymphocytes and plasma cells. Plasma cell cluster number 1 is expressing only kappa light 
chains (IGKC) and is thus light chain restricted. This suggests that this cluster represents a 
single clone. Plasma cell cluster number 2 expresses kappa and lambda light chain constant 
regions (IGKC and IGLC) and is therefore not light chain restricted is thus expresses 
polyclonal. 
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Supplementary Methods 
InDrops single cell RNA-seq 
InDrops was performed as described1. In brief, cells were diluted into 60,000 cells/mL in 9% 
Optiprep buffer. Single cell encapsulation was carried out using an inDrops instrument and 
microfluidic chip manufactured by 1CellBio. In total, four tubes of cells with about 1,000 
cells/tube were collected. Library preparation was performed according to the protocol 
provided by the manufacturer. Of note, we used low PCR cycles (8-9 cycles) to amplify the 
libraries from this sample as our previous trials with higher PCR cycles (12-13 cycles) 
resulted in an overamplification of the libraries where averaged transcripts/cell detected was 
less than 300. Libraries were sequenced by HiSeq 2500 and NextSeq with a sequencing 
depth of 50K mapped reads/cell.  
 
InDrops single nucleus RNA-seq 
Nuclei were isolated with Nuclei EZ Lysis buffer (Sigma #NUC-101) supplemented with 
protease inhibitor (Roche #5892791001) and RNase inhibitor (Promega #N2615, Life 
Technologies #AM2696). Samples were cut into <2 mm pieces and homogenized using a 
Dounce homogenizer (Kimble Chase #885302-0002) in 2ml of ice-cold Nuclei EZ Lysis buffer 
and incubated on ice for 5 min with an additional 2ml of lysis buffer. The homogenate was 
filtered through a 40-µm cell strainer (pluriSelect #43-50040-51) and then centrifuged at 500 
x for 5 min at 4 ºC. The pellet was resuspended and washed with 4 ml of the buffer and 
incubated on ice for 5 min. After another centrifugation, the pellet was resuspended with 
Nuclei Suspension Buffer (1x PBS, 0.07% BSA, 0.1% RNase inhibitor), filtered through a 20-
µm cell strainer (pluriSelect 43-50020-50) and counted. RNA from single nucleus was 
encapsulated, barcoded and reversed transcribed using an InDrop microfluidics system 
(1CellBio). The library was sequenced in HiSeq2500 with custom primers. 
 
InDrops data preprocessing 
We used a recently developed inDrops computational pipeline, dropEst,1 to process the 
single cell and single nuclei InDrops data. In brief, cell barcodes and UMIs from the library 
were extracted from read1 by the dropTag program and added to the names of the transcript 
reads, resulting in a new fastq file for read alignment. We used STAR (version 2.5.3a) to map 
the high quality reads to the human genome (GRCh38). Only reads that were uniquely 
mapped to the genome (~70% of the total reads) were used for UMIs counts. We next ran 
the dropEst program to estimate the accurate molecular counts, which generated a UMI 
count matrix for each gene in each cell. 
 
Unsupervised clustering and cell type identification 
UMI count matrices from four tubes were combined and loaded into the R package Seurat. 
For normalization, the DGE matrix was scaled by total UMI counts, multiplied by 10,000 and 
transformed to log space. Only genes found to be expressed in >10 cells were retained. 
Cells with a relatively high percentage of UMIs mapped to mitochondrial genes (>=0.3) were 
discarded. Moreover, cells with fewer than 300 or more than 4,000 detected genes were 
omitted, resulting in 4,487 cells. We also regressed out the variants arising from library size 
and percentage of mitochondrial genes using the function RegressOut in R package Seurat. 
The highly variable genes were identified using the function MeanVarPlot with the 
parameters: x.low.cutoff = 0.0125, x.high.cutoff = 6 and y.cutoff = 1, resulting in an output of 
2,404 highly variable genes. The expression level of highly variable genes in the cells was 
scaled and centered along each gene, and was conducted to principal component analysis. 
We then assessed the number of PCs to be included in downstream analysis by (1) plotting 
the cumulative standard deviations accounted for each PC using the function PCElbowPlot in 
Seurat to identify the ‘knee’ point at a PC number after which successive PCs explain 
diminishing degrees of variance, and (2) by exploring primary sources of heterogeneity in the 
datasets using the PCHeatmap function in Seurat. Based on these two methods, we selected 
first 20 PCs for two-dimensional t-distributed stochastic neighbor embedding (tSNE), 
implemented by the Seurat software with the default parameters. Based on the tSNE map, 
sixteen clusters were identified using the function FindCluster in Seurat with the resolution 



parameter set to 0.6. Alternatively, we used SC32 to validate the clusters identified by Seurat 
with cluster number set to 14 (ks=14). We found that the cells clustered by Seurat as a cell 
type were also grouped together by SC3. Differentially expressed genes that were expressed 
at least in 25% cells within the cluster and with a fold change more than 0.25 (log scale) were 
considered to be marker genes. In total, 2,837 marker genes were identified for the clusters 
in the biopsy dataset. A heatmap of selected marker gene expression across clusters was 
plotted using a Python plotting library Matplotlib. We applied the same unsupervised 
clustering analysis on the single nucleus dataset. First, we generated the digital expression 
matrix using the same dropEst pipeline that utilizes both exonic and intronic reads. After 
filtering low quality nuclei, 4,259 nuclei with > 400 genes expressed were imported into 
Seurat for clustering analysis. In total, we identified six kidney cell types in the single nucleus 
dataset, including PT, LOH, intercalated cells (IC), principal cells (PC), DCT and podocytes. 
 
Comparison of immune cell types to a published PBMC single cell dataset 
Cell-type-specific expression patterns of the cell clusters identified in our dataset were 
compared to signatures previously defined in a PBMC dataset by calculating the pairwise 
Pearson correlations coefficients between each pair of cell types for the same set of genes. 
First, a precomputed Seurat object containing cell cluster information for 33K human PBMCs 
was downloaded from the Satija lab (http://satijalab.org/seurat/get_started.html). Only genes 
detected in both our dataset and the PBMC dataset were used for downstream correlation 
analysis. Second, pearson correlation was computed between the cell clusters in our dataset 
and the cell clusters identified in the PBMC dataset, using the previously defined cell-type 
annotations and normalized average gene expression values for each cell type. Data was 
shown by pheatmap R package.  
 
To compare monocyte transcriptomes between the biopsy and PBMC datasets, we extracted 
the expression profiles for the cluster we annotated as monocyte#1 and the corresponding 
monocyte cluster (mono_CD16+_C1qa) in the PBMC dataset. We then clustered the cells 
after removing cell-cell variations driven by the number of detected molecules and 
mitochondrial gene contents. Cells in tSNE were colored by the original dataset where they 
are extracted, or the cell cluster where they are assigned based on unsupervised clustering 
analysis. To compare the marker gene expression in the monocyte from different sources, 
we extracted the scaled UMI expression values for the selected genes that are known as 
monocyte markers, receptors and DC differentiation markers. Average expression level of 
these selected genes was visualized as the violin plot using ggplot2 package in R. 
 
Correlation analysis of the kidney cell types from allograft biopsy and P1 mouse kidney 
To assess the similarity between biopsy cell types and embryonic kidney, we re-analyzed a 
recently published Dropseq dataset from P1 kidney (GSE94333).3 We used the Seurat 
clustering parameters described by the authors and reproduced the same cell types from the 
datasets. We calculated the Pearson correlation based on the expression patterns of highly 
variable genes between cell populations within the mouse embryonic kidney dataset against 
the cell types identified in our biopsy dataset. Correlation matrix were visualized by R 
package pheatmap. Color keys represent the range of the coefficients of determination (r2) in 
this analysis.  
 
Ligand-receptor interaction analysis 
To study ligand-receptor interactions across the cell types identified from the transplant 
biopsy, we used a human ligand–receptor list comprising 2,557 ligand–receptor pairs curated 
by the Database of Ligand−Receptor Partners (DLRP), IUPHAR and Human Plasma 
Membrane Receptome (HPMR).4, 5 We selected the receptors that were only differentially 
expressed in each cell type from the biopsy dataset. To determine the ligand-receptor pairs 
to plot on the heatmap, we required (i) the receptors are uniquely expressed in each cell type 
(q-val<0.05 and logFC>0.6); (ii) Each receptor should have at least one corresponding ligand 
to pair with. We used heatmap.2 function from gplots package to visualize the ligand-
receptor pairs in each cell type. 



 
Comparison of healthy kidney and allograft kidney 
To compare the transcriptional difference across each tubular cell type in healthy and 
disease state, we extracted the expression profiles for PT, LOH, and PC (CD) from the 
healthy kidney single nucleus dataset and the biopsy single cell dataset. We then performed 
integrated analysis on both datasets using a recently developed computational strategy6 
(implemented in Seurat v2.0). First, we selected the union of the top 2,000 genes with the 
highest dispersion from both datasets for a canonical correlation analysis (CCA) to identify 
common sources of variation between the two datasets. Then we aligned the CCA 
subspaces using the first 15 dimensions of the CCA. After CCA alignment, we performed 
clustering analysis on the nuclei and cells with the resolution parameter set to 0.6. We 
visualized the cells by their original identity or by their cluster identity classified by this 
integrated analysis. Differential gene analysis was performed on the nuclei and cells from 
different datasets but grouped in the same cluster by the alignment analysis. Differential 
genes were visualized using DotPlot function in Seurat. 
 
Pseudotemporal ordering of PT single cells and TF analysis 
We used Monocle27 to draw a minimal spanning tree connecting the PT cells collected from 
healthy and diseased kidneys. As input into Monocle2, we selected the highly variable genes 
for cell ordering as described in the Monocle2 tutorial (http://cole-trapnell-
lab.github.io/monocle-release/docs_mobile/). We then reduced the data space to two 
dimensions using the reduceDimension function with ‘DDRTree’ method and ordered the 
cells using the orderCells function in Monocle2. Individual cells were color-coded based on 
the kidneys where they were collected. To identify the transcription factors whose expression 
are dynamically changing across the trajectory from healthy PT to diseased PT, we first 
identified the genes that were differentially expressed across pseudotime using the 
differentialGeneTest function in Monocle2 with the fullModelFormulaStr parameter set to 
‘Psudeotime’. To identify the TFs, we crossed the differential genes to the human TF list 
downloaded from AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB/). We selected 
some of the important TFs that have been reported by the literature as key regulators of 
proximal tubule injury and repair and visualized them by R package ggplot2. 
 
Analysis of heterogeneity in the EC population 
We performed unsupervised clustering analysis on the endothelial cells extracted from the 
biopsy dataset using Seurat with similar parameters as described above. Top markers in 
each subcluster were visualized with the DoHeatmap function in Seurat. We used a stacked 
violin plot to show the expression of endothelial markers, angiogenic markers, and 
immunoglobulin genes across the three EC subgroups. Marker genes were selected based 
on literature search, and were differentially expressed among the EC subclusters. GO 
analysis was performed by uploading the differential genes from the EC subclusters to 
ToppGene Suite (http://toppgene.cchmc.org). Top 4 GO terms from categories of biological 
process, molecular function and cellular component were visualized using ggplot2 package. 
 
Re-assessing disease-associated gene lists from the public datasets  
To map the disease-associated genes to single cell, we selected the top genes from three 
public datasets where the authors identified EC enriched transcripts8, TCMR enriched 
genes,9 and ABMR enriched markers10 by comparing the microarray data from the biopsies 
with different rejection patterns. Expression values of these genes in our single cell dataset 
were normalized, z-scored and visualized the heatmap.2 in gplots R package. 
 
DropSeq single-cell RNA sequencing 
Dropseq was performed on the dissociated biopsy cells as previously described.11 Briefly, 
biopsy was dissociated into single cell using the same methods as being used in inDrops. 
Single cell suspension was visually inspected under a microscope, counted by 
hemocytometer (INCYTO C-chip) and resuspended in PBS + 0.01% BSA. Single cells were 
coencapsulated in droplets with barcoded beads purchased from Chemgenes (MACOSKO-



2011-10). cDNA libraries were constructed according to an online Dropseq protocol 
(McCarroll’s lab: http://mccarrolllab.com/dropseq/). cDNA quality was determined by 
BioAnalyzer (Agilent) with a high sensitivity DNA chip. 
 
GSEA pathway analysis 
GSEA (http://software.broadinstitute.org/gsea/index.jsp) was used to estimate the enriched 
pathways in the collecting duct subgroups from biopsy and healthy kidney. We used the 
normalized UMI count matrix generated by Seurat (NormalizeData and ScaleData) as an 
expression dataset, and a gene set containing all human pathways downloaded from Bader 
Lab (http://download.baderlab.org/EM_Genesets/current_release/Human/Entrezgene/) as 
gene set file input to GSEA. We used 1,000 gene label permutations and identified 
significantly enriched pathways defined by adjusted p value < 0.05 between the collecting 
duct cells from biopsy and healthy kidney. 
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Tables S1-3: Clinical Features of Study Biopsy.  
(1) Haplotype matching of donor a recipient at class I and class II loci. (2) Full Banff 
criteria scoring for the study biopsy showed histologic features consistent with Banff 
1B T-cell mediated rejection and acute C4d-negative antibody mediated rejection. (3) 
Donor specific antibody (DSA) found in the patients serum at the time of biopsy. mfi- 
mean fluorescent intensity, t = tubulitis, i = interstitial lymphocyte infiltration, v = 
intimal arteritis, ptc = peritubular capillaritis, g = glomerulitis, cg = transplant 
glomerulopathy, ci = interstitial fibrosis, ct = tubular atrophy, mm = mesangial matrix 
expansion, ah = arteriolar hyalinosis, cv = vascular intimal fibrosis. 
 
 

HLA DSAs at biopsy Mean fluorescence intensity 
DRB5*01:01   mfi 12143 (Immunodominant DSA) 
DRB1*15:01 mfi 2354 
DQA1*03:02/DQB1*03:03 mfi 1750 
DQA1*03:01/DQB1*03:03 mfi 1660 

HLA A B C Bw4 Bw6 DRB1 DRB3/4/5 DQB1 DPB1 

Recipient 24/11 40(61)/51 01/03(10) + + 07/14 B4*01:03N 
B3*02 

03(9)/05  

Donor 03:01/ 
24:02 

07:02/ 
07:61 

 - + 15:01/  
07:01 

DRB4*01:03N 
DRB5*01 

03:03/ 
06:02 

04:01 
 

Banff 
criteria 

t i v ptc g cg ci ct mm ah cv C4d 

score 3 3 0 3 2 0 0 0 0 1 0 0 



 
 
 
Supplementary Table S4. 
Link to data set .xls 
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