Competing Actions of Type 1 Angiotensin Receptors on T Lymphocytes and Kidney Epithelium During Cisplatin-Induced Acute Kidney Injury

Jiandong Zhang,* Nathan P. Rudemiller,* Mehul B. Patel,* QingQing Wei,[†] Norah S. Karlovich,* Alexander D. Jeffs,* Min Wu,* Matthew A. Sparks,* Jamie R. Privratsky,[‡] Marcela Herrera,* Susan B. Gurley,* Sergei A Nedospasov,[#] Steven D. Crowley*

*Division of Nephrology, Department of Medicine, and [‡]Department of Anesthesiology, Duke University and Durham VA Medical Centers, Durham, NC

⁺Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA

[#]Lomonosov Moscow State University and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia.

Correspondence to Steven D. Crowley, Box 103015, Duke University Medical Center,

Durham, NC 27710.

Tel: 919-684-9788

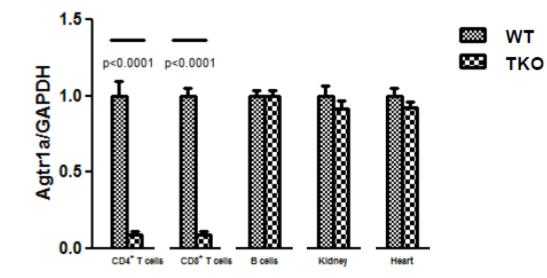
Fax: 919-684-3011

E-mail: steven.d.crowley@duke.edu

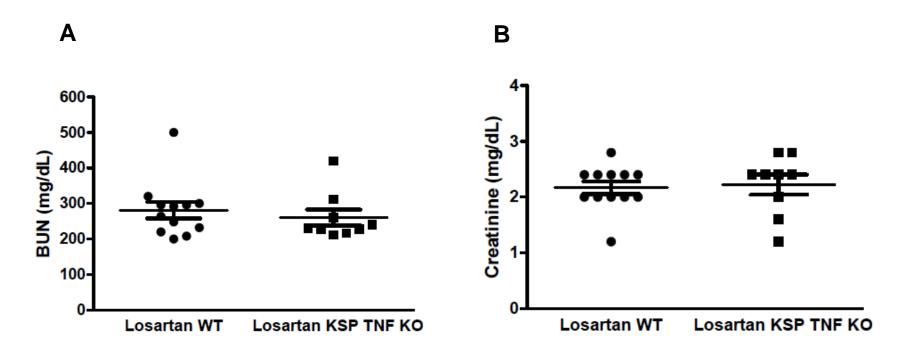
Running title: AT1 receptors in cisplatin AKI

Word Count: 2,262

Supplemental Methods


To delete the AT_{1A} receptor selectively from T lymphocytes we bred the *CD4-Cre* mouse line with an *Agtr1a flox* line harboring loxP sites on either side of the coding region for the AT_{1A} receptor. For our experiments, we employed female *CD4 Cre*⁺ *Agtr1a^{flox/flox}* mice (*TKO*) and *CD4 Cre*⁻ *Agtr1a^{flox/flox}* (*WT*) littermates. To confirm T cell-specific deletion of AT_{1A} receptors in our *TKO* animals, we harvested splenocytes and labeled them for the T lymphocyte markers CD4 and CD8 and the B lymphocyte marker CD19. Through fluorescent cell sorting, we isolated cell populations expressing 1 of these 3 markers: CD4⁺ T cells (CD4⁺CD8⁻CD19⁻), CD8⁺ T cells (CD8⁺CD4⁻CD19⁻), and B lymphocytes (CD19⁺CD4⁻CD8⁻). RNA was subsequently harvested from these purified immune cell populations and from kidney and heart. We then performed real-time PCR for the *Agtr1a* gene to confirm the degree and precision of T cell-specific deletion. Compared with their *WT* littermates, *TKO* mice exhibited over 90% deletion of the *Agtr1a* gene from both CD4⁺ and CD8⁺ T cells, but preserved AT_{1A} receptor expression in all other tissues examined (Fig. S1).

Supplemental Figure Legends


Supplemental Figure 1. Verification of specific AT_{1A} receptor deletion in T lymphocytes from female TKO mice. Splenocytes were harvested from female *CD4 Cre⁻ Agtr1a^{flox/flox}* mice (WT) and *CD4-Cre⁺ Agtr1a^{flox/flox}* littermates (TKO), and sorted into 3 subpopulations (n=6 per group). Figure shows mRNA expression of *Agtr1a* in different tissues and cell subpopulations from WT and TKO groups.

Supplemental Figure 2. AT_1 receptor blockade equalizes AKI levels in cisplatintreated WT and TNF KKO mice. (A-B) Kidney function in WT and TNF KKO ("Ksp TNF KO") mice treated with cisplatin plus losartan as measured by (A) BUN and (B) serum creatinine (n≥9).

Supplemental Figure 1

Supplemental Figure 2

