SIGNIFICANCE STATEMENT

Magnesium (Mg^{2+}) is essential for many enzymatic reactions involved in energy metabolism, and abnormal Mg²⁺ levels are associated with diabetes and metabolic disorders. The genetic factors regulating Mg²⁺ homeostasis are poorly characterized. Using genomewide association studies (GWAS) in European populations, we discovered two loci significantly associated with urinary Mg²⁺: the *TRPM6* gene coding for a Mg² ⁺ channel and the ARL15 gene, which is linked to lipid levels, type 2 diabetes and cardiovascular disease. We find that ARL15 influences Mg²⁺ reabsorption through regulation of TRPM6, suggesting a genetic mechanism for the association of urinary Mg²⁺ excretion with metabolic phenotypes. These findings suggest that gene-diet interactions may contribute to the link between Mg²⁺ homeostasis and metabolic disorders in the general population.