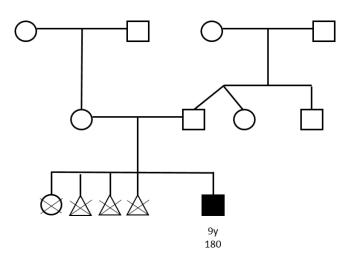
SUPPLEMENTAL METHODS

List of the known genes associated with nephrotic syndrome:

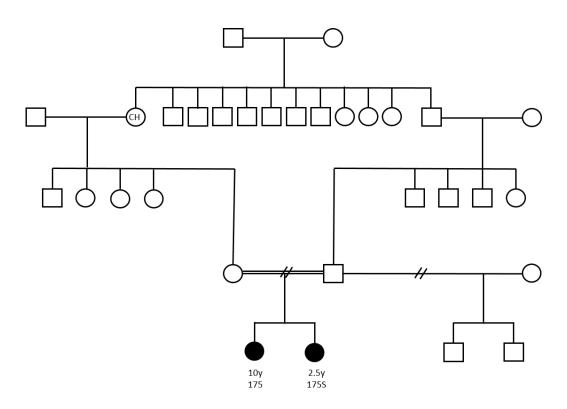
Gene	Inheritance	Disease				
ACTN4	AD	Familial and sporadic SRNS (usualy adult)				
ADCK4	AR	SRNS				
ALG1	AR	Congenital disorder of glycosylation				
ANLN	AD	FSGS (mainly adult)				
ARHGAP24	AD	FSGS				
ARHGDIA	AR	Congenital nephrotic syndrome				
CD151	AR	NS,pretibial bullous skinlesions, neurosensory deafness, bilateral lacrim duct stenosis, nail dystrophy, and -thalassemia minor				
CD2AP	AD/AR	FSGS/SRNS				
CFH	AR	MPGN type II + NS				
COL4A3	AR	Alport's disease/FSGS				
COL4A4	AR	Alport's disease/FSGS				
COL4A5	X-linked AR	Alport's disease/FSGS				
COQ2	AR	Mitochondrial disease/isolated nephropathy				
COQ6	AR	NS +/- sensorineural deafness; DMS				
CRB2	AR	SRNS				
CUBN	AR	Intermittent nephrotic range proteinuria +/- with epilepsia				
DGKE	AR	Hemolytic-Uremic Syndrome + SRNS				
E2F3	AD	FSGS+mental retardation (whole gene deletion)				
EMP2	AR	Childhood-onset SRNS and SSNS				
INF2	AD	Familial and sporadic SRNS, FSGS-associated Charcot-Marie-Tooth neuropathy				
ITGA3	AR	Congenital interstitial lung disease, nephrotic syndrome, and mile epidermolysis bullosa				
ITGB4	AR	epidermolysis bullosa and pyloric atresia + FSGS				
KANK1	AR	SSNS				
KANK2	AR	SSNS/SDNS +/- hematuria				
KANK4	AR	SRNS + haematuria				
LAMB2	AR	Pierson syndrome				
LMNA	AD	Familial partial lipodystrophy + FSGS				
LMX1B	AD	Nail patella syndrome; also FSGS without extrarenal involvement				
MYO1E	AR	Familial SRNS				
NUP93	AR	Childhood SRNS				
NUP107	AR	Childhood SRNS				
NUP205	AR	Childhood SRNS				
NPHS1	AR	Congenital nephrotic syndrome/SRNS				
NPHS2	AR	CNS, SRNS				
NXF5	X-linked recessive	FSGS with co-segregating heart block disorder				
OCRL	X-linked recessive	Dent disease2, Lowe syndrome, +/- FSGS, +/- nephrotic range proteinuria				
PAX2	AD	adult onset FSGS without extrarenal manifestations				
PDSS2	AR	Leigh syndrome				
PLCe1	AR	Congenital nephrotic syndrome/SRNS				
PMM2	AR	Congenital disorder of glycosylation				
PODXL	AD	FSGS				

PTPRO	AR	NS				
SCARB2	AR	Action myoclonus renal failure syndrome +/-hearing loss				
SMARCAL1	AR	Schimke immuno-osseous dysplasia				
SYNPO	AD	sporadic FSGS (promoter mutations)				
TRPC6	AD	Familial and sporadic SRNS (mainly adult)				
TTC21B	AR	FSGS with tubulointerstitial involvment				
WDR73	AR	Galloway-Mowat syndrome (microcephaly and SRNS)				
WT1	AD	Sporadic SRNS (children—may be associated with abnormal genitalia Denys-Drash and Frasier syndrome				
XPO5	AR	Childhood SRNS				
ZMPSTE24	AR	Mandibuloacral dysplasia with FSGS				
МҮН9	AD/assoc.	MYH9-related disease; Epstein and Fechtner syndromes				
APOL1	G1, G2 risk alleles	Increased susceptibility to FSGS and ESRD in African Americans, Hispanic Americans and in individuals of African descent				

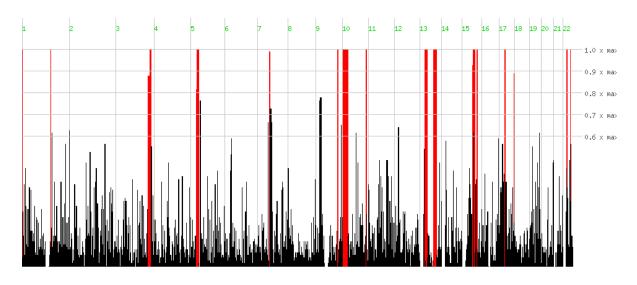

Table S1. 53 genes associated with steroid-resistant nephrotic syndrome (SNRS) of congenital, childhood, or adult onset, familial and sporadic origin, different syndrome association/risk factors are shown.¹⁻⁸

Mapping statistics - Coverage – whole exome

	Mean	Std. Error
Reads mapped to target (%)	73.16	0.25
Reads mapped to target plus 150bp (%)	82.25	0.35
Mean coverage	115.90	1.48
Accessible target bases 1x (%)	98.50	0.04
Accessible target bases 5x (%)	97.35	0.07
Accessible target bases 10x (%)	96.06	0.11
Target bases 20x (%)	92.60	0.21


Table S2. Coverage – whole exome

SUPPLEMENTAL RESULTS


Figure S1. Family pedigree of patient 180.

Black filled square represents patient 180 diagnosed with SRNS at the age of 9 years who is a compound heterozygote forMAGI2; variant in exon 1 was inherited from the Father and in exon 20 from the Mother. Crossed triangles represent miscarriages and the crossed circle represents stillborn female. DNA samples from other members of the family were not available.

Figure S2. Family pedigree of sisters 175 and 175S.

Black filled circles represent sisters 175 and 175S whose parents are first cousins. Both siblings are homozygous for a single nucleotide deletion in exon 22 of MAGI2 gene. Mother of the siblings is heterozygous for the variant. DNA samples from other members of the family was not available.CH - Celiac and heart disease.

Figure S3. Homozygosity plot.

Homozygosity mapping (http://www.homozygositymapper.org/) was performed for individual 175 since the parents are first cousins. Homozygosity plot is shown with chromosome numbers presented on x-axis and score on y-axis. Red bars represent regions of homozygosity, which reach maximum significance (height of red bar) on chromosomes: 1, 3, 5, 9, 10, 13, 15, 17and 22. Only 6 homozygous variants with MAF <0.01 were found within the homozygosity regions, none of these variants seemed however like a good SRNS gene candidate. One (*AKR1C1*, RS139588200) was found 9 times as a homozygote in ExAC and therefore not considered causative. Four other (*GABRD*, *POLR2M*, *RAD51D* and *NUP155*) were either found to be heterozygous or not present in the other affected sibling. One variant (*IGLL5* RS201956362 - not checked with Sanger sequencing here) affects not conserved amino acid and the substituted threonine is present in many other species at this position and therefore was not considered as likely causative in this patient.

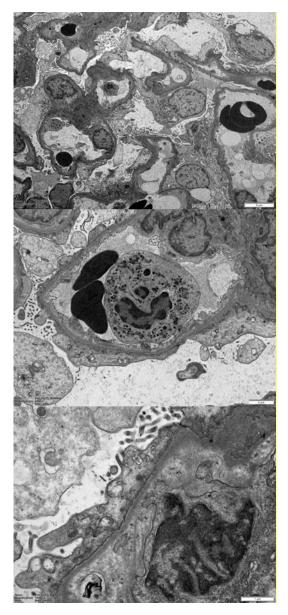
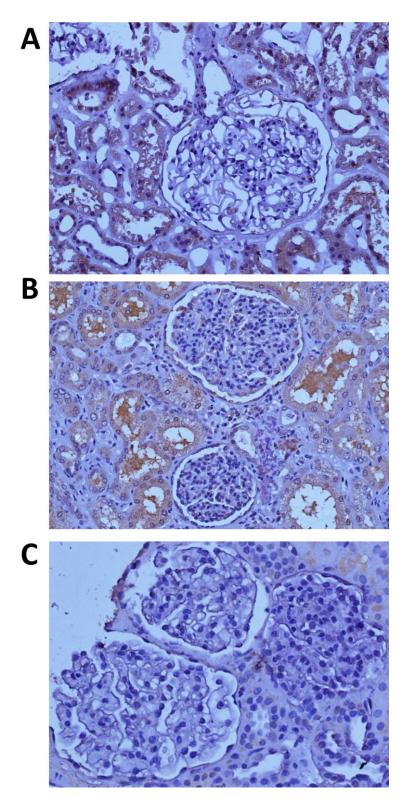



Figure S4. Electron microscopy images of a renal biopsy sample from patient 180.

One glomerulus was examined by electron microscope method. The mesangial area is normal and normocellular with no evidence of mesangial electron dense deposits. There are no peripheral electron dense deposits. The capillary loops are open and the endothelial fenestration is intact. The majority of the capillary loops have normal GBM (glomerular basement membrane). Diffuse podocyte foot process fusion is seen on the outer surface of the GBM.

Immunohistochemistry with Santa Cruz MAGI2 antibody

Figure S5. MAGI2 (Santa Cruz) staining

Immunohistochemical staining with human anti-MAGI2 antibody (Santa Cruz) is shown (20x). A - A kidney which was not suitable for transplant was used as a control. B – A nephrectomy specimen obtained from individual 175 (homozygous mutation in *MAGI2*). C – Biopsy specimen obtained from individual 180 (compound heterozygous mutation in *MAGI2*) shows relative absence of MAGI2.

			ExAC frequency				
gene and variant	Phred scalec dbSNP144 variant quality		Allele count	Allele Number	Number of homozygotes	Allele freq	Additional significant information*
KTN1:NM_001079521:exon40: c.3697C>A:p.Leu1233Met	rs372815686	170		·			Both variants are inherited from Mother (in cis conformation) and therefore not considered as likely causative here. Kinectin 1 (Kinesin Receptor). Mice homozygous for a targeted null mutation or a floxed allele
KTN1:NM_001079521:exon6:c. 964-7A>G	rs569480873	192	6	120590	0	4.98E-05	exhibit no discernable phenotype; mice are viable and fertile up to one year of age. Expression: cells in glomeruli – medium/high; cells in tubules – medium/high
MAGI2:NM_012301:exon1:c.64 _71del:p.Arg22Glyfs*7	No	217		·			This compound heterozygote is in trans. Deletion inherited from the Father and insertion from the Mother.Membrane Associated Guanylate Kinase, WW And PDZ Domain Containing 2. Mice homozygous for a knock-out allele die within 24 hours of
MAGI2:NM_012301:exon20:c.3 526_3533dup:p.Glu1178Aspfs* 9	No	217	·	·		·	birth and possess hippocampal neurons with altered dendritic spine morphology. Homozygotes for different knock-out allele die shortly after birth, exhibiting anuria, increased plasma creatinine levels, and abnormal podocyte morphology. Expression: cells in glomeruli – medium; cells in tubules – low
MCC:NM_001085377:exon1:c. 58_63dup:p.Gly20_Gly21dup	No	217				·	Both variants are inherited from Mother (in cis conformation) and therefore not considered as likely causative here. Mutated In Colorectal Cancers (MCC); Mice
MCC:NM_001085377:exon6:c. 994G>A:p.Glu332Lys,	RS185322500	156	5	121250	0	4.12E-05	homozygous for hypomorphic or null mutations are viable and fertile with no gross abnormalities. Expression: cells in glomeruli – not detected/medium; cells in tubules – not detected/high
MICALCL:NM_032867:exon3:c. 1412_1413insTCC:p.Thr471_Al a472insPro (H)	No	80.4					Similar inframe insertion around this region are present in ExAC and therefore this variant is less likely to be significant here. MICAL C-Terminal Like (MICALCL). Variant not checked with Sanger sequencing. Expression: cells in glomeruli – low; cells in tubules –high/medium
Z/C5:NM_033132:exon1:c.1248 _1262del:p.Pro420_Pro424del	rs778996938	217					Deletion inherited from Father. Similar inframe insertion/deletions around this region are present in ExAC and therefore this variant is less likely to be significant here. p.Ser610Phe inherited from the Mother. Zic Family Member 5; Homozygous null mice
ZIC5:NM_033132:exon2:c.1829 C>T:p.Ser610Phe	rs201876139	184	63	121024	0	0.00052	display postnatal lethality and reduced life spans with exencephaly, abnormal cerebral cortex and diencephalon morphology, abnormal gait and posture, and impaired growth. Expression: cells in glomeruli – not available; cells in tubules – not available

Table S3. Rare variants found in patient 180.

H – homozygous, * - Additional information obtained from GeneCards (http://www.genecards.org/) and Mouse GenomeInformatics (http://www.informatics.jax.org/), ExAC - The Exome Aggregation Consortium (http://exac.broadinstitute.org/), The Human Protein Atlas (http://www.proteinatlas.org/)

	ExAC frequency						
gene and variant	dbSNP144	Phred scaled variant quality	Allele count	Allele Number	Number of homozygotes	Allele freq	Additional significant information*
<i>AKR1C1</i> :NM_001353 :exon5:c.509G>A:p.A rg170His (H) ^{HM}	RS139588200	222	912	121406	9	0.007512	Present 9 times as a homozygote in individuals without a kidney phenotype. Variant not considered significant and thus not checked for presence in 1755. Aldo-Keto Reductase Family 1, Member C1. Expression: cells in glomeruli – not detected; cells in tubules – high
GABRD:NM_000815: exon3:c.C184C>T:p.P ro62Ser (H) ^{HM, EA}	No	222					Variant present within a homozygosity run. This variant is present as a heterozygote in the 1755. Gamma- Aminobutyric Acid (GABA) A Receptor, Delta. Expression: cells in glomeruli – not detected; cells in tubules – not detected
<i>IGLL5</i> :NM_00117812 6:exon3:c.523G>A:p. Ala175Thr (H) ^{HM}	RS201956362	222	177	121084	0	0.001462	Substitution affects weakly conserved amino acid, Thr present in several species in this position. Variant not considered significant and thus not checked for presence in 175S. Immunoglobulin Lambda-Like Polypeptide 5. Expression: cells in glomeruli – not detected; cells in tubules – high
MAGI2:NM_012301: exon22:c.3998delG: p.Gly1333Alafs*141 (H) ^{EA}	No	150					Patient 175S is also homozygous for this deletion. Membrane Associated Guanylate Kinase, WW And PDZ Domain Containing 2. Mice homozygous for a knock-out allele die within 24 hours of birth and possess hippocampal neurons with altered dendritic spine morphology. Homozygotes for different knock-out allele die shortly after birth, exhibiting anuria, increased plasma creatinine levels, and abnormal podocyte morphology. Expression: cells in glomeruli – medium; cells in tubules – low
<i>NUP155</i> :NM_15348 5:exon6:c.723G>A:p. Gln241Gln (H) ^{HM, EA}	No	222	·				Variant present within a homozygosity run. This variant is not present in patient 1755. Nucleoporin 155kDa. Expression: cells in glomeruli – medium/low; cells in tubules – medium/low
<i>POLR2M</i> :NM_01553 2:exon2:c.606G>A:p. Ala202Ala (H) ^{HM, EA}	RS139384982	222	4	121362	0	0.00003296	Variant present within a homozygosity run. This variant is present only as a heterozygous in the sister - 1755. Polymerase (RNA) II (DNA Directed) Polypeptide M. Expression: cells in glomeruli – not available; cells in tubules – not available
<i>RAD51D</i> :NM_00287 8:exon1:c.26G>C:p.C ys9Ser (H) ^{HM, EA}	RS140825795	222	42	119626	0	0.0003511	Variant present within a homozygosity run. This variant is not present in the sister-1755. RAD51 Paralog D. Expression: cells in glomeruli – not available; cells in tubules – not available
<i>SKOR1</i> :NM_0012580 24:exon5:c.775A>C: p.Lys259QGIn ^{EA}	RS776369126	215	1	110882	0	0.000009019	Both variants are present also in the sister 175S and their mother thus both variants are on the same allele .
<i>SKOR1</i> :NM_0012580 24:exon2:c.80G>C:p. Arg27Thr ^{EA}	No	174			-		SKI Family Transcriptional Corepressor 1. Expression: cells in glomeruli – not detected; cells in tubules – not detected

Table S4. Rare variants found in patient 175

H – homozygous, * - Additional information obtained from GeneCards (http://www.genecards.org/) and Mouse Genome Informatics (http://www.informatics.jax.org/), ExAC - The Exome Aggregation Consortium (http://exac.broadinstitute.org/), The Human Protein Atlas (http://www.proteinatlas.org/). HM – variants within homozygosity stretches, EA – variants found through exome analysis. *AKR1C1* and *IGLL5* were not checked with Sanger sequencing. Only *MAGI2* deletion was found in both siblings (175 and 175S).

Supplementary References:

- McCarthy, HJ, Bierzynska, A, Wherlock, M, Ognjanovic, M, Kerecuk, L, Hegde, S, Feather, S, Gilbert, RD, Krischock, L, Jones, C, Sinha, MD, Webb, NJ, Christian, M, Williams, MM, Marks, S, Koziell, A, Welsh, GI, Saleem, MA, Group, RtUSS: Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. *Clinical journal of the American Society of Nephrology : CJASN*, 8: 637-648, 2013.
- Sadowski, CE, Lovric, S, Ashraf, S, Pabst, WL, Gee, HY, Kohl, S, Engelmann, S, Vega-Warner, V, Fang, H, Halbritter, J, Somers, MJ, Tan, W, Shril, S, Fessi, I, Lifton, RP, Bockenhauer, D, El-Desoky, S, Kari, JA, Zenker, M, Kemper, MJ, Mueller, D, Fathy, HM, Soliman, NA, Group, SS, Hildebrandt, F: A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. *Journal of the American Society of Nephrology : JASN*, 26: 1279-1289, 2015.
- Gee, HY, Zhang, F, Ashraf, S, Kohl, S, Sadowski, CE, Vega-Warner, V, Zhou, W, Lovric, S, Fang, H, Nettleton, M, Zhu, JY, Hoefele, J, Weber, LT, Podracka, L, Boor, A, Fehrenbach, H, Innis, JW, Washburn, J, Levy, S, Lifton, RP, Otto, EA, Han, Z, Hildebrandt, F: KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. *The Journal of clinical investigation*, 125: 2375-2384, 2015.
- 4. Miyake, N, Tsukaguchi, H, Koshimizu, E, Shono, A, Matsunaga, S, Shiina, M, Mimura, Y, Imamura, S, Hirose, T, Okudela, K, Nozu, K, Akioka, Y, Hattori, M, Yoshikawa, N, Kitamura, A, Cheong, HI, Kagami, S, Yamashita, M, Fujita, A, Miyatake, S, Tsurusaki, Y, Nakashima, M, Saitsu, H, Ohashi, K, Imamoto, N, Ryo, A, Ogata, K, Iijima, K, Matsumoto, N: Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome. *American journal of human genetics*, 97: 555-566, 2015.
- 5. Braun, DA, Sadowski, CE, Kohl, S, Lovric, S, Astrinidis, SA, Pabst, WL, Gee, HY, Ashraf, S, Lawson, JA, Shril, S, Airik, M, Tan, W, Schapiro, D, Rao, J, Choi, WI, Hermle, T, Kemper, MJ, Pohl, M, Ozaltin, F, Konrad, M, Bogdanovic, R, Buscher, R, Helmchen, U, Serdaroglu, E, Lifton, RP, Antonin, W, Hildebrandt, F: Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. *Nature genetics*, 2016.
- 6. Colin, E, Huynh Cong, E, Mollet, G, Guichet, A, Gribouval, O, Arrondel, C, Boyer, O, Daniel, L, Gubler, MC, Ekinci, Z, Tsimaratos, M, Chabrol, B, Boddaert, N, Verloes, A, Chevrollier, A, Gueguen, N, Desquiret-Dumas, V, Ferre, M, Procaccio, V, Richard, L, Funalot, B, Moncla, A, Bonneau, D, Antignac, C: Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. *American journal of human genetics*, 95: 637-648, 2014.
- 7. Bierzynska, A, Soderquest, K, Koziell, A: Genes and podocytes new insights into mechanisms of podocytopathy. *Frontiers in endocrinology*, **5:** 226, 2014.
- 8. De Mutiis, C, Pasini, A, La Scola, C, Pugliese, F, Montini, G: Nephrotic-range Albuminuria as the presenting symptom of Dent-2 disease. *Italian journal of pediatrics*, 41: 46, 2015.