

Suppl. Fig. 1. Fingerprint-like pattern of Sns/Kirre is maintained throughout development

(A-B) Control Garland nephrocyte dissected from 1st instar larva and stained for Sns/Kirre. Fingerprint-like pattern is visible as dots in cross section (A-A") or fine lines on the surface (B-B"). Distance of lines is 250-500 nm.

(C-D) Control Garland nephrocyte dissected from a 2nd instar larva and stained for Sns/Kirre.

(D) Fingerprint-like pattern is visible like in the second instar larval stage.

(E-F'') GCN from 3rd instar larva with expression of *Cas9* driven by *Hand*-GAL4 without expression of gRNA. Sns and Kirre localize towards the cell periphery (E) and a fingerprint-like pattern is detected in the surficial section. This genotype serves as a negative control for CRISPR/Cas9-mediated gene silencing.

(G) Control garland cell nephrocyte dissected from adult animal several days after eclosion. Sns and Kirre are expressed and the fingerprint pattern is maintained

Suppl. Fig. 2. Adult nephrocytes show tracer endocytosis

(A-C) Control Garland nephrocyte dissected from adult animals several days after eclosion. The Hand-GFP, MHC-ANF-RFP;Dot-GAL4 is used as lack of uptake was previously described in this background. The filter set is optimized for Texas-Red but not RFP (endogenous tracer).

(A) The adult GCN are identified by Hand-GFP, HRP and two nuclei as GCN. Without tracer incubation there is no red fluorescence visible.

(B) Exposure for 30 sec to Texas-Red-dextran results in appearance of small red vesicles at the periphery of the cell. This indicates rapid tracer uptake.

(C) The same exposure as in (B) followed by 4 rinses and chasing for 10 min without tracer shows first appearance of vesicles deeper in the cell (arrow). GCN cell membrane is marked by the anti-HRP antibody.

(D) Surface detail of a GCN dissected from adult animal shows typical nephrocyte ultrastructure with slit diaphragms (black arrow heads) and labyrinthine channels.

(E) Magnification from the image in (D). Slit membranes are visible (black arrow heads) and show regular morphology compared to the larval stage (compare Fig. 1D).

Suppl. Fig. 3. Albumin out-competes uptake of transferrin and avidin.

(A) Control Garland nephrocytes incubated for 5 min with 3 μ M Texas-Red-transferrin alone (upper panel) or in presence of an excess of 30 μ M FITC-albumin (lower panel). Uptake of Texas-Red-transferrin is strongly reduced by competition.

(B) Quantitation of fluorescence from (A). N=3 per intervention.

(C) Control Garland nephrocytes incubated for 5 min with 3 μ M Texas-Red-avidin (3 μ M) alone (upper panel) or in presence of an excess of 30 μ M FITC-albumin (lower panel). Uptake of Texas-Red-avidin is strongly reduced by competition.

(D) Quantitation of fluorescence from (C). N=3 per intervention.

Supplementary Table 1. 37 genes that if mutated cause human SRNS and their Drosophila orthologues.

Left column indicates functional group of nephrosis genes (see Suppl. Fig.4) followed by human genes involved in the pathogenesis of nephrotic syndrome, literature reference, human accession number, and the corresponding Drosophila orthologue. Orthologues were identified using BLAST analysis and online tools and the number of potential orthologues was restricted to a single gene. COL4A3, ZO1 and KIRREL/NEPH1 are not published monogenic causes of SRNS in humans. They are included due to previous findings implying their relevance for podocytes and of their orthologues for nephrocytes⁶.

CATE-	HUMAN	HUMAN GENE FULL NAME	REFERENCE	ACCESSION	DROSOPHILA	ORTHOLOGUE	ANNO-
GORY	GENE		(1 st AUTHOR/	NUMBER	ORTHO-	FULL NAME	TATION
	SYMBOL		YEAR)		LOGUE		SYMBOL
embrane complex	NPHS1	NEPHRIN	Kestila/1998 ¹	NM 0046463	sns	sticks and stones	CG33141
	KIRREI		Dopoviel/2001 ²	NM_004040.5	kirro	kin of irre	CG3653
			D010viei/2001	NM_018240.5	MITE	CIN85 and CD2AP	003033
	CD2AP	CD2-ASSOCIATED PROTEIN	Lowik/2007 ³	NM 012120.2	cindr	orthologue	CG31012
		CRUMBS, DROSOPHILA, HOMOLOG				<u> </u>	
	CRB2	OF, 2	Ebarasi/20154	NM_173689.5	crb	crumbs	CG6383
		FAT TUMOR SUPPRESSOR,	-				
	FAT1	DROSOPHILA, HOMOLOG OF, 1	Gee/2016°	NM_005245.3	ft	fat	CG3352
	NPHS2	PODOCIN	Boute/2000 ⁶	NM_014625.2	Mec2	Mec2	CG7635
<u>е</u>	DOKE		0		Darka	Discut shus and binses a	
SII	DGRE		Ozaltin/2013	NM_003647.2	Dgke	Diacyl glycerol kinase ɛ Brotoin turooino	CG8657
	PTPRO	RECEPTOR-TYPE O	Ozaltin/2011 ⁸	NM 030667.2	Ptn10D	nhosphatase 10D	CG1817
	TIP 1	TIGHT JUNCTION PROTEIN 1	(Huber/2003 ⁹)	NM_003257.4	nvd	polychaetoid	CG43140
	COL 442		(Malono/2014 ¹⁰)	NM_000001.4	yka	Viking	00101110
÷.	002443	OOLLAGEN, THE N, ALTHAS	(11110110/2014)	NIVI_000091.4	vng	multiple edematous	0010030
tion	ITGA3	INTEGRIN, ALPHA-3	Has/2012 ¹¹	NM 005501.2	mew	wings	CG1771
acion	ITGB4	INTEGRIN, BETA-4	Kambham/2000 ¹²	NM 000213.3	mvs	myospheroid	CG1560
ш	LAMB2	LAMININ, BETA-2	Zenker/2004 ¹³	NM 002292.3	LanB1	LanB1	CG7123
	ADCK4	AARF DOMAIN-CONTAINING KINASE 4	Ashraf/2013 ¹⁴	NM 024876.3	CG32649	NN	CG32649
			Diomedi-			Coenzyme Q	0.002010
CoQ ₁₀	COQ2	COQ2, S. CEREVISIAE, HOMOLOG OF	Camassei/2007 ¹⁵	NM 015697.7	Cog2	biosynthesis protein 2	CG9613
	COQ6	COQ6, S. CEREVISIAE, HOMOLOG OF	Heeringa/2011 ¹⁶	NM 182476.2	CG7277	NN	CG7277
-		PRENYL DIPHOSPHATE SYNTHASE,	0				
	PDSS2	SUBUNIT 2	Lopez/2006 ¹⁷	NM_020381.3	CG10585	NN	CG10585
	ACTN4	ACTININ, ALPHA-4	Kaplan/2000 ¹⁸	NM_004924.4	Actn	α actinin	CG4376
ų	ANLN	ACTIN-BINDING PROTEIN ANILLIN	Gbadegesin/201419	NM_018685.2	scra	scraps	CG2092
			20			Rho GTPase activating	
	ARHGAP24	RHO GTPase-ACTIVATING PROTEIN 24	Akilesh/2011 ²⁰	NM_001025616.2	RhoGAP92B	protein at 92B	CG4755
lati		RHO GDP-DISSOCIATION INHIBITOR	Cupto/2012 ²¹		Rhacol	PhoCDI	0.07000
nße			Brown/2010 ²²	NM_001185078.1	KIIUGDI form 2	formin 2	CG7823
2 4		INVERTED FORMIN 2	BIOWII/2010	NM_022489.3	IOFIIIS	ioimin 3	CG33556
cti	KANKO			NM_001256876.1			
Endo- cytosis			Coo/2015 ²³	NM_015493.6	Konk	Konk	0010040
	MVO1E		Molo/2011 ²⁴	NW_101712.4	Muc61E	Muosin 61E	000455
	MVHO		Hooth/2001 ²⁵	NIVI_004998.3		zippor	0045700
			10011/2001	INIVI_UUZ473.4	210	דיאאבי	0615/92
	CUBN	CUBILIN	Ovunc/2011 ²⁶	NM_001081.3	Cubn	Cubilin ortholog	CG32702
		SCAVENGER RECEPTOR CLASS B,				epithelial membrane	CG2727
	SCARB2	MEMBER 2	Berkovic/2008 ²⁷	NM_005506.3	emp	protein	002727
rans- riptional egulation		ASSOCIATED, ACTIN-DEPENDENT			-		
		REGULATOR OF CHROMATIN,					
	SMARCAL1		Boerkoel/200228	NM_014140.3	Marcal1	Marcal1	CG3753
			Vollrath/1008 ²⁹	NM 001474444	CC22105	NN	0000405
No orthologous C c gene identified r			Hinkon (2000 ³⁰	NIVI_00117414.1	0032100	1 1 1 1	0032100
	FLCET		Coo/2014 ³¹	INIVI_U16341.3			
			Colin/2014 ³²	NIVI_001424.4			
	WDR/3	COMPLEMENT EACTOR !!	Coll1/2014	NIVI_032856.2			
			Jeanniarra/1000 ³⁴	NIVI_000186.3			
	VV 11		Jeanpierre/1998	NM_024426.4			
	MTTL1	LEUCINE, 1;	Yasukawa/2000 ³⁵	NC_012920.1			

Suppl. Fig. 4. Additional FITC-albumin uptake experiments.

(A-D) Shown are examples FITC-albumin uptake after 30 sec exposure of wild type GCN (A) and GCN *heterozygous* for CG7277^{KG03584} over a wild type chromosome (B). Robust robust FITC-albumin endocytosis can be observed in both genotypes. GCN expressing RNAi directed against *sns* (B), and a second RNAi directed against Coq2 show reduced FITC-albumin uptake. All scale bars represent 10 μ m.

(E) Quantitation of fluorescent intensity for genotypes as indicated compared normalized to GFP-RNAi (N=3 per intervention). Human orthologue is denoted in brackets, red letters indicate significantly reduced FITC-albumin endocytosis, green letters indicate no significant effect (may diverge from the two further RNAi shown in Fig. 3). The allele and deficiency affecting the orthologue of *COQ6* are *heterozygous* over a wild type chromosome. Statistical significance was calculated using ANOVA and Dunnet's post hoc analysis.

Suppl. Fig. 5. Knock-down efficiency tested by Immunofluorescence.

(A-F) All images are recorded with identical settings for control and knockdown.

(A) GCN expressing control RNAi stained for the orthologue of ITGB4.

(B) Silencing of the orthologue of ITGBA strongly reduces signal of the anti-mys antibody suggesting efficient knockdown.

(C) GCN expressing control RNAi stained for the orthologue of ITGA3.

(D) Silencing of the orthologue of ITGBA strongly reduces signal of the anti-mew antibody suggesting efficient knockdown.

(E) GCN expressing control RNAi stained for the orthologue of *CRB2*.

(F) Silencing of the orthologue of *CRB2* strongly reduces signal of the anti-crumbs antibody suggesting efficient knockdown.

Supplementary Fig. 6. Uptake of TUNEL-negative cells is strongly affected upon knockdown of *sns* and *Coq2*.

(A-A') Control garland cell nephrocytes are TUNEL-negative and show strong uptake of FITC-albumin. (B-B') Silencing *sns* results in the appearance of TUNEL-positive nephrocytes like the cell below in the middle of the representative image. TUNEL-negative and TUNEL-positive cells alike show a reduced uptake of FITC-albumin. (C) Quantitation of FITC-albumin-uptake using Image J for TUNEL-negative cells expressing control-RNAi (EGFP-RNAi) or RNAis directed against *sns* or *Coq2* (N= 3 animals for each genotype).

Supplementary. Fig. 7. *Coq2*-RNAi findings are confirmed by a second RNAi-line.

(A-B) EM-images of nephrocytes expressing a second Coq2-RNAi show reduced number of SDs (arrow heads) and labyrinthine channels (asterisks). SDs are often mislocalized into the labyrinthine channels and multiplied (red arrow heads).

(C) Quantitation of frequency of SD measured along one complete GNC diameter for control-RNAi compared to Coq2-RNAi as mean of 6 cells from 3 different animals. Frequency of SDs was classified into three groups: normal (>2 slits/ μ m), reduced (0.5-2 slits/ μ m) and sporadic (<0.5 slits/ μ m). Note the strong reduction of SDs in Coq2-RNAi.

(D-D") Immunostaining of Sns/Kirre in Garlands expressing *Coq2*-RNAi2 reveals gaps and partial misplacement of Sns/Kirre from the membrane.

(E-E'') Surface section of nephrocyte expressing *Coq2*-RNAi 2 shows gaps of Sns/Kirre on the surface.

All Scale bars represent 500 nm in electron microscopy images and 5 μ m in confocal images.

Supplementary Table 2. Drosophila RNAi lines used in this study.

Drosophila stocks were obtained from from Vienna Drosophila Drosophila Resource Center (VDRC) or Bloomington Drosophila Stock Center at Indiana University (BDSC) unless otherwise indicated. Source ID is noted as Transformant ID (VDRC) or stock number (BDSC). Uptake is denoted as percent of uptake compared to control (GFP-RNAi).

stock name	CG #	source	source ID#	uptake [%]
UAS-EGFP-RNAi	-	BDSC	41553	100
UAS-mCherry-RNAi	-	BDSC	35785	95
UAS-sns-RNAi	CG33141	VDRC	109442	10
UAS-sns-RNAi	CG33141	BDSC	64872	12
UAS-sns-RNAi	CG33141	H. Skaer		7
UAS-kirre-RNAi	CG3653	VDRC	27227	8
UAS-kirre-RNAi	CG3653	VDRC	109585	17
UAS-pyd-RNAi	CG43140	BDSC	35225	14
UAS-pyd-RNAi	CG43140	BDSC	33386	13
UAS-Mec2-RNAi	CG7635	VDRC	104601	57
UAS-Mec2-RNAi	CG7635	BDSC	61259	54
UAS-Cindr-RNAi	CG31012	BDSC	38328	47
UAS-Cindr-RNAi	CG31012	BDSC	38976	54
UAS-crb-RNAi	CG6383	BDSC	40869	66
UAS-crb-RNAi	CG6383	BDSC	34999	78
UAS-Ptp10D-RNAi	CG1817	VDRC	110443	43
UAS-Ptp10D-RNAi	CG1817	BDSC	39001	93
UAS-Ptp10D-RNAi	CG1817	VDRC	1101	/6
UAS-Dgke-RNAi	CG8657		4659	/5
UAS-Dgke-RNAi	CG8657	BDSC	57750	83
UAS-IT-RINAI	0000000		108863	81
UAS-IT-RIVAI	000052	RDSC	34970	92
UAS-IT-RIVAI	CG3352		9396	94
UAS-LANB1-RIVAI	CG/123		23121	14
UAS-LANB1-RNAi	CG/123	BDSC	42616	(1
UAS-MYS-KIVAI	001560	RDSC	33642	51
UAS-MYS-RNAI	CG1560		29619	19
UAS-MYS-RNAI	CG1560	BDSC	27735	42
UAS-mew-RNAi	CG1771	RDSC	44553	47
UAS-mew-RNAi	CG1771	RDSC	27543	54
UAS-vkg-RNAi	CG16858	BDSC	50895	57
UAS-VKg-KINAI	CG16858		106812	47
UAS-COQ2-RNAI	CG9613	BDSC	27054	13
UAS-COQ2-KIVAI (2)	0000000	VDRC	108373	34
UAS-CG32649-RNAi	CG32649		110801	12
UAS-CG32649-RNAi	CG32649	RDSC	57039	46
003-06/2//-KNAI	06/2//		30693	108
CG7277KG03584/Def	0.07077	BDSC	13964/9602	53
CC7277KG03584/	CG/277	BDSC	13964	31
	06/2//	BDSC	13964	97
UG1211 DEIICIENCY/+	CG10595	BDSC VDBC	9602	94
UAS-CG IUSOS-KINAI	0010585	VDKC	110196	09
UAS-CG IUSOS-KINAI	00 10585	BDSC VDDC	51910	104
UAS-KINGAP92B-KINAI	CG4755	RDSC	105663	45
UAS Konk DNA:	CG10240	BDSC	33391	CC
UAS-Kalik-KIVAI	CG10249	VDPC	33432	59 52
UAS-NAIIK-RIVAI	CG2002	VDRC	15009	<u> </u>
LIAS-scra-RNAi	CG2092	BDSC	104074 52250	30
UAS-SUID-RIVAL	CG2092	VDPC	23358	23
UAS-SUID-RIVAL	CG7222	VDPC	33465	04
UAS-RhagDLPNA	CG7822	VDPC	103/03	34 76
UAS-RHUGDI-RNAI	CG7823	BDSC	40154	10
LIAS-zin-RNAi	CG3522	VDPC	40902	32 09
UAS-zin-RNAi	CG3522	BDSC	104208	30
UAS-ZIP-RIVAI	CG3522	BDSC	30/2/	40 50
1/4S-MV061E-PN/A	CG0155	VDPC	30239	101
UAS-WIYUU IF-RIVAI	CG9155	BDSC	/1690	82
UAS-MUOGIE-PNIA	CG0155	VDPC	41089	0Z //5
LIAS-Acto-RNA	CG4276	BDSC	49343	4 0
UAS-ACIII-RIVAI	CG4370		348/4	20
LIAS-Acto-RNA	CG4376	VDPC	1102	40
UAS-form3-RNA	CG32556	VDPC	110/19	49
LIAS-form3-RNAi	CG32556	VDPC	40094	00
LIAS-Marcal1-PNAi	CG3753	VDRC	3/701	55
LIAS-Marcal1-RNAi	CG3753	BDSC	34701	64
LIAS-CG32105-PNIAi	CG32105	VDBC	108747	112
UAS-CG32105-RNAi	CG32105	VDRC	51260	87
UAS-Cubn-RNAi	CG32702	BDSC	51726	A
UAS-Cubn-RNA	CG32702	BDSC	21/30	
LIAS-omn-RNA	CG2727	VDPC	10000	4
LIAS-emp-RNAi	CG2727	BDSC	12233	40
UAS-ND75-RNA	CG2296	BDSC	40947	4 0 30
UAS-ND75-RNA	CG2200	BDSC	22011	50
I I AS-mal-RNAi	CG42611	BDSC	22040	72
UAS-mal-RNAi	CG42011	VDPC	105071	71
I I AS-Amnionless-RNAi	CG11502	VDRC	103071	1
I IAS-Amnionless-RNAi	CG11502	BDSC	/1056	2
0/10///////////////////////////////////	0011092	0000	+1900	, J