SUPPLEMENTAL MATERIAL

Table of Contents	Page
1 - Supplemental Methods	3
1.1 - Cell culture and reagents	3
1.2 - EdU proliferation assay	4
1.3 - Damage protocol	4
1.4 - Secondary screen (selection of the eight hit compounds- only HPTECs)	5
1.5 - In vitro damage models and selection of final compound - only HPTECs	5
1.6 - Experiment with different DYRK inhibitors after damage - only HPTECs	6
1.7 - Dose-response experiments with ID-8 and Harmine – HPTECs and	6
fibroblasts	
1.8 - Cell isolation, culture and seeding in 3 dimensional microphysiological	6
system (3D MPS) platform	
1.9 - Library preparation and RNAsequencing	7
1.10 Immunofluorescence	8
1.11 - Western blot	9
1.12 - References for Supplemental Methods	10
2 - Supplemental Tables	11
2.1 - Supplemental Table 1. List of antibodies used for immunocytochemistry,	11
immunofluorescence and western blot	
2.2 - Supplemental Table 2. List of the selected 129 hit compounds in the primary	11
screen	
2.3 - Supplemental Table 3. Fold change and p values of cell cycle proteins	15
modulated by the treatment with ID-8 or Harmine after different types of damage	
3 - Supplemental Figures	16
3.1 - Supplemental Figure 1. Primary screen shows compounds with potential pro-	16
proliferative effects in primary human proximal tubular epithelial cells (HPTECs)	
3.2 - Supplemental Figure 2. Compounds CGS21680, ID-8, ZM336372 and	17
PD151746 promoted proliferation of primary human proximal tubular epithelial cells	
(HPTECs) in, at least, two types of damage	
3.3 - Supplemental Figure 3. DYRK1A inhibitor ID-8 does not promote	18
proliferation of NIH/3T3 fibroblasts after damage	

- 3.4 Supplemental Figure 4. ID-8 promotes proliferation of primary human19proximal tubular epithelial cells (HPTECs) in 3 dimensional microphysiological system(3D MPS)
- 3.5 Supplemental Figure 5. RNA sequencing identifies differentially expressed21genes after ID-8 and Harmine treatment post-damage

1 - Supplemental Methods

1.1 - Cell culture and reagents

HPTECs were purchased from Biopredic International (Rennes, France). Cells were cultured in collagen VI-coated flasks with DMEM/Ham's-F12 GlutaMAX medium (ThermoScientific) supplemented with 100 IU/mL penicillin/100 µg/mL streptomycin (Gibco), 36ng/mL hydrocortisone (HC, Sigma), 10 ng/mL epidermal growth factor (EGF, Promega), 1% insulin-transferrin-selenium (ITS, Lonza), and 4 pg/mL triiodothyronine (T3, Sigma) (Full medium). In screening experiments, HPTECs were kept in DMEM/Ham's-F12 GlutaMAX medium only supplemented with penicillin/ streptomycin (Free medium). Cells were maintained at 37°C in a humidified 5% CO₂ incubator and the medium was replaced one day after seeding and then every other day. For all experiments cells were used at passage 3.

Proliferation effect was compared to NIH 3T3 fibroblasts (ATCC, CRL-1658). Cells were cultivated in DMEM (ThermoScientific) supplemented with 10% bovine calf serum (BCS) and 100 IU/mL penicillin/100 µg/mL streptomycin (Gibco). In screening experiments BCS was reduced to 1%.

For the experiments with fibroblasts we followed the same experimental design used with HPTECs: cells were seeded in 96 well plates and kept in 1% bovine calf serum (BCS) for 48 hours. Induction of damage was performed using three different *in vitro* models of acute cell damage. 1) Hypoxia: (1% O₂); 2) 15µM, 10µM, 5µM and 2.5µM cadmium chloride (CdCl₂); 3) 5µM cyclosporine A (CycloA) or 75µM polymyxin (PMB) for 24h. The 15µM of CdCl₂ used to damage HPTECs induced complete cell death in fibroblasts and the experiments were carried out in three different concentrations (10µM, 5µM and 2.5µM) and we selected 5uM based on the amount of cell death of 20%,

measured by cell number after damage compared to undamaged cells. After 24h of damage, cells were treated with ID-8 or Harmine from 0.1nM to 1uM for 48h, or kept in 1% BCS medium. The proliferation effect was measured based on the percentage of EdU-labelled cells compared to the untreated control (1% BCS medium) in triplicates, from two biological replicates.

1.2 - EdU proliferation assay

To evaluate the percentage of actively proliferating cells four hours before fixing the cells, a modified thymidine analog, EdU (Click-iT EdU Plus, Invitrogen) was added to each well with a final concentration of 10uM. After the incubation period cells were taken out of the incubator and all procedures were carried out at room temperature: cells were fixed with 4% of paraformaldehyde for 20 minutes, permeabilized with 100% ice cold methanol for 10 minutes and washed 3 x with 3% BSA in 1x PBS. EdU incorporation and detection were performed according to manufacturer's instructions. Nuclei were stained with 0.1 µg/ml Hoechst 33342 for 30 minutes in the dark. Fluorescence imaging was performed using an Operetta High-Content Imaging System (PerkinElmer) at 10X magnification, long WD objective, 17 fields/ well.

1.3 - Damage protocol

To test the ability of compounds to induce proliferation after damage, primary HPTECs in passage 3 were seeded in collagen VI-coated 96 well plates (10,000 cells/well) and NIH/3T3 fibroblasts were seeded in 96 well plates (3,000 cells/well) using an automatic cell dispenser (WellMate, ThermoScientific). HPTECs were seeded in DMEM/Ham's-F12 GlutaMAX medium (ThermoScientific) supplemented with 100 IU/mL penicillin/100

ID-8 stimulates tubular proliferation µg/mL streptomycin (Gibco), 36 ng/mL hydrocortisone (HC, Sigma), 10 ng/mL epidermal growth factor (EGF, Promega), 1% insulin-transferrin-selenium (ITS, Lonza), and 4 pg/mL triiodothyronine (T3, Sigma) and fibroblasts in DMEM, 10% BCS and 100 IU/mL penicillin/100 µg/mL streptomycin (Gibco) (Full medium). On day 1 HPTEC full medium was replaced by new medium containing all the supplements described above, except for the EGF (EGF-free medium) and fibroblast full medium was replaced by DMEM, 10% BCS. Because this experiment resulted in cell loss and cell damage supplement-free medium was replaced by EGF-free medium in order to prevent excessive cell death. Cells were maintained in EGF-free medium or 1% BCS medium for 48 hours in order to abolish proliferation stimulus from the growth factor. On day 3 cells were either not damaged (control) or damaged with: 1) incubation at 1% O₂ (Hypoxia); or 2) 15µM of cadmium chloride (CdCl₂); or 3) 5µM of cyclosporine A (CycloA) or 75µM of polymyxin B (PMB) in EGF-free medium for 24h. On day 4, cells were maintained in EGF-free or 1% BCS medium (untreated and control groups) or treated with the following compounds:

1.4 - Secondary screen (selection of the eight hit compounds - only HPTECs): treatment with 10µM and 30µM of CGS21680; 1µM and 3µM of GDC-0152; 10µM and 30µM of SB505124; 3µM and 10µM of ZM336372; 1µM and 3µM of Fasudil; 10µM and 30µM of Iniparib; 3µM and 10µM of PD151746; or 10µM and 30µM of ID-8. Cells were treated for 24h, 72h and 96h.

1.5 - In vitro damage models and selection of final compound - only HPTECs: treatment with 0.1µM, 0.21µM, 0.46µM, 1µM, 2.1µM, 4.6µM, 10µM, 21µM, 46µM and 100µM of CGS21680; ZM336372; PD151746; or ID-8. Cells were treated for 96h.

1.6 - Experiment with different DYRK inhibitors after damage - only HPTECs: treatment with 1uM of Harmaline; Harmane; Norharmane; AZ191; Harmine; ID-8; INDY; TC-S 7004; and TG 003. Cells were treated for 48h.

1.7 - Dose-response experiments with ID-8 and Harmine - HPTECs and fibroblasts: treatment with 1μ M, 0.1μ M, 0.01μ M, 0.001μ M and 0.0001μ M of ID-8 or Harmine. Cells were treated for 48h.

All compounds were dissolved in 100% DMSO in 10mM stock concentration and were added to the cells using D300 digital dispenser (Hewlett Packard). DMSO final concentration was normalized for all samples, except for control group which did not receive DMSO. Each experiment was performed using 3 biological replicates, in 3 technical replicates.

1.8 - Cell isolation, culture and seeding in 3 dimensional microphysiological system (3D MPS) platform

Healthy portions of the surgical specimen were dissected, stored at 4°C in Hanks balanced salt solution buffer containing penicillin-streptomycin, and processed for isolation of HPTECs within 24h. Confluent monolayer cultures of HPTECs with passage numbers 1 through 4 were suspended with 0.05% Trypsin-ethylenediamine tetraacetic acid, washed, counted, and resuspended at a concentration of 15 to 20×10^6 cells/mL. Approximately 5 µl of cell suspension were injected into the collagen IV–coated lumen of the 3D MPS platform (Nortis Inc.). Cells were allowed to adhere for 24 hours before

Supplemental material 6

initiating media flow at 0.5 µl/min. Cell coverage and integrity of the tubule structure were assessed under light microscopy on a weekly basis.

1.9 - Library preparation and RNA sequencing

RNA samples were isolated using RNeasy plus (Qiagen) (n=3 /group) and were checked for guality (RIN value>8.0) and guantity using Agilent 2200 Bioanalyzer instrument and nanodrop (Thermo Scientific), respectively. RNA-seg libraries were prepared using Illumina TruSeg Stranded mRNA sample preparation kits (San Diego, CA) from 500ng of purified total RNA according to the manufacturer's protocol. The finished dsDNA libraries were quantified by Qubit fluorometer and the quality was assessed by Agilent Bioanalyzer 2200. Uniquely indexed libraries were pooled in equimolar ratios, which was guantitated by gPCR and then sequenced on two Illumina HiSeg High-Output run with single-end 75bp reads by the Biopolymers Facility at Harvard Medical School. All samples were processed using an RNA-seq pipeline implemented in the bcbio-nextgen project (https://bcbio-nextgen.readthedocs.org/en/latest/).¹ Raw reads were examined for using quality issues FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure library and sequencing suitability.

Reads were aligned to UCSC build mm10 of the Mus musculus genome, augmented with transcript information from Ensembl release 90 using STAR.² Alignments were checked for evenness of coverage, rRNA content, genomic context of alignments, complexity and other quality checks using a combination of FastQC, Qualimap,³ MultiQC (https://github.com/ewels/MultiQC) and custom tools (Supplemental Figure 4A). Counts of reads aligning to known genes were generated by featureCounts.⁴ Transcripts Per

ID-8 stimulates tubular proliferation

Million (TPM) measurements per isoform were generated by quasi alignment using Salmon.⁵ Data was loaded into R using bcbioRNASeq R package.⁶ Covariate analysis, sample clustering and gene expression visualization were done with DEGreport R package.⁷ Differential expression at the gene level was called with DESeq2,⁸ using counts per gene estimated from the Salmon quasi alignments by tximport.⁹ Lists of differentially expressed genes were examined for gene ontology (GO) and KEGG term enrichment with clusterProfiler.¹⁰ In addition, a cut-off-free gene set enrichment analysis (GSEA) was performed using clusterProfiler and weighted fold change calculations from DESeq2.

1.10 Immunofluorescence

In order to validate upregulated genes found in the transcriptomics study at the protein level cells after treatment were fixed in 4% paraformaldehyde for 20' and permeabilized with 100% ice cold methanol for 10'. Cells were blocked with Odyssey buffer (Li-cor) for 1h at room temperature and incubated with conjugated antibodies and 0.1 µg/ml Hoechst 33342 overnight at 4°C. After incubation cells were washed 2x with 1x PBS-T and 2X with 1x PBS.

To stablish cell cycle phase we used a modified IF protocol previously described ¹¹. Briefly, four hours before fixing cells were pulsed with 10 μ M of EdU (cycling cells, ThermoScientific) and with Live/Dead fixable far-red dead cell stain (LDR, 1:2000, ThermoScientific). After four hours of incubation cells were fixed, permeabilized and stained with anti-phospho-Histone H3 (chromosome condensation during mitosis) conjugated with Alexa 488 (Cell Signaling) and with 0.1 μ g/ml of Hoechst 33342 (all nuclei) overnight at 4°C. After incubation cells were washed 2x with 1x PBS-T and 2X

with 1x PBS. Fluorescence imaging was performed using an Operetta High-Content Imaging System (PerkinElmer) at 10X magnification. Raw images were automatically analyzed for nuclei segmentation, intensity, roundness, border isolation and background (Columbus 2.4.2 Software, PerkinElmer). Twelve technical replicates were conducted on each biological replicate. Antibodies are listed in Supplemental Table 1.

1.11 - Western blot

Cells were harvested and lysed with M-PER Mammalian Protein Extraction Reagent (ThermoScientific) + 1X Halt protease and phosphatase inhibitor cocktail (ThermoScientific). Protein concentrations were determined using the BCA protein assay kit (Pierce, ThermoScientific), and equal amount of protein (20µg/sample, n=5-6/group) was loaded and run on a pre-casted 4-20% polyacrylamide gel (Bio-rad) and transferred to PVDF membranes (Bio-rad). Membranes were blocked with 5% milk in 1x TBS-T (Cell signaling) for 1h at room temperature and incubated with primary rabbit monoclonal anti-DYRK1A (Cell Signaling) overnight at 4°.C followed by horseradish peroxidase (HRP) linked anti-rabbit secondary antibody (Cell Signaling). For protein normalization membranes were striped with Restore™ Western Blot Stripping Buffer (ThermoScientific) for 5' and incubated with mouse monoclonal IgG anti-b-actin HRP linked (Santa Cruz) for 2h at room temperature. Bands were detected using enhanced chemiluminescence and captured with Synergy H1 Plate Reader (BioTek). Blots were quantified with the help of Image Studio Lite 5.2 software (Li-cor).

1.12 - References for Supplemental Methods

- 1. bcbio nextgen. https://bcbio-nextgen.readthedocs.io/en/latest/.
- 2. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.
- 3. García-Alcalde F, Okonechnikov K, Carbonell J, et al. Qualimap: evaluating nextgeneration sequencing alignment data. *Bioinformatics*. 2012;28(20):2678-2679.
- 4. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-930.
- 5. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. *Nat Methods.* 2017;14(4):417-419.
- 6. *bcbioRNASeq: R package for bcbio RNA-seq analysis* [computer program]. bcbioRNASeq: R package for bcbio RNA-seq analysis; 2017.
- 7. *Report of DEG analysis* [computer program]. Bioconductor version: Release (3.6); 2017.
- 8. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 2014;15(12):550.
- 9. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcriptlevel estimates improve gene-level inferences. *F1000Res.* 2015;4:1521.
- 10. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS*. 2012;16(5):284-287.
- 11. Hafner M, Niepel M, Subramanian K, Sorger PK. Designing Drug-Response Experiments and Quantifying their Results. *Curr Protoc Chem Biol.* 2017;9(2):96-116.

2 - Supplemental Tables

Supplemental Table 1. List of antibodies used for immunocytochemistry,

immunofluorescence and western blot

Protein	Primary	Dilution	Secondary	Dilution
Ki-67	ab15580, Abcam	1:100	ab150080, Alexa Fluor, 594 Abcam	1:1000
Epcam	ab20160, Abcam	1:100	ab150117, Alexa Fluor 488, Abcam	1:1000
PCNA	8580, Alexa Fluor 488 conjugated, Cell Signaling	1:500	-	-
E2F1	AB208078, Alexa Fluor 555 conjugated, Abcam	1:500	-	-
CCNB1	SC-752, Alexa Fluor 488 conjugated, Santa Cruz	1:500	-	-
CCNE2	50-9714-80, Alexa Fluor 647 conjugated, eBioscience	1:500	-	-
CCND1	MA1-39546, ThermoScientific	1:200	ab150117, Alexa Fluor 488, Abcam	1:1000
Phospho- Histone H3	3465S, Alexa Fluor 488 conjugated, Cell Signaling	1:1000	-	-
DYRK1A	2771, Cell Signaling	1:1000	7074 Anti-rabbit IgG, HRP linked, Cell Signaling	1:10000
B-actin	SC-47778, (C4) HRP linked, Santa Cruz	1:10000	-	-

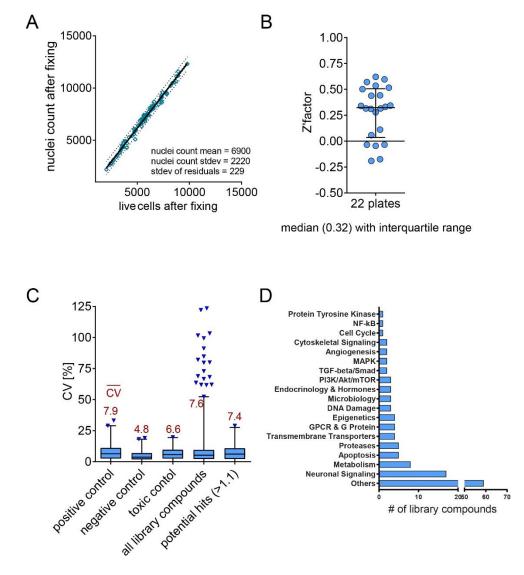
Supplemental Table 2. List of the selected 129 hit compounds in the primary screen.

ID	Compound Name	Pathway	Targets	Replicate1	Replicate2	Average	Std Dev	сv
1	SB505124	TGF-beta/Smad	TGF-beta/Smad	1.45	1.36	1.407	0.06	4.5%
2	GDC-0879	MAPK	Raf	1.43	1.31	1.369	0.08	6.0%
3	GDC-0152	Apoptosis	IAP	1.39	1.28	1.336	0.08	6.2%
4	BTZ043 Racemate	Others	Others	1.24	1.39	1.315	0.11	8.4%
5	N6022	Others	Others	1.31	1.25	1.283	0.04	3.4%
6	SSR128129E	Angiogenesis	FGFR	1.26	1.29	1.274	0.02	1.4%
7	Birinapant	Apoptosis	IAP	1.31	1.23	1.269	0.06	4.6%
8	TAK-438	Transmembrane Transporters	Potassium Channel	1.33	1.20	1.264	0.09	7.4%
9	Fasudil (HA-1077) HCI	Cell Cycle	ROCK,Autophagy	1.30	1.20	1.252	0.07	5.3%
10	Phenacetin	Neuronal Signaling	сох	1.22	1.25	1.233	0.02	1.4%
11	Pritelivir (BAY 57- 1293)	Others	Others	1.21	1.24	1.222	0.02	1.6%
12	SC-514	NF-кB	ΙκΒ/ΙΚΚ	1.21	1.22	1.218	0.01	0.4%
13	ZM 336372	MAPK	Raf	1.22	1.20	1.209	0.01	1.0%
14	Asaraldehyde	Neuronal Signaling	сох	1.14	1.62	1.379	0.34	24.6%
15	Tolbutamide	Transmembrane Transporters	Potassium Channel	1.15	1.57	1.360	0.30	22.2%
16	SB525334	TGF-beta/Smad	TGF-beta/Smad	1.33	1.33	1.332	0.00	0.0%

Supplemental material 11

						•		
ID	Compound Name	Pathway	Targets	Replicate1	Replicate2	Average	Std Dev	cv
17	Rizatriptan Benzoate	Neuronal Signaling	5-HT Receptor	1.18	1.45	1.317	0.19	14.6%
18	Pancuronium dibromide	Neuronal Signaling	AChR	1.53	1.07	1.299	0.32	24.7%
19	Imatinib (STI571)	Protein Tyrosine Kinase	PDGFR	1.15	1.36	1.254	0.14	11.5%
20	Santacruzamate A (CAY10683)	DNA Damage	HDAC	1.32	1.18	1.250	0.10	8.3%
21	Ronidazole	Others	Others	1.32	1.17	1.244	0.11	8.5%
22	AGI-5198	Metabolism	Dehydrogenase	1.29	1.19	1.239	0.07	5.5%
23	Iniparib (BSI-201)	DNA Damage	PARP	1.19	1.28	1.235	0.07	5.3%
24	Scopine	Neuronal Signaling	Adrenergic Receptor	1.06	1.40	1.230	0.25	20.0%
25	Tigecycline	Others	Others	1.23	1.23	1.229	0.00	0.0%
26	INCB024360	Metabolism	IDO	1.29	1.16	1.227	0.09	7.7%
27	Glipizide	Others	Others	1.11	1.34	1.226	0.16	13.0%
28	Sulfanilamide	Others	Others	1.18	1.27	1.223	0.07	5.4%
29	Tariquidar	Transmembrane Transporters	P-gp	1.31	1.13	1.222	0.13	10.2%
30	Cefditoren Pivoxil	Others	Others	1.14	1.30	1.222	0.11	9.4%
31	Trelagliptin	Proteases	DPP-4	1.24	1.19	1.218	0.04	3.0%
32	Nevirapine	Microbiology	Reverse Transcriptase	1.25	1.18	1.214	0.05	4.5%
33	CRT0044876	DNA Damage	APE	1.25	1.17	1.212	0.06	4.8%
34	Naloxone HCI	Neuronal Signaling	Opioid Receptor	1.11	1.31	1.208	0.14	11.6%
35	FPH1 (BRD-6125)	Others	Others	1.38	1.04	1.207	0.24	19.8%
36	Valproic acid sodium salt	Neuronal Signaling	Autophagy,HDAC ,GABA Receptor	0.99	1.41	1.202	0.29	24.4%
37	Phenytoin sodium	Transmembrane Transporters	Sodium Channel	1.19	1.22	1.202	0.02	1.7%
38	Praziquantel	Others	Others	1.31	1.09	1.200	0.15	12.7%
39	Artemisinin	Others	Others	1.24	1.15	1.197	0.07	5.4%
40	Laquinimod	Others	Others	1.31	1.08	1.192	0.16	13.7%
41	E-64	Proteases	Cathepsin K	1.20	1.18	1.191	0.02	1.4%
42	Oxytetracycline (Terramycin)	Others	Others	1.21	1.17	1.189	0.03	2.7%
43	Chlorothiazide	Others	Others	1.25	1.13	1.189	0.09	7.4%
44	CORM-3	Others	Others	1.14	1.23	1.189	0.06	5.3%
45	Lincomycin HCI	Others	Others	1.17	1.20	1.189	0.02	1.8%
46	Phenoxybenzamine HCI	GPCR & G Protein	Adrenergic Receptor	1.24	1.14	1.188	0.07	6.1%
47	ID-8	Others	Others	1.19	1.18	1.187	0.00	0.3%
48	MM-102	Epigenetics	Histone Methyltransferas e	1.10	1.27	1.185	0.12	9.7%
49	Metolazone	Others	Others	1.27	1.09	1.183	0.13	10.8%
50	Pregnenolone	Endocrinology & Hormones	Estrogen/progest ogen Receptor	1.18	1.18	1.182	0.00	0.2%
51	Apocynin	Others	Others	1.11	1.25	1.181	0.09	8.0%
52	Tebipenem Pivoxil	Others	Others	1.18	1.19	1.180	0.01	0.6%
53	HA14-1	Apoptosis	Bcl-2	1.20	1.16	1.180	0.02	1.8%
54	Probucol	Others	Others	1.23	1.13	1.179	0.07	6.1%
55	Nalidixic acid	Others	Others	1.22	1.14	1.178	0.05	4.5%
56	Thiamet G	Others	Others	1.21	1.15	1.178	0.04	3.6%
57	Caspofungin Acetate	Others	Others	1.25	1.11	1.178	0.10	8.4%
58	Atglistatin	Others	ATGL	1.18	1.17	1.176	0.01	1.0%

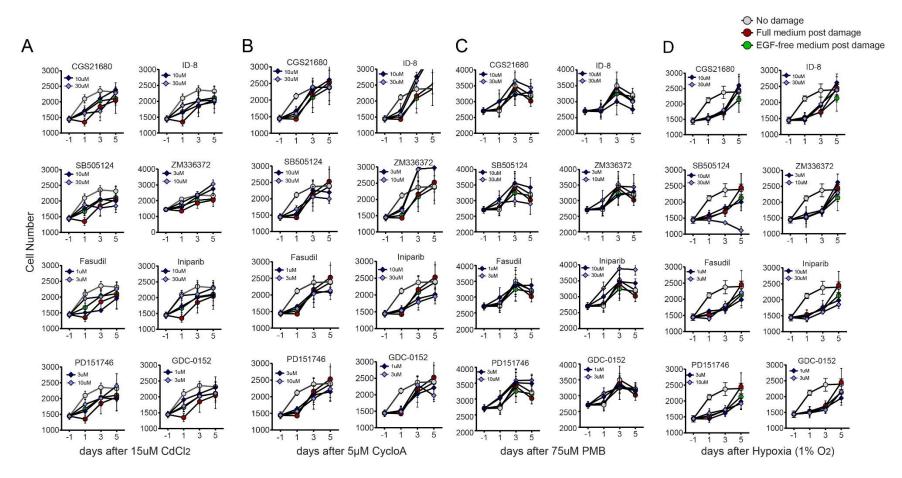
Supplemental material 12

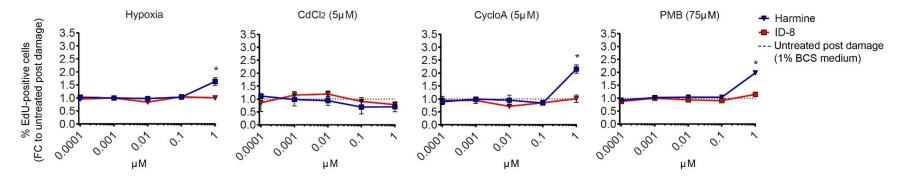

							0.1	•
ID	Compound Name	Pathway	Targets	Replicate1	Replicate2	Average	Std Dev	CV
59	Chloramphenicol	Others	rs Others		1.16	1.176	0.03	2.4%
60	(6-) ε- Aminocaproic acid	Others	Others	1.14	1.21	1.175	0.05	3.9%
61	Epinephrine Bitartrate	GPCR & G Protein	Adrenergic Receptor	1.29	1.06	1.175	0.17	14.1%
62	Fluocinolone Acetonide	Others	Others	1.26	1.09	1.174	0.12	10.2%
63	Etomidate	Neuronal Signaling	GABA Receptor	1.08	1.27	1.172	0.13	11.2%
64	PF-04620110	Metabolism	Transferase	1.27	1.08	1.170	0.13	11.5%
65	Moroxydine HCI	Others	Others	1.17	1.16	1.170	0.01	0.6%
66	Meprednisone	Others	Others	1.15	1.19	1.170	0.03	2.4%
67	Mirtazapine	Others	Others	1.25	1.09	1.169	0.11	9.5%
68	Sodium Nitroprusside	Others	Others	1.18	1.16	1.169	0.02	1.6%
69	NMDA (N-Methyl-D- aspartic acid)	Neuronal Signaling	GluR	1.22	1.11	1.169	0.08	6.5%
70	Nefiracetam	Neuronal Signaling	GABA Receptor	1.18	1.15	1.168	0.02	1.7%
71	CGS 21680 HCI	Angiogenesis	5-alpha Reductase	1.28	1.05	1.168	0.16	14.1%
72	EPZ5676	Epigenetics	Histone Methyltransferas e	1.17	1.16	1.167	0.01	1.0%
73	FPH2 (BRD-9424)	Others	Others	1.28	1.05	1.166	0.16	13.7%
74	Aminophylline	Metabolism GPCR & G	PDE Endothelin	1.10	1.23	1.164	0.09	8.0%
75	Bosentan Hydrate	Protein	Receptor	1.16	1.17	1.162	0.01	0.8%
76	D-Pantothenic acid	Others	Others	1.07	1.25	1.162	0.13	11.2%
77	Andarine	Endocrinology & Hormones	Androgen Receptor	1.01	1.31	1.160	0.21	17.7%
78	Methylprednisolone	Others	Others	1.05	1.26	1.158	0.15	12.9%
79	Articaine HCI	Others	Others	1.14	1.18	1.157	0.03	2.2%
80	Chlorpheniramine Maleate	Neuronal Signaling	Histamine Receptor	1.00	1.31	1.157	0.22	18.9%
81	Bepotastine Besilate	Neuronal Signaling	Histamine Receptor	1.02	1.29	1.155	0.19	16.8%
82	WY-14643 (Pirinixic Acid)	Metabolism	PPAR	1.15	1.15	1.154	0.00	0.0%
83	Penicillin G Sodium	Others	Others	1.16	1.15	1.154	0.00	0.2%
84	Limonin	Others	Others	1.22	1.08	1.149	0.10	8.6%
85	PD 151746	Proteases	Cysteine Protease	1.16	1.14	1.149	0.02	1.3%
86	IM-12	PI3K/Akt/mTOR	GSK-3	1.21	1.09	1.149	0.08	7.0%
87	Methoxsalen	Others	Others	1.06	1.24	1.148	0.12	10.9%
88	Valganciclovir HCI	Others	Others	1.13	1.16	1.148	0.02	2.1%
89	Naphazoline HCI	Neuronal Signaling	Adrenergic Receptor	1.16	1.13	1.147	0.02	1.7%
90	Acebutolol HCI	Neuronal Signaling	Adrenergic Receptor	1.14	1.15	1.147	0.01	0.6%
91	CK-636	Cytoskeletal Signaling	Arp2/3	1.26	1.02	1.141	0.17	14.8%
92	FH1(BRD-K4477)	Others	Others	1.20	1.08	1.140	0.08	7.4%
93	Eprosartan Mesylate	Others	Others	1.22	1.06	1.139	0.12	10.3%
94	Salicylanilide	Others	Others	1.14	1.14	1.139	0.00	0.0%
95	Isovaleramide	Others	Others	1.20	1.08	1.138	0.09	7.6%
96	Edoxaban	Metabolism	Factor Xa	1.12	1.15	1.138	0.02	1.7%
97	Glycyrrhizic Acid	Others	Others	1.18	1.10	1.138	0.05	4.8%
98	VGX-1027	Others	Others	1.22	1.05	1.136	0.12	10.3%
99	BV-6	Apoptosis	IAP	1.21	1.07	1.136	0.10	8.7%

ID	Compound Name	Pathway	Targets	Replicate1	Replicate2	Average	Std Dev	CV
100	Mitotane	Others	Others Others		1.27	1.136	0.20	17.3%
101	TIC10	PI3K/Akt/mTOR	Akt	1.23	1.04	1.135	0.13	11.3%
102	Mdivi-1	Cytoskeletal Signaling	Dynamin	1.11	1.16	1.135	0.03	2.9%
103	Semagacestat (LY450139)	Proteases	Gamma- secretase	1.16	1.10	1.133	0.04	3.7%
104	Levofloxacin	Others	Others	1.14	1.11	1.129	0.02	1.9%
105	AEBSF HCI	Proteases	Serine Protease	1.24	1.02	1.129	0.16	14.1%
106	Droperidol	Others	Others	1.05	1.21	1.128	0.12	10.3%
107	Exemestane	Endocrinology & Hormones	Aromatase	1.14	1.12	1.128	0.02	1.5%
108	Isotretinoin	Metabolism	Hydroxylase	1.25	1.00	1.126	0.18	15.8%
109	Ornidazole	Others	Others	1.10	1.15	1.124	0.04	3.4%
110	Betahistine 2HCI	Neuronal Signaling	Histamine Receptor	1.23	1.02	1.123	0.14	12.8%
111	Troxipide	Others	Others	1.10	1.15	1.123	0.03	2.7%
112	Pifithrin-α (PFTα)	Apoptosis	p53,Autophagy	1.04	1.21	1.123	0.12	10.9%
113	Inosine	Others	Others	1.22	1.02	1.123	0.14	12.6%
114	C646	Epigenetics	Histone Acetyltransferase	1.13	1.12	1.123	0.01	0.9%
115	Dimethyl Fumarate	Others	Others	1.10	1.15	1.122	0.03	2.9%
116	Apixaban	Metabolism	Factor Xa	1.14	1.10	1.122	0.03	2.4%
117	Amprolium HCI	Others	Others	1.13	1.11	1.120	0.02	1.7%
118	Erdosteine	Others	Others	1.12	1.12	1.118	0.00	0.3%
119	EPZ004777	Epigenetics	Histone Methyltransferas e	1.04	1.20	1.117	0.11	10.1%
120	Prednisone	Others	Others	1.12	1.11	1.115	0.01	0.8%
121	Chloroprocaine HCI	Others	Others	1.10	1.13	1.115	0.02	1.7%
122	Empagliflozin (Bl 10773)	GPCR & G Protein	SGLT	1.12	1.10	1.113	0.01	1.3%
123	Lafutidine	Neuronal Signaling	Histamine Receptor	1.13	1.10	1.112	0.02	2.1%
124	Dibenzothiophene	Others	Others	1.12	1.10	1.111	0.02	1.5%
125	Etravirine (TMC125)	Microbiology	Reverse Transcriptase	1.02	1.21	1.110	0.13	12.1%
126	Risperidone	Neuronal Signaling	5-HT Receptor	1.22	1.00	1.109	0.16	14.5%
127	Emtricitabine	Microbiology	Reverse Transcriptase	1.20	1.02	1.107	0.13	11.7%
128	SB216763	PI3K/Akt/mTOR	GSK-3	1.11	1.10	1.104	0.01	0.8%
129	Vitamin B12	Others	Others	1.11	1.10	1.103	0.01	0.6%

					0			
		ID-8	(1µM)		Harmine (1µM)			
	CdCl₂ (15µM)	CycloA (5µM)	РМВ (75µМ)	Нурохіа	CdCl₂ (15µM)	CycloA (5µM)	РМВ (75µМ)	Hypoxia
PCNA*	1.3/	1.4/	1.1/	1.1/	1.16/	1.3/	1.1/	1.1/
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.03
E2F1*	1.2/	1.3/	1.1/	1.2/	NS	1.2/	1.1/	NS
	0.0001	0.0001	0.0001	0.0003		0.0001	0.0001	
CCNB1*	NS	1.2/	1.1/	1.3/	NS	NS	NS	NS
		0.01	0.02	0.01				
CCNE2*	1.4/	1.5/	NS	NS	1.3/	NS	NS	NS
	0.004	0.005			0.02			

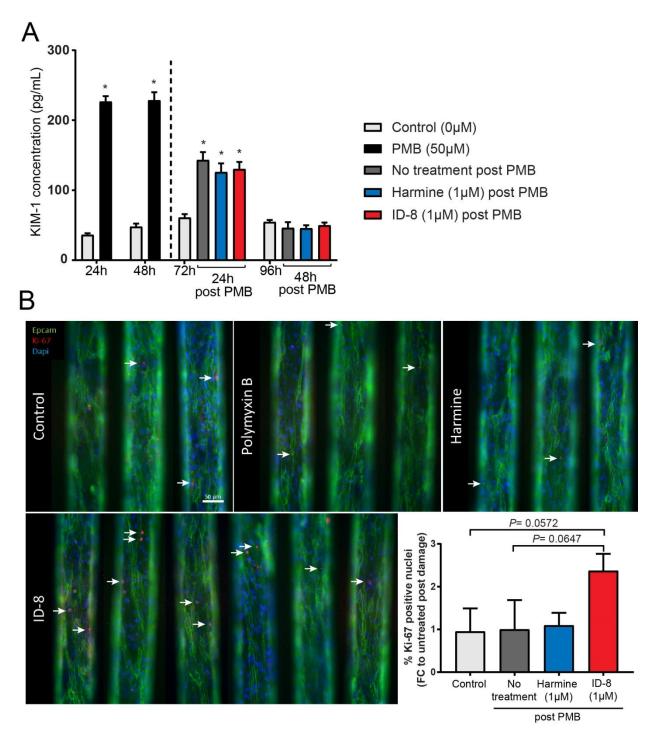
Supplemental Table 3. Fold change and *p* values of cell cycle proteins modulated by the treatment with ID-8 or Harmine after different types of damage


*Fold Change to untreated group (EGF-free medium)/adjusted p values


3 - Supplemental Figures

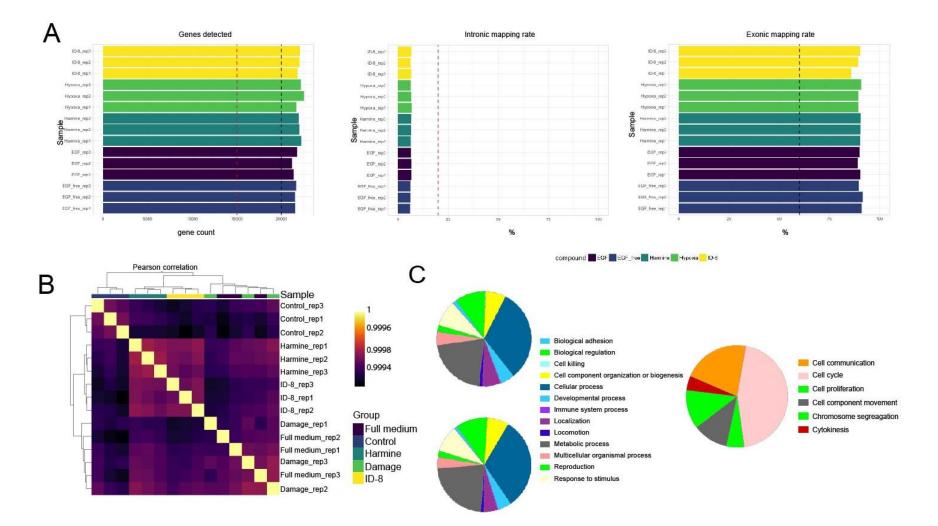
Supplemental Figure 1. Primary screen shows compounds with potential proproliferative effects in primary human proximal tubular epithelial cells (HPTECs). A-C) Primary screen quality control. D) Main pathways activated by the hit compounds.

ID-8 stimulates tubular proliferation



Supplemental Figure 2. Compounds CGS21680, ZM336372, PD151746 and ID-8 promoted proliferation of primary human proximal tubular epithelial cells (HPTECs) in, at least, two types of damage. Selection of the compounds promoting cell proliferation after damage with A) 15µM of CdCl₂; B) 5µM of cyclosporine A; C) hypoxia (1% O₂) and 75µM of polymyxin B. Data are represented as mean ± SEM of the total cell number. n=3/group, 3 biological replicates

Supplemental Figure 3. DYRK1A inhibitor ID-8 does not promote proliferation of NIH/3T3 fibroblasts after


damage. Dose response curve after 48h of treatment with ID-8 and Harmine in NIH/3T3 fibroblasts after 24h of damage with hypoxia (1% O₂), 5 μ M of CdCl₂, 5 μ M of cyclosporine A (CycloA), or 75 μ M of polymyxin B (PMB) (n= 3/group, 2 biological replicates). EdU-positive cells were normalized to the total cell number per well. Data are presented as mean ± SEM of the fold change over the untreated group (1% bovine calf serum medium, BCS). **P*<0.05 after correction for multiple comparisons.

Supplemental Figure 4. ID-8 promotes proliferation of primary human proximal tubular epithelial cells (HPTECs) in 3 dimensional microphysiological system (3D MPS). (A) KIM-1 expression in effluents from devices: without damage (control) for 24h, 48h, 72h and 96h and damaged with 50µM of polymyxin B (PMB) for 24h and 48h Supplemental material 19

followed by 24h and 48h of polymyxin B washout (no treatment) or treatment with 1µM of Harmine or ID-8; (B) Ki-67 (white arrows) and epcam staining (green) in 3D MPS maintained in EGF-free medium (control) or damaged with 50µM of polymyxin B (PMB) followed by 48h treatment with 1µM of Harmine or ID-8 or no treatment (EGF-free medium) (*P< 0.05 after multiple comparisons). n=3-6 biological replicates/group

ID-8 stimulates tubular proliferation

Supplemental Figure 5. RNA sequencing identifies differentially expressed genes after ID-8 and Harmine treatment post-damage. A) RNAseq analysis quality control showing the number of detected genes, low intronic and

high exonic mapping rates for the tested samples. B) Sample-sample correlation heat map showing intra-group variation.

C) Panther classification system of the most upregulated genes after treatment with 1uM of ID-8 or Harmine