Supplementary Information

Supplementary Methods

Cells. RPTC cells were originally from Dr. U. Hopfer at Case Western Reserve University (Cleveland, OH) and cultured as described before¹. To inhibit mir-489, 200 nM anti-rno-mir-489 LNAs (Exiqon Inc, Woburn, MA) were transfected into RPTC cells by Lipofectamine 2000 following the manufacturer's instruction. To overexpress mir-489 in RPTC cells, 200 nM rno-mir-489 mimics were transfected (Life Technologies, Grand Island, NY). HEK293 cells were originally from ATCC (Manassas, VA) and the HEK HIF- 1α knockdown or scramble control cells were generated by transfection of HIF- 1α shRNA plasmids or scramble shRNA plasmids from Origene (Rockville, MD) with Lipofectamine 2000 and selected by 2.5 µg/ml puromycin (Clontech Laboratories, Mountain View, CA) for two weeks to obtain cells with stable shRNA expression. The mouse proximal tubular cell line BUMPT was originally obtained from W Lieberthal and JH Shwartz at Boston University². The cells were cultured in DMEM with 10% fetal bovine serum.

Renal ischemia/reperfusion in mice. Male mice of 8-12 week old were subjected to bilateral renal ischemia/reperfusion as described before ³. Briefly, the mice were anesthetized with 60mg/kg pentobarbital and kept on a homoeothermic blanket. The renal pedicles were clamped with micro-aneurysm clips to induce renal ischemia. After 25 or 30 minutes of renal ischemia, the clips were removed for reperfusion. As control, another group of mice were sham operated without the clamping of renal pedicles.

To inhibit mir-489, C57BL/6 mice were treated with anti-mmu-mir-489 LNA (Exiqon Inc, Woburn, MA) through intravenous injection two days prior to renal ischemia/reperfusion at a dosage of 20mg/kg. Scrambled sequence LNA was used for comparison.

Hypoxic treatment of cells. The cells were seeded in culture dishes to reach the full confluence next day for hypoxic treatment. Before treatment, the cell culture medium was balanced in 1% O2 overnight and then the cells were incubated in the hypoxia balanced medium and kept in hypoxia (1% O2) chamber for 3, 6, 9, 24 or 48 hours. As control, another group of cells was kept in a medium with normal (21%) oxygen.

ATP depletion of RPTC. ATP depletion and recovery was used as the in vitro model of ischemia/reperfusion. Briefly, cells were treated with 10 mM sodium azide in a glucose-free Krebs-Ringer bicarbonate solution for 3 hours to induce ATP depletion. The cells were then returned to full culture medium for 2 hours of recovery to mimic reperfusion, leading to apoptosis ⁴. To assess apoptosis, the cells were stained with Hoechst 33342 for morphological examination by phase contrast and fluorescence microscopy as described before^{4, 5}.

RNA extraction. Kidney cortical and out medulla samples were dissected at animal sacrifice, freshly frozen in liquid N₂ and kept in - 80°C till use. Total RNA was extracted from cells or frozen mouse kidney samples with mirVana[™] miRNA Isolation Kit (Life Technologies, Grand Island, NY) following the manufacture's instruction.

Real-time PCR of microRNA. 40 nanograms of total RNA were converted to cDNA using TaqMan® MicroRNA Reverse Transcription Kit (Life Technologies, Grand Island, NY). Real-Time PCR was performed using TaqMan® MicroRNA Assays (Life Technologies, Grand Island, NY) following the manufacture's instruction. Small nuclear RNA 202 was used as internal control and the quantification was done using Δ Ct values.

Caspase activity measurement. The activity of caspases was measured as described before⁴. Briefly, cells were extracted with a buffer containing 1% Triton X-100. The lysates of 25 µg protein were mixed with enzymatic reactions containing 50 µM DEVD.AFC and incubated for 60 min at 37°C. The fluorescence at excitation 360 nm/emission 530 nm before and after the incubation was monitored by a GENios plate-reader (Tecan US, Research Triangle Park, NC), together with a standard curve of free AFC. The caspase activity was calculated based on the standard curve as the production of nmole free AFC/hour/mg protein.

Kidney protein and cell lysate extraction. Kidney samples were collected as described above for RNA extraction. The frozen kidney samples or cultured cells were lysed in SDS lysis buffer (62.5 mM Tris-HCl, pH6.8, 2% SDS, 10% Glycerol and the protein concentration was determined by Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL) following the manufacturer's instruction.

Immunoblotting. Equal amount of protein samples or equal volume of IP products from same amount of input protein were loaded for standard reducing SDS-polyacrylamide gel electrophoresis and then transferred to PVDF membrane. After blocking in 5% milk, the blot was exposed to primary antibody in 4°C overnight, followed with horseradish peroxidase (HRP) conjugated secondary antibody incubation. Finally, the blot was incubated with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, Rockford, IL) and exposed to X-ray film.

Immunohistochemical and immunofluorescence staining. Kidney samples were collected at animal sacrifice and fixed immediately in 4% paraformaldehyde. 4 μm-thick paraffin embedded sections were used for the following immunohistochemical staining. After rehydration, antigen retrieval and blocking, tissue sections were exposed to primary antibodies [anti-HIF-1α from Cayman Chemical (Ann Arbor, MI) and anti-Ki67 from Cell signaling Technology (Danvers, MA)] overnight in 4°C, followed by avidin-biotin blocking and biotin-labeled secondary antibody incubation. After signal amplification by TSATM Biotin System (PerkinElmer, Waltham, MA), the slides were developed with Vecstatin Elite ABC kit and ImmPACT DAB Peroxidase Substrate (Vector Laboratories, Burlingame, CA).

RPTC cells were fixed in 4% parpaformaldehyde and incubated in blocking buffer containing 2% BSA, 0.2% milk, 2% normal goat serum in PBS with 0.8% Triton X-100. After blocking, the cells were incubated with anti-Ki67 antibody diluted in blocking buffer for

4

overnight in 4°C, followed by cy3-goat-anti-rabbit secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) incubation. The cells were also counter stained with Hoechst to detect the nuclear signal.

Blood urea nitrogen and serum creatinine. Blood samples were collected from tail vein before and daily after ischemia/reperfusion to collect serum by centrifugation after clotting at room temperature. The blood urea nitrogen level was then measured with a kit from Stanbio Laboratory (Boerne, TX) following the manufacturer's instruction. The serum creatinine level was measured with a Jaffe Reaction based kit from STanbio Laboratory (Boerne, TX) following the manufacturer's instruction.

Histology. Paraffin-embedded kidney tissue sections were stained by a standard hematoxylin & eosin staining as described previously. The percentage of injured renal tubules was estimated for each slide in a blinded manner.

TUNEL assay. Paraffin-embedded tissue sections were stained with in situ Cell Death Detection Kit (Roche Applied Science, Indianapolis, IN) following the manufacture's instruction. The slides were mounted with ProLong® Gold Antifade Reagent (Life Technologies, Grand Island, NY). TUNEL positive cells were counted from 10 random images for each specimen from the outer medulla and kidney cortex in a blinded way.

Bioinformatics, data analysis and statistics. The potential HIF-1 binding sites of mir-489 and calcr gene were predicted with online tools JASPAR database (<u>http://jaspar.genereg.net</u>)⁶. The potential mRNA targets were predicted with online tools miRanda (<u>http://www.microrna.org</u>) and Segal Lab of Computational Biology online software

(http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html). The pathway analysis for the target genes of mir-489 was done by DAVID functional annotation (<u>http://david.abcc.ncifcrf.gov/</u>). Image J 1.46r (<u>http://imagej.nih.gov/ij</u>) was used to count Ki67 positive nuclei in kidneys. Student t-test was used to show the significant difference between two groups (P<0.05) and one-way ANOVA analysis was used for multi-group difference analysis. Data were expressed as Mean±SD. NCSS/PASS Dawson Edition for ANOVA analysis and Microsoft Excel 2012 was used for all the other calculations.

References:

1. Woost PG, Orosz DE, Jin W, et al. Immortalization and characterization of proximal tubule cells derived from kidneys of spontaneously hypertensive and normotensive rats. Kidney international 1996; 50: 125-134.

2. Sinha D, Wang Z, Price VR, et al. Chemical anoxia of tubular cells induces activation of c-Src and its translocation to the zonula adherens. American journal of physiology Renal physiology 2003; 284: F488-497.

3. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. American journal of physiology Renal physiology 2012; 303: F1487-1494.

6

4. Wei Q, Wang J, Wang MH, et al. Inhibition of apoptosis by Zn2+ in renal tubular cells following ATP depletion. American journal of physiology Renal physiology 2004; 287: F492-500.

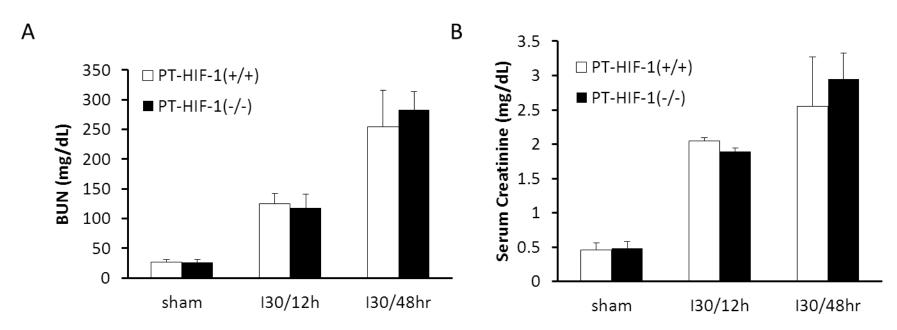
5. Brooks C, Wei Q, Cho SG, et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. The Journal of clinical investigation 2009; 119: 1275-1285.

6. Mathelier A, Zhao X, Zhang AW, et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic acids research 2014; 42: D142-147.

Supplementary Tables

Supplementary Table 1: mRNAs of coding genes recruited to RISC by mir-489. HEK293 cells were co-transfected with Flag-Ago-2 and mir-489 mimic (489 group) or negative control RNA oligos (NC group). The lysates were subjected to immunoprecipitation with anti-Flag-Ago-2. The RNAs in the immunoprecipitates were extracted for RNA-seq analysis. mir-489 mimics induced significant (>2 fold) increases in 905 RNAs associated with Ago-2 RISC, including 417 mRNAs of coding genes listed in this table.

ABCC8	BTC	CLEC18B	ENG	GSTM3P1	LRRC28	PNMA6B	SERPINF1	TTC23L
ABI3BP	C10orf125	CLIC2	ENHO	HBA1	LRRC39	PNMA6D	SERPINI2, WDR49	UBA7
AC006207.1	C100/1125	CNFN	EPHA6	HDAC9	LRRN4CL	PNPLA7	SHC4	UCP1
AC000207.1 AC010487.1	C14orf182	CNPY1	ESPN	HES2	LY6G6C	POU2F2	SHISA7	UGT3A1
AC010487.1 AC010724.2	C140/1182 C17orf50	CNPT1 CNTD1	ESR1	HESZ	LY6K	POU2F2 POU3F1	SHQ1	UPK1A
AC010724.2 AC068775.1	C17orf87	COL7A1	F12	HHIP	LYNX1	PPM1N	SLC15A1	VAMP1
AC093768.1	C19orf35	COL8A1	FAM132A	HIST1H2AM,HIST1H3J	LYPD5	PPP1R3F	SLC15A2	VPREB3
AC107977.1	C1orf101	CPLX2	FAM150A	HIST1H2BC	LZTS1	PRDM16	SLC16A12	VSIG10L
AC126603.1	C1orf187	CPLX4	FAM151A	HIST1H2BG	MAB21L1	PROC	SLC16A3	VTN
AC135983.2	C1orf204,CCDC19,VSIG8		FAM157A	HIST1H2BJ	MACROD1	PRRX1	SLC16A7	WFIKKN1
ACCS	C1orf88	CRB2	FAM198A	HIST1H4K	MAPK15	PSG4	SLC17A8	WNK3
ACE2	C20orf132	CREG2,RFX8	FAM19A2	HNF4G	MASP2	PSMB9	SLC1A2	YPEL4
ACPP	C20orf196	CRX	FAM27C	HPCA	METTL20	PSORS1C1	SLC22A1	ZC3H12B
ACSS3	C20orf94	CSMD2	FAM57B	HPD	MFNG	RAB33A	SLC25A34	ZC3H12D
ACTA1	C2orf77	CT45A1	FAM66E	HR	MGMT	RAB40A	SLC26A1	ZNF560
ADC	C3orf15	CT45A2	FAM72C	HSFX2	MMP10	RAB6C	SLC2A9	ZNF717
ADORA1	C5AR1	CTC-241N9.1	FAM78B	HYAL1	MOBP	RAD9B	SLC44A5	ZNF807
AGAP2	C5orf49	CTF1	FBXL7	IDUA	MS4A4E	RASAL1	SLC4A8	
AGBL2	C6orf163	CUX2	FCGR2A	IGSF11	MUC3A	RASIP1	SLC6A16	
AKAP6	C6orf52	CXCL10	FIBCD1	IKZF1	MYBPHL	RGS17	SLITRK3	
AKR1C1	C7orf51	CXCL2	FOXD4L1	IKZF3	MYLK4	RGSL1	SNTB2	
AL359853.2	C7orf58,HMGN1P18	CYGB	FOXH1	IL17F	NAP1L6	RNF224,SLC34A3	SORCS1	
AL662890.2	C8orf84	CYLC2	FOXJ1	IL3RA	NAV3	ROM1	SPDEF	
AL669831.1	C9orf133,TIGD1L2	CYP2C18,CYP2C19	FRMD3	IL7R	NBPF15	RP11-108K14.4	SPEF1	
ALDH1A1	C9orf43	CYP2D6,CYP2D7P1	FRMPD2	IQUB	NECAB2	RP11-357H14.4	SPG200S	
ALDH1L2	C9orf96	CYP2E1	FUT6	IRAK3	NEK10	RP11-382J12.1	SPRY3	
ALG10B	CAMK4	DACT2	GABBR2	KCNH3	NFAM1	RP11-383H13.1	SRCRB4D	
ANKK1	CASC1	DACT3	GABRP	KCNIP2	NLRP11	RP11-45B20.3	SRGAP2P1	
ANKRD30B	CATSPERG	DDX11L9	GAD2	KCP	NMNAT3	RP11-631M21.2	SSTR2	
ANKRD53	CBLN1	DECR1	GAL3ST2	KIAA0825	NPM1P21	RP11-683L23.1	STAP2	
ANO4	CCDC114	DEGS2	GBP3	KIAA1324	NSUN7	RP11-849H4.2	STC1	
AP000974.1	CCDC144A	DKK1	GBP4	KIAA1683	NWD1	RPL3L	STK31	
AP003068.23	CCDC148	DLGAP3	GFPT2	KIAA2022	OLIG1	RPS6KA6	STK32B	
APLN	CCDC81	DMC1	GJC2	KIF25	OPRL1	RRAD	STXBP5L	
APOBEC3A	CCHCR1	DNAH10	GLP2R	KLHDC1	PABPC3	RRH	SYT12	
APOL1	CCR4	DNAH6	GLRA2	KLHL30	PARP1	RSPH9	SYT13	
AQP4	CD200R1	DNAI1	GLT1D1	KLK4	PCDH11Y	RSPO1	SYT6	
ARHGAP24	CD27,TAPBPL	DNAJC3	GOLGA6C	KREMEN2	PCSK2	S100A1	Т	
ASB12,MTMR8	CD3G	DPEP1	GOLGA8G	LACC1	PDE4C	S100A16	TCP11L2	
ASB9	CD70	DSC1	GPR113	LAIR1	PDZD2	S100A2	TDRD6	
ATAD3C	CD79A	DSG3	GPR158	LANCL3	PEX5L	SAMD12	TG	
ATP7A	CDH13	DUX4L2	GPR85	LCT	PFKFB4	SCARA5	TMC4	
ATP8B3	CDH26	DUX4L3	GPR88	LDHC	PGBD2	SCG5	TMEM107	
AZU1	CELF3	DUX4L9	GPRIN2	LEKR1,RP11-6F2.7	PI16	SCNN1A	TMEM132B	
BDNF	CELF4	DYNC1I1	GRHL3	LIMS3L	PKD1L2	SCNN1G	TMEM146	
BEND5	CERS4	EFCAB4B	GRIN2A	LMOD3	PLA2G4A	SECTM1	TMPRSS9	
BEST4	CFP	EGF	GRIP2	LPAR6	PLAC8L1	SEMA4A	TNS4	
BMP3	CHRDL1	ELF3	GRM2	LPP	PLEKHA2	SEPT12	TPH2,TRHDE	
BMP8A	CHSY3	ELFN1	GSTM2	LRP1B	PLGLA	SEPT14	TRIM10	
BMPER	CLDN9	EMX1	GSTM3P1	LRRC2	PLXNB3,SRPK3	SERPINE3	TSPAN2	


Supplementary Table 2: RNAs of non-coding genes and unnamed genes recruited to RISC by mir-489. HEK293 cells were co-transfected with Flag-Ago-2 and mir-489 mimic (489 group) or negative control RNA oligos (NC group). The lysates were subjected to immunoprecipitation with anti-Flag-Ago-2. The RNAs in the immunoprecipitates were extracted for RNA-seq analysis. mir-489 mimic induced significant (>2 fold) increases in 905 RNAs associated with Ago-2 RISC, including 387 RNAs of non-coding genes and unnamed genes listed in this table.

AB019441.29	AC079776.7	C6orf112	HNRNPKP2	RP11-123K19.1	RP11-384J4.2	RP11-627K11.1	RP4-594I10.2
AC004074.3	AC092155.1	C6orf26-AS1,C6orf27	HS6ST1P1	RP11-124N14.4	RP11-38014.1	RP11-632K5.5	RP4-655C5.1
AC004878.5	AC092171.2,AC093620.5	C8orf77	HSPB1P2	RP11-133M24.1	RP11-392P7.1	RP11-641D5.1	RP4-756H11.3
AC005000.1,RP1-241P17.4		CELP	IMPDH1P6	RP11-134G8.5,RP11-134G8.6	RP11-393B14.1,SNORA63	RP11-666A1.1	RP4-775C13.1
AC005017.1	AC093106.7	CICP5	ISCA1P1	RP11-135F9.1	RP11-393H6.2	RP11-668N23.1	RP5-1024G6.5
AC005224.2	AC093901.1	CICP7	KB-1269D1.8	RP11-14C22.4	RP11-397E7.3	RP11-673E1.3	RP5-1071N3.1
AC005251.3	AC097523.1	CSNK2A1P	KRT18P34	RP11-14N7.2	RP11-398A8.3	RP11-680G24.3	RP5-107303.7
AC005329.6	AC100793.1,HMGN2P42	CTA-211A9.5,MIAT	KRT8P3	RP11-15J10.4	RP11-398K22.3	RP11-687M24.3	RP5-1074L1.1
AC005488.13	AC103702.1	CTA-384D8.20	LL22NC03-2H8.4	RP11-169K16.7	RP11-399D6.2	RP11-702A23.1	RP5-983L19.2
AC005534.8	AC104233.1	CTA-984G1.5	LPAL2	RP11-16F15.1	RP11-3B12.1	RP11-713P17.3	RP6-7406.3
AC005550.6	AC104843.3	CTAGE7P	MEMO1P1	RP11-175B9.3	RP11-401F24.4	RP11-721G13.1	RPL13AP25
AC005696.1	AC107977.3	CTB-1202.1	MIR22	RP11-177B4.1	RP11-404P21.2	RP11-761N21.2	RPL23AP53
AC005822.1	AC114737.6	CTC-205M6.2	MIR221	RP11-186N15.3	RP11-410L14.2	RP11-76N22.2	RPL35P5
AC005840.1	AC114755.7	CTC-338M12.7	MIR302B,RP11-148B6.1	RP11-18H7.1	RP11-426A6.8	RP11-785H5.1	RPL3P9
AC005971.3	AC116165.1	CTC-426B10.1	MTND1P23	RP11-190J1.7	RP11-429J17.2	RP11-791G16.4	RPL7AP11
AC006050.3	AC120114.2	CTD-2035E11.3	NAV2-AS2	RP11-192I3.2	RP11-434C1.1	RP11-807H7.1	RPS2P4
AC007000.12	AC126365.7	CTD-2062F14.3	NCRNA00087	RP11-204J18.2,RP11-204J18.3	RP11-436H11.1	RP11-809C9.1	RPS2P7
AC007255.8	AC129778.3	CTD-2192J16.15	NCRNA00119,RP11-39E4.1	RP11-213G2.1	RP11-439L18.3	RP11-80H5.7	RPS4XP16
AC007621.1	AC131280.1,GOLGA8DP	CTD-2194L12.1	NCRNA00158	RP11-215A21.2	RP11-44M6.3	RP11-834C11.5	RPS7P1
AC008103.5,AC008132.13	AC134878.1	CTD-2287016.1	NCRNA00202	RP11-229P13.2	RP11-44N21.2	RP11-84A19.2	RPS7P11
AC008132.14,GGT3P	AC135995.1,RP11-152F13.3	CTD-2518G19.1	NCRNA00246A	RP1-122K4.3	RP11-460E7.5	RP11-854K16.1	RPS9P1
AC009061.1	AC139452.2	CTD-2555K7.2	NCRNA00306	RP11-241F15.2	RP11-460H18.1	RP11-875011.1	RUNDC2B
AC009108.1	AD000091.1	DGKZP1	NKX2-1-AS1	RP11-248E9.6	RP11-460N11.3	RP11-87H9.2	SNORA11
AC009487.6	AL049757.3	DPY19L2P4	OR7E125P	RP11-255B23.1	RP11-46F15.2	RP11-88H10.1	SNORA31
AC010096.1	AL109755.1	DSTNP1	PARP4P2	RP11-258F22.1	RP11-471J12.1	RP11-904M10.1	SNORD60
AC011357.1	AL121936.3	EAF1-AS1	PGM5P1	RP11-25K19.1	RP11-475I24.4	RP11-92K2.2	SOX21-AS1
AC011747.7	AL162731.2	EEF1A1P11	PGM5P2	RP11-261C10.5	RP11-480D4.3	RP11-93K22.13	SUMO2P1
AC012358.4	AL163052.1	EEF1A1P24	PHKA1P1	RP11-263K19.4	RP11-481K16.2	RP11-94I2.4	TMEM185AL
AC012531.17	AL390877.1	EEF1A1P33	PMS2P1	RP11-266F12.1	RP11-486O13.4	RP11-950C14.3	TP53TG1
AC017076.4	AL391994.1	EEF1A1P8	PPP1R2P3	RP11-278J6.1	RP11-488C13.6	RP1-203P18.1	TPM3P6
AC018738.2	AL445670.1	EEF1B2P3	PROSP	RP11-280F2.2	RP11-490G8.1	RP1-238O23.5	U52111.14
AC019322.2	AL671277.1	EIF3FP3	PSMC1P5	RP11-296A18.3	RP11-493P1.2	RP1-283E3.4,RP1-283E3.8	UPF3AP1
AC021224.1	AL671710.1	EIF3LP2	RALGAPA1P	RP11-305M3.2	RP11-495P10.1	RP13-178D16.2	XXbac-BPG55C20.1
AC022210.2	AL672183.2	EMX2OS	RANP1	RP11-308D13.2	RP11-495P10.7,RP11-495P10.	8RP13-33H18.1	YBX1P10
AC022431.1	AL772307.1	ESPNP,RP1-163M9.6	RNase MRP	RP11-309L24.6	RP11-497H16.8	RP13-36G14.2	YWHAZP5
AC022916.1	ANKRD20A7P	FAM108A3P	RNPS1P1	RP11-313D6.3	RP1-14N1.2	RP13-507I23.1	ZC3H11B
AC023490.1,AC023490.2	ANKRD20A8P	FAM108A5P	RNU1-1	RP11-318M2.2	RP11-506M13.3	RP13-507I23.2	ZNF890P
AC024937.4	AP000253.1	FAM108A7P	RNU1-3	RP11-319G6.1	RP11-512M8.3	RP1-93H18.3	
AC024937.6	AP000330.8	FAM115D	RNU1-5	RP11-31F19.1	RP11-513G11.1	RP1-99E18.2	
AC026150.6	AP000487.5	FAM90A17	RNU1-6	RP11-328M4.2	RP11-5106.1	RP3-334F4.1	
AC026271.5	AP000525.8	FAM90A25P	RP1-102E24.6	RP11-343H5.4	RP11-543P15.1	RP3-342P20.2	
AC027612.1	AP006216.11	FTH1P10	RP11-106M3.1	RP11-343L14.2	RP11-553P9.1	RP3-375P9.2	
AC034105.1	AP006621.8	FTH1P12	RP11-109L13.1	RP11-348F1.2	RP11-567I13.1	RP3-406P24.3	
AC044860.1	ASMTL-AS1	FTH1P2	RP11-112J1.1	RP11-349N19.2	RP11-576D8.2	RP3-417G15.1	
AC046143.3	BMPR1APS2	GOLGA8E	RP11-1134 14.8	RP11-350E12.4	RP11-578F5.1	RP3-423B22.5	
AC069292.6	BX004987.3,BX004987.5	GS1-184P14.2	RP11-1148L6.5	RP11-354M20.3	RP11-579D7.4	RP3-449M8.6	
AC073135.1	BX088645.3,RP11-133G22.1	HCG25	RP11-118B22.2	RP11-363N22.2	RP11-582J16.3	RP3-510D11.1,RP3-510D11.2	
AC073135.2	BX255925.2	HNRNPA1P12	RP11-119H12.2	RP11-364L4.1	RP11-600F24.1	RP4-560B9.1	
AC074289.1	BX571672.2	HNRNPA1P8	RP11-121L10.3	RP11-374M1.2	RP11-603B24.2	RP4-560B9.2	
AC079250.1	C21orf34	HNRNPA3P1	RP11-1236K1.8	RP11-38107.5	RP11-624L12.1	RP4-592A1.2	

Supplementary Table 3: Functional analysis of mir-489 target genes. The 127 genes identified as mir-489 targets by RISC immunoprecipitation/RNA-seq and bioinformatics were analyzed by The Database for Annotation, Visualization and Integrated Discovery (DAVID) for functional classification.

STRESS RESPONSE	CELL COMMUNICATION	MULTICELLULAR ORGANISMAL DEVELOPMENT	CELL DIFFERENTION	CELL JUNCTION	TRANSPORT
HDAC9	SLC1A2	HDAC9	HDAC9	SHC4	PEX5L
PSG4	HFE	TRIM10	TRIM10	PDZD2	АКАРб
ATP7A	SSTR2	CELF4	CELF4	SNTB2	ATP7A
NFAM1	BMP3	MOBP	ATP7A	ARHGAP24	ANO4
SLC1A2	GRIN2A	ATP7A	NFAM1	GABRP	CLIC2
HFE	GABBR2	NFAM1	ННІР	GRIN2A	SLC1A2
SCARA5	STC1	SLC1A2	TSPAN2	GABBR2	HFE
DNAJC3	BDNF	CRABP1	EMX	GAD2	CRABP1
SCNN1G	CXCL10	SPRY3	ARHGAP24	LPP	SCARA5
MASP2	GAD2	IKZF3	BMP3	DSG3	SLC25A34
GRIN2A	TRHDE	ннір	GRIN2A	GLRA2	SLC16A7
PARP1		TSPAN2	BMP8A	SLC17A8	SLC15A2
GRHL3		EMX1	PRDM16		VAMP1
PROC		PRRX1	CRX		SCNN1G
CXCL2		ARHGAP24	BDNF		SCG5
BDNF		BMP3	ELF3		GABRP
ELF3		GRIN2A	CHRDL1		GRIN2A
CXCL10		GRHL3	CYLC2		SLC15A1
		BMP8A	IKZF1		SLC2A9
		PRDM16			SLC22A1
		AQP4			STXBP5L
		STC1			SLC16A12
		CRX			BDNF
		BDNF			SLC4A8
		ELF3			CXCL10
		CXCL10			GLRA2
		PCSK2			SLC17A8
		CHRDL1			
		GLRA2			
		CYCL2			
		IKZF1			

Supplementary Figure 1 renal ischemia/reperfusion injury in PT-HIF-1 (+/+) and PT-HIF-1(-/-) mice. PT-HIF-1(+/+) and PT-HIF-1(-/-) mice were subjected to 30 minutes of bilateral kidney ischemia followed by 12 hours or 48 hours of reperfusion. Sham-operated mice were used for normal control. (A) Blood urea nitrogen. (B) Serum creatinine. 3-9 mice were used in each of the conditions.

