Supplemental Data

Manuscript: Tubular GM-CSF Promotes late MCP-1/CCR2-mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury

Leyuan Xu¹, Diana Sharkey², Lloyd G. Cantley¹

¹Department of Internal Medicine Section of Nephrology, ²Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine

Table of Contents

Supplemental Table 1. Mouse experiment design

Supplemental Table 2. Primer sequences used for quantitative PCR

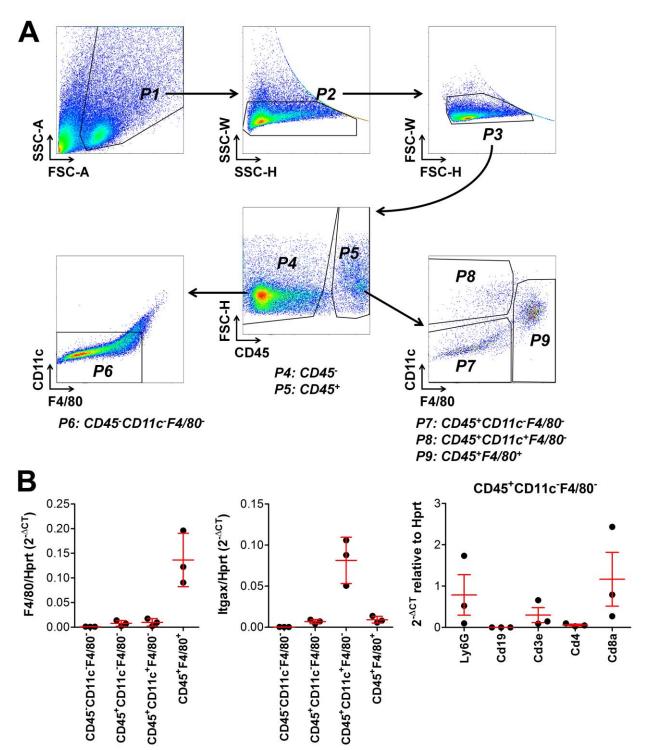
Supplemental Figure 1. FACS sorting of macrophages, dendritic cells, T cells/PMNs and renal cells.

Supplemental Figure 2. FACS sorting of resident and infiltrating/patrolling macrophages.

Supplemental Figure 3. Loss of CCR2 reduces chemoattractant receptor expression after unilateral IRI.

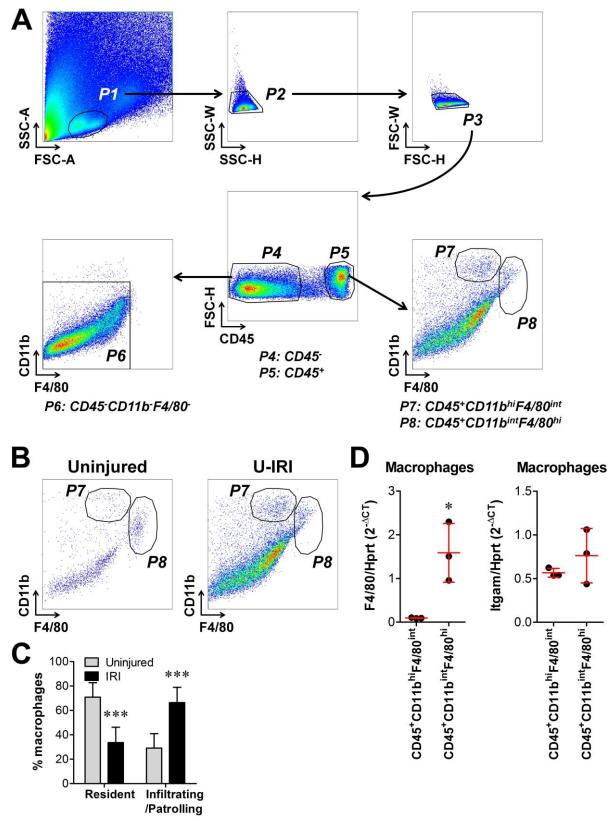
Supplemental Figure 4. Loss of CCR2 reduces chemoattractant expression after unilateral IRI.

Supplemental Figure 5. MCP-1 does not polarize bone marrow-derived macrophages (BMMs) in vitro.


Supplemental Table 1. Mouse experiment design

			<u> </u>			
Strain	# of	Surgery	Treatment	Dosing	Termination	Outcome measurements
	mice				(after U-IRI)	
WT	6					EACS corting for regident and infiltrating/patrolling
WT	6	U-IRI			14 days	FACS sorting for resident and infiltrating/patrolling
Ccr2 ^{-/-}	6	U-IRI			14 days	macrophages from IRI kidneys
WT	12	U-IRI			14 days	FACS sorting for CD45 [±] CD11c [±] F4/80 [±] cells from IRI
						kidneys
WT	8	U-IRI			14 days	FACS sorting for PDGFRβ ⁺ myofibroblasts from IRI
						kidneys
WT	6				0 day	
WT	6	U-IRI			1 day	Studying the correlation between macrophage
WT	6	U-IRI			7 days	accumulation and kidney fibrosis during AKI-to-CKD
WT	6	U-IRI			14 days	transition
WT	6	U-IRI			30 days	
WT	8	U-IRI			14 days	Otach in a the importance of MOD 4/00D0 since line
Ccr2 ^{-/-}	8	U-IRI			14 days	Studying the importance of MCP-1/CCR2 signaling
WT	14	U-IRI			30 days	in macrophage accumulation, kidney fibrosis and inflammation at the late stage of IRI
Ccr2 ^{-/-}	11	U-IRI			30 days	
WT	8	U-IRI	Vehicle	Every 12 hours for 7	14 days	Ctudy in a pharmacological inhibition of MOD 4/CODO
WT	8	U-IRI	RS102895	days starting on 7 days after U-IRI	14 days	Studying pharmacological inhibition of MCP-1/CCR2 signaling during AKI-to-CKD transition

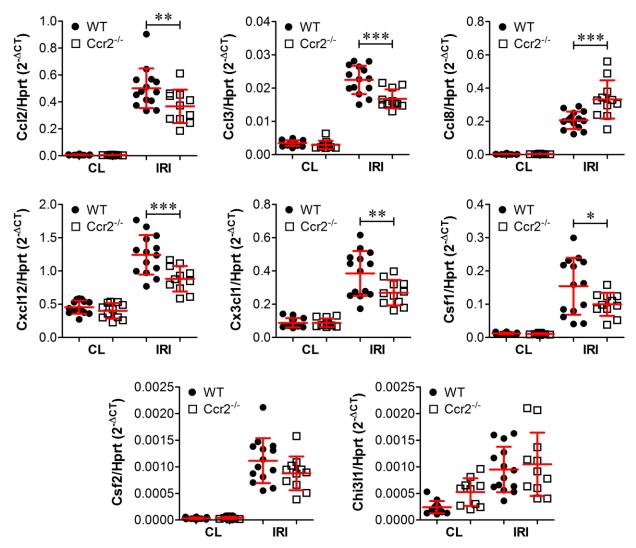
Abbreviations: U-IRI, unilateral ischemia/reperfusion injury; FACS, fluorescence-activated cell sorting.


Supplemental Table 2. Primer sequences used for quantitative PCR

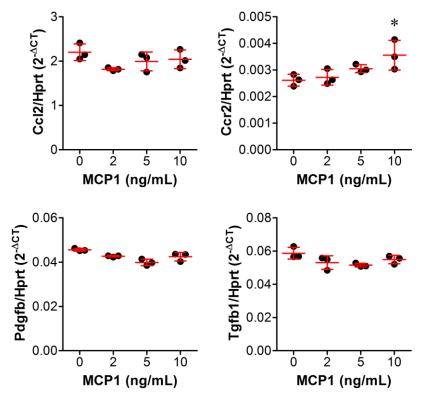
Gene	Forward	Reverse
Acta2	TCTGGACGTACAACTGGTATTG	GGCAGTAGTCACGAAGGAATAG
Arg1	CAGAAGAATGGAAGAGTCAG	CAGATATGCAGGGAGTCACC
Ccl2	AGGTCCCTGTCATGCTTCTG	TCTGGACCCATTCCTTCTTG
Ccl3	TTCTCTGTACCATGACACTCTGC	CGTGGAATCTTCCGGCTGTAG
Ccl8	TCTACGCAGTGCTTCTTTGCC	AAGGGGGATCTTCAGCTTTAGTA
Ccr1	ATACTCTGGAAACACAGACTCAC	CCCACCACTCCAATGATGAA
Ccr2	AGGAGCCATACCTGTAAATGC	GTTGATAGTATGCCGTGGATGA
Ccr3	AGCTATGATGTTTACTACCTGACTG	ATGCCATTCTACTTGTCTCTGG
Ccr5	AAGAGACTCTGGCTCTTGC	CAGGGTGCTGACATACCATAA
Cd3e	GAAAGCTCGAGTGTGTGAGT	GCCTTGGCCTTCCTATTCTT
Cd4	GAGAGTTCCCAGAAGAAGATCAC	AGGCGAACCTCCTCTAATTAATAC
Cd8a	GTGGACCTGGTATGTGAAGTG	TGAAGCCATATAGACAACGAAGG
Cd19	AGCTGTATGTGTGGGCTAAAG	CCACAGTGAGATCTTGGTTGAT
Cd68	ATTGAGGAAGGAACTGGTGTAG	CCTCTGTTCCTTGGGCTATAAG
Chi3l1	CAAGGAACTGAATGCGGAAT	GGCTCCCAGACGTATCATGT
Col1a1	GAAACCCGAGGTATGCTTGA	GGGTCCCTCGACTCCTACAT
Col3a1	ACCAAAAGGTGATGCTGGAC	GACCTCGTGCTCCAGTTAGC
Csf1	GCAGGAGTATTGCCAAGGAG	GTTAGCATTGGGGGTGTTGT
Csf2	TGGTCTACAGCCTCTCAGCA	CCGTAGACCCTGCTCGAATA
Cx3cl1	ACGAAATGCGAAATCATGTGC	CTGTGTCGTCTCCAGGACAA
Cxcr4	GCAGCAGGTAGCAGTGAAA	GTGTATATACTCACACTGATCGGTTC
F4/80	TGAATGGCTCCATTTGTGAA	GATGGCCAAGGATCTGAAAA
Fn1	GATCAGTGGGATAAGCAGCA	ATATGTCCCTCCTCGTGACG
Hprt1	CAGTACAGCCCCAAAATGGT	CAAGGGCATATCCAACAACA
Itgam	ATGGACGCTGATGGCAATACC	TCCCCATTCACGTCTCCCA
Itgax	CAACTGCACAGCAGGAGTGT	TAGCCGAGGCTGTGTATGTG
Kim1	GAGAGTGACAGTGGTCTGTATTG	CGTGTGGGAATCTCTGGTTTA
Lcn2	GACCTAGTAGCTGTGGAAAC	GACGCCATTGGTGGTGTTAA
Ly6G	TTGTGGACTCTCACAGAAGC	GTCTTCACGTTGACAGCATTAC
Mrc1	CTCTGTTCAGCTATTGGACGC	CGGAATTTCTGGGATTCAGCTTC
Msr1	AAAGAGATGACAGAGAATCAGAGG	CAAGGAGGTAGAGCAATGAG
Nos2	CCAAGCCCTCACCTACTTCC	CTCTGAGGGCTGACACAAGG
Pdgfb	ACAGAGACTCCGTAGATGAAGA	ATCGATGAGGTTCCGAGAGA
Pdgfrb	GGAGTCCATAGGGAGGAAGC	CACCTTCTCCAGTGTGCTGA
Tgfb1	CCACCTGCAAGACCATCGAC	CTGGCGAGCCTTAGTTTGGAC
Tnfa	GAACTGGCAGAAGAGGCACT	AGGGTCTGGGCCATAGAACT

Supplemental Figure 1. FACS sorting of macrophages, dendritic cells, T cells/PMNs and renal cells. (A) Kidney cells were isolated by FACS 14 days after unilateral IRI. CD45⁻ (P4) and CD45⁺ (P5) cells were initially sorted from P1 to P3. CD45⁻CD11c⁻F4/80⁻ (P6) cells were sorted from P4; whereas CD45⁺CD11c⁻F4/80⁻ (P7), CD45⁺CD11c⁺F4/80⁻ (P8) and CD45⁺F4/80⁺ (P9) cells were sorted from P5. The regions circled are the gates used to isolate corresponding cells, respectively. P, population; FSC, forward scatter; SSC, side scatter; A, area; H, height; W, width.

(B) Quantitative PCR analysis of mRNA from the indicated cell populations for *F4/80* (macrophage marker), *Itgax* (dendritic cell marker CD11c), *Ly6G* (PMN marker), *Cd19* (B cell marker), *Cd3e* (general T cell marker), *Cd4* (T helper cell marker) and *Cd8a* (cytotoxic T cell marker). n=3 cell pools of 4 kidneys/pool, 12 kidneys total.



Supplemental Figure 2. FACS sorting of resident and infiltrating/patrolling macrophages. (A) Wild-type kidney cells were isolated by FACS 14 days after unilateral IRI. CD45⁻ (P4) and CD45⁺


(P5) cells were initially sorted from P1 to P3. CD45⁺CD11b^{hi}F4/80^{int} (P7) and CD45⁺CD11b^{int}F4/80^{hi} (P8) cells were sorted from P5. The regions circled are the gates used to isolate corresponding cells, respectively. P, population; FSC, forward scatter; SSC, side scatter; A, area; H, height; W, width. (B) CD45⁺CD11b^{hi}F4/80^{int} (P7) and CD45⁺CD11b^{int}F4/80^{hi} (P8) cells were sorted from uninjured and IRI kidneys. (C) The percentages of resident and infiltrating/patrolling macrophages were determined. ****p<0.001 versus uninjured kidney. n=6 kidneys. (D) Quantitative PCR analysis of mRNA from the indicated cell populations for *F4/80* and *Itgam* (*CD11b*). ****p<0.05. n=3 cell pools of 2 kidneys/pool, 6 kidneys total.

Supplemental Figure 3. Loss of CCR2 reduces expression of multiple chemoattractant (A) Wild-type (WT) and $Ccr2^{-/-}$ mice were subjected to 27 minutes warm unilateral IRI. Unilateral IRI and contralateral (CL) kidneys were harvested at 30 days after unilateral IRI. Quantitative RT-PCR analysis for Ccr1, Ccr2, Ccr3, Ccr5, Cxcr4, Cx3cr1, Csf1r, Csf2ra1 and Csf2rb1 was performed on whole kidney mRNA. **p<0.01 and ***p<0.001 versus WT IRI kidney. n=14 WT and 11 for $Ccr2^{-/-}$ mice.

Supplemental Figure 4. Loss of CCR2 reduces expression of multiple chemoattractants after unilateral IRI. (A) Wild-type (WT) and $Ccr2^{-/-}$ mice were subjected to 27 minutes warm unilateral IRI. Unilateral IRI and contralateral (CL) kidneys were harvested at 30 days after unilateral IRI. Quantitative RT-PCR analysis for Ccl2, Ccl3, Ccl8, Cxcl12, Cx3cl1, Csf1, Csf2 and Chi3l1 was performed on whole kidney mRNA. *p<0.05, **p<0.01 and ***p<0.001 versus WT IRI kidney. n=14 WT and 11 for $Ccr2^{-/-}$ mice.

Supplemental Figure 5. MCP-1 does not activate bone marrow-derived macrophages (BMMs) to express profibrotic signals in vitro. BMMs were treated with recombinant mouse MCP-1 at the indicated concentrations for 24 hours, and cell lysates were harvested for RNA isolation. Quantitative PCR for *Ccl2*, *Ccr2*, *Pdgfb* and *Tgfb1* was performed on BMM mRNA. *p<0.05 vs 0 ng/mL. n=3.