ADMA Contributes to the Impaired Response to Erythropoietin in CKD-Anemia

Miyuki Yokoro^{1,2}, Yosuke Nakayama¹, Sho-ichi Yamagishi³, Ryotaro Ando¹, Miki Sugiyama¹, Sakuya Ito¹, Junko Yano¹, Kensei Taguchi¹, Yusuke Kaida¹, Daisuke Saigusa⁴, Masumi Kimoto⁵, Takaaki Abe⁶, Seiji Ueda⁷ and Kei Fukami¹

¹Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan; ²Department of Food Sciences and Nutrition, School of Environmental Sciences, Mukogawa Human Women's University, Nishinomiya, Hyogo, Japan; ³Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine. Kurume, Fukuoka, Japan; ⁴Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; ⁵Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan; ⁶Department of Clinical Biology and Hormonal Regulation, Tohoku University, Graduate School of Medicine. Sendai, Miyagi, Japan: ⁷Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan

Correspondence to Yosuke Nakayama

Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Asahi-machi 67, Kurume City, Fukuoka, Japan

TEL:+81-942-35-3311/FAX: +81-942-31-7763

E-mail: nakayama_yosuke@med.kurume-u.ac.jp

Supplemental Figure 1. Plasma ADMA levels showed no association with impaired response to erythropoietin in predialysis patients. (A) ERI in patients undergoing ESA therapy during more than 1 month without medications by oral iron supplement (n=14). (B) Log-transformed erythropoietin demand indices in patients who were not received ESA (n=28). Statistical significance was determined using Pearson correlation coefficient. ADMA; asymmetric dimethylarginine, ESA; erythropoietin stimulating agents, ERI; ESA resistance index.

В

Supplemental Figure 2. mRNA expression of hepcidin was increased in the livers of mice 12 weeks after Nx. DDAH-1 overexpression failed to suppress hepatic hepcidin expression in Nx-mice. The mRNA expression of hepcidin relative to β -actin as an endogenous control. mRNA expression ratio was normalized to WT sham mice. Columns express means and error bars indicate S.E.M; WT mice, n=5; WT Nx-mice, n=5; DDAH-1 Tg mice, n=5; DDAH-1 Tg mice, n=5; DDAH-1 Tg Nx-mice, n=8. Statistical significance was determined using a Mann Whitney test. **p*<0.01. DDAH-1; dimethylaminohydrolase-1, Nx; 5/6 subtotal nephrectomy, Tg; transgenic, WT; wild type.

Supplemental Figure 3. *In vitro* experiment of the relation of plasma ADMA to erythrocyte ADMA. *In vitro* experiment was performed using healthy volunteer's blood (n=5). Blood was centrifuged at 1,800 *g* for 8 min at 4°C and plasma and buffy coat were removed, and then erythrocytes were obtained. After washing with PBS twice, erythrocytes were incubated with 3.5 mM ADMA for 14 hours at 37°C. Then, ADMA levels in the medium and erythrocyte were measured. Change ratios were the ratio of 14 hours to 0 hour (average±SD). *p<0.05 vs 0 hour. ADMA; asymmetric dimethylarginine, NaPi; sodium phosphate, PBS; phosphate buffered saline.

Supplemental Figure 4. Relationships between plasma ADMA and erythrocyte ADMA levels in predialysis patients and mice. **A)** No association is apparent in predialysis patients (n=54). **B)** No association is apparent in Nx-mice (n=14). Statistical significance was determined using Spearman correlation coefficients. ADMA, asymmetric dimethylarginine; Nx, 5/6 subtotal nephrectomy **Supplemental Table 1.** Univariate and stepwise multiple regression analyses of erythrocyte ADMA levels in predialysis patients

	Univariate regression		Stepwise multiple regression
Variable	analy	/sis	analysis
	r	p	Adjusted β (95% CI; lower, upper) p
Age, years	0.039 ^a	0.778	
BMI, kg/m ²	0.097 ^a	0.495	
Systolic BP, mmHg	0.145 ^a	0.296	
Diastolic BP, mmHg	-0.023ª	0.868	
Hemoglobin, g/dl	-0.411 ª	0.002	-0.269 (-0.613, -0.066) 0.016
Hematocrit, %	-0.380 ª	0.005	
RBC, x 10 ⁴ /µl	–0.158ª	0.252	
Mean corpuscular volume, fl	-0.321 ª	0.018	
Mean corpuscular hemoglobin, pg/cell	-0.370 ^a	0.006	
Total protein, g/dl	-0.212ª	0.125	
Albumin, g/dl	-0.186ª	0.178	
LDL-cholesterol, mg/dl	0.078 ^a	0.577	
BUN, mg/dl	0.337 ^a	0.013	
Serum Creatinine (mg/dl)	0.428 ^b	0.001	
eGFR, ml/min/1.73m ²	-0.443 ^b	0.001	
LDH, IU/I	0.153 ^a	0.285	
Mean of erythrocyte fragility, %	0.078 ^a	0.633	
CRP, mg/dl	-0.061 ^b	0.720	
Ferritin, ng/ml	-0.156 ^b	0.258	
Serum iron (mg/dl)	-0.357 ª	0.008	
TSAT, %	-0.275 ^a	0.044	-0.211 (-0.086, 0.000) 0.050
NT-proBNP	0.575 ^b	<0.001	0.500 (0.401, 1.009) <0.001
Plasma ADMA, μM	-0.256ª	0.062	
Erythrocyte ADMA, nmol/g protein	-	-	

a, Pearson's correlation coefficient, b, Spearman's rank correlation coefficient. Stepwise multiple regression analysis was performed to input age, sex and significantly correlating variables by the univariate correlation after logarithmic transformation of NT-proBNP levels. Adjusted r² for this model is 0.424. Bold values are statistically significant (p< 0.05 in the univariate analysis, p<0.05 in stepwise regression analysis). * The values of 17 patients were below the detection limit (p<0.01). ADMA; asymmetric dimethylarginine, BMI; body mass index, BP; blood pressure, BUN; blood urea nitrogen, CRP; C-reactive protein, eGFR; estimated glomerular filtration rate, Hb; hemoglobin, LDH; lactate dehydrogenase, NT-proBNP; N-terminal pro-B-type natriuretic peptide, TSAT; transferrin saturation.

Supplemental Table 2. Stepwise multiple regression analyses of logarithm of NT-proBNP in predialysis patients

	Stepwise multiple regression analysis			
Variable	Adjusted β (95% Cl; lower, upper)			
Erythrocyte ADMA, nmol/g protein	0.559 (0.227, 0.539)	<0.001		
Albumin, g/dl	-0.264 (-1.078, -0.080)	0.024		
Age, years	0.230 (0.000, 0.050)	0.046		

Stepwise multiple regression analysis was performed after logarithmic transformation of NT-proBNP levels. Input variables are age, sex, current smoking history, BMI, systolic BP, diastolic BP, hemoglobin, total protein, albumin, LDH, LDL-cholesterol, eGFR, TSAT and erythrocyte ADMA. Variables that are not shown in the table were excluded from the model. Adjusted R² for this model is 0.439. ADMA; asymmetric dimethylarginine, NT-proBNP; N-terminal pro-B-type natriuretic peptide.