Estimating urine albumin-creatinine ratio from protein-creatinine ratio: development of equations using same-day measurements

Supplementary material

Table of contents

Table S1. Equations to estimate the median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of ACR from a PCR measurement, by sex
Table S2. Regression coefficients for 4 models for median $\log (A C R)$, with $\log (P C R)$ represented by a 4knot linear spline
Table S3. Estimated median and interquartile range for ACR, at the KDIGO PCR category thresholds of 150 and $500 \mathrm{mg} / \mathrm{g}$, for the overall cohort and for groups specified by covariates, and estimated PCR giving predicted median ACR at KDIGO ACR category thresholds.
Figure S1. Median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of predicted albumin:protein percent, by PCR value
Figure S2. Median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of predicted ACR by PCR value
Figure S3. Effect of sex on predicted median ACR, log scale
Figure S4. Predicted median, $25^{\text {th }}$, and $75^{\text {th }}$ percentiles of ACR for males and females, by PCR value
Figure S5. Effect of sex on predicted median ACR, linear scale, PCR < $600 \mathrm{mg} / \mathrm{g}$
Figure S6. Effect of sex on predicted median albumin:protein percent
Figure S7. Effect of age on predicted median ACR, log scale
Figure S8. Effect of age on predicted median ACR, linear scale
Figure S9. Effect of age on predicted median albumin:protein percent
Figure S10. Effect of eGFR category on predicted median ACR, log scale
Figure S11. Effect of eGFR category on predicted median ACR, linear scale
Figure S12. Effect of eGFR category on predicted median albumin:protein percent
Figure S13. Effect of diabetes on median ACR, log scale
Figure S14. Effect of diabetes on median ACR, linear scale
Figure S15. Effect of diabetes on albumin:protein percent
Figure S16. Effect of hypertension on median ACR, log scale
Figure S17. Effect of hypertension on median ACR, linear scale
Figure S18. Effect of hypertension on albumin:protein percent
Figure S19. Effect of lab location (proxy for analyzer and method) on median ACR, log scale
Figure S20. Effect of lab location (proxy for analyzer and method) on median ACR, linear scale
Figure S21. Effect of lab location (proxy for analyzer and method) on albumin:protein percent
Figure S22. Comparison of predicted median ACR based on models with PCR transformed with a restricted cubic spline (C1), and with PCR transformed with a linear spline (L1).
Figure S23. Scatterplot of measured ACR and median ACR predicted from the linear spline model (L2).
Figure S24: Scatterplot of measured ACR versus ACR estimated from PCR measurements using the equations of Tangri et al. (2016).
Figure S25. Scatterplot showing measured ACR versus ACR estimated from PCR measurements using the equation of Collier et al. (2009).
Figure S26. Estimated median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of ACR at the KDIGO A1/A2 and A2/A3 PCR thresholds of 150 and $500 \mathrm{mg} / \mathrm{g}$, overall and by specified covariate.

Table S1. Equations to estimate the median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of ACR from a PCR measurement, by sex, based on quantile regression models for $\log (A C R)$ containing the linear spline terms for $\log (P C R)$, sex, and interactions between sex and the spline terms.

$\begin{aligned} & \hline \text { Range of PCR } \\ & (\mathrm{mg} / \mathrm{g}) \end{aligned}$	Equation to estimate median of $\log (A C R)$	Equation to estimate $25^{\text {th }}$ percentile of $\log (A C R)$	Equation to estimate $75^{\text {th }}$ percentile of $\log (A C R)$
Females:			
<40	$1.7060-0.0572 * \log (\mathrm{PCR})$	1.2796-0.0386* $\log (\mathrm{PCR})$	$1.6731+0.0642 * \log (\mathrm{PCR})$
40 to <60	$0.2183+0.3460 * \log (\mathrm{PCR})$	$0.7094+0.1159 * \log (\mathrm{PCR})$	$-1.4845+0.9202 * \log (\mathrm{PCR})$
60 to <250	$-6.2539+1.9269 * \log (\mathrm{PCR})$	$-5.0158+1.5144 * \log (\mathrm{PCR})$	$-5.3268+1.8587 * \log (\mathrm{PCR})$
250 to <1000	$-4.4287+1.5963 * \log (\mathrm{PCR})$	$-9.0693+2.2486 * \log (\mathrm{PCR})$	$-1.9764+1.2519 * \log (\mathrm{PCR})$
≥ 1000	$0.0445+0.9488 * \log (\mathrm{PCR})$	$-0.0479+0.9426^{*} \log (\mathrm{PCR})$	$-0.1429+0.9864 * \log (\mathrm{PCR})$
Males:			
<40	$0.7373+0.1697 * \log (\mathrm{PCR})$	$0.5589+0.1083 * \log (\mathrm{PCR})$	$1.2593+0.1460 * \log (\mathrm{PCR})$
40 to <60	$-2.7625+1.1184 * \log (\mathrm{PCR})$	$-0.7944+0.4751 * \log (\mathrm{PCR})$	$-5.9091+2.0891 * \log (\mathrm{PCR})$
60 to <250	$-6.9212+2.1342 * \log (\mathrm{PCR})$	$-7.6388+2.1469 * \log (\mathrm{PCR})$	$-4.4236+1.7263 * \log (\mathrm{PCR})$
250 to <1000	$-1.9690+1.2372 * \log (\mathrm{PCR})$	$-4.8345+1.6390 * \log (\mathrm{PCR})$	$-1.1395+1.1315 * \log (\mathrm{PCR})$
≥ 1000	$-0.1522+0.9742 * \log (\mathrm{PCR})$	$0.0862+0.9267 * \log (\mathrm{PCR})$	$-0.2425+1.0016 * \log (\mathrm{PCR})$

Log refers to the natural logarithm, so ACR $=\exp (\log (A C R))=2.71828^{\log (A C R)}$. Median predicted ACR $=$ $\exp ($ median of predicted $\log (A C R))$. ACR and PCR are in mg / g.

Table S2. Regression coefficients for 4 models for median $\log (A C R)$, with $\log (P C R)$ represented by a 4knot linear spline ${ }^{\text {a }}$

Coefficient	$\begin{array}{c}\text { Model L1: } \\ \text { spline of } \\ \text { log(PCR) only }\end{array}$	$\begin{array}{c}\text { Model L2: } \\ \text { spline of } \\ \text { log(PCR), sex, } \\ \text { and spline } \\ \text { interactions }\end{array}$	$\begin{array}{c}\text { Model L3: spline of } \\ \text { log(PCR), sex, age, } \\ \text { diabetes, } \\ \text { hypertension, eGFR } \\ \text { category and spline } \\ \text { interactions }\end{array}$	$\begin{array}{c}\text { Model L4: Spline of } \\ \text { log(PCR), sex, age, } \\ \text { diabetes, }\end{array}$
hypertension, eGFR				
category, lab location				
and spline interactions				

Coefficient	$\begin{array}{c}\text { Model L1: } \\ \text { spline of } \\ \text { log(PCR) only }\end{array}$	$\begin{array}{c}\text { Model L2: } \\ \text { spline of } \\ \text { log(PCR), sex, } \\ \text { and spline } \\ \text { interactions }\end{array}$	$\begin{array}{c}\text { Model L3: spline of } \\ \text { log(PCR), sex, age, } \\ \text { diabetes, } \\ \text { hypertension, eGFR } \\ \text { category and spline } \\ \text { interactions }\end{array}$	$\begin{array}{c}\text { Model L4: Spline of } \\ \text { log(PCR), sex, age, } \\ \text { diabetes, }\end{array}$
hypertension, eGFR				
category, lab location				
and spline interactions				

${ }^{\text {a }}$ The knots for the linear spline were at $\log (P C R)=3.689,4.094,5.521$ and 6.908 , corresponding to PCR values of $40,60,250,1000 \mathrm{mg} / \mathrm{g}$. S1 to S 5 represent the variables for the 5 linear spline segments.
${ }^{\mathrm{b}}$ The reference age category was 18 to 59 , the reference eGFR category was G1 to G3, and the reference lab location was Edmonton.

Table S3. Estimated median and interquartile range for ACR, at the KDIGO PCR category thresholds of 150 and $500 \mathrm{mg} / \mathrm{g}$, for the overall cohort and for groups specified by covariates, and estimated PCR giving predicted median ACR at KDIGO ACR category thresholds.

	PCR $=150 \mathrm{mg} / \mathrm{g}$		PCR $=500 \mathrm{mg} / \mathrm{g}$		PCR (mg/g) giving predicted median ACR of $30 \mathrm{mg} / \mathrm{g}$	$\begin{aligned} & \text { PCR }(\mathrm{mg} / \mathrm{g}) \\ & \text { giving predicted } \\ & \text { median ACR of } \\ & 300 \mathrm{mg} / \mathrm{g} \\ & \hline \end{aligned}$
Covariate	Estimated median ACR	Estimated IQR for ACR	Estimated median ACR	Estimated IQR for ACR		
None (Overall estimates)	35.5	16.0, 65.8	301	213, 357	139	498
Sex Female Male	28.0 45.5	$\begin{aligned} & 13.1,54.5 \\ & 21.2,75.9 \end{aligned}$	$\begin{aligned} & 277 \\ & 315 \end{aligned}$	$\begin{aligned} & 176,346 \\ & 243,362 \end{aligned}$	$\begin{aligned} & 155 \\ & 123 \end{aligned}$	$\begin{aligned} & 528 \\ & 481 \end{aligned}$
$\begin{gathered} \hline \text { Age, years } \\ 18-49 \\ 50-69 \\ \geq 70 \\ \hline \end{gathered}$	$\begin{aligned} & 41.0 \\ & 35.6 \\ & 32.2 \end{aligned}$	$\begin{aligned} & 15.9,76.6 \\ & 15.7,66.4 \\ & 16.5,56.4 \end{aligned}$	$\begin{aligned} & 336 \\ & 308 \\ & 271 \end{aligned}$	$\begin{aligned} & 248,381 \\ & 220,359 \\ & 182,331 \end{aligned}$	$\begin{aligned} & 130 \\ & 139 \\ & 145 \end{aligned}$	$\begin{array}{r} 460 \\ 491 \\ 538 \\ \hline \end{array}$
No diabetes Diabetes	31.4 39.2	$\begin{aligned} & 13.8,63.4 \\ & 18.4,66.6 \end{aligned}$	307 300	$\begin{aligned} & 195,368 \\ & 222,348 \end{aligned}$	$\begin{aligned} & 147 \\ & 132 \end{aligned}$	492 500
No hypertension Hypertension	$\begin{aligned} & 31.0 \\ & 36.9 \end{aligned}$	$\begin{aligned} & 12.6,64.5 \\ & 17.8,66.0 \end{aligned}$	$\begin{aligned} & 306 \\ & 301 \end{aligned}$	$\begin{aligned} & 171,366 \\ & 221,354 \end{aligned}$	$\begin{aligned} & 148 \\ & 136 \end{aligned}$	$\begin{aligned} & 493 \\ & 499 \end{aligned}$
```eGFR category 20 ml/min}/1.73\mp@subsup{\textrm{m}}{}{2 15-29 ml/min/1.73m <15 ml/min/1.73\mp@subsup{m}{}{2}```	$\begin{aligned} & 35.9 \\ & 31.6 \\ & 19.3 \end{aligned}$	$\begin{gathered} 16.2,66.6 \\ 15.1,53.7 \\ 7.9,41.6 \end{gathered}$	$\begin{aligned} & 310 \\ & 257 \\ & 205 \end{aligned}$	$\begin{aligned} & 227,361 \\ & 175,321 \\ & 121,282 \end{aligned}$	$\begin{aligned} & 138 \\ & 146 \\ & 184 \end{aligned}$	$\begin{aligned} & 488 \\ & 559 \\ & 647 \end{aligned}$
Laboratory location Edmonton Calgary Other	$\begin{aligned} & 42.3 \\ & 34.5 \\ & 22.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.3,75.2 \\ & 18.0,58.7 \\ & 11.9,45.9 \end{aligned}$	$\begin{aligned} & 302 \\ & 341 \\ & 251 \\ & \hline \end{aligned}$	$\begin{aligned} & 221,348 \\ & 258,390 \\ & 153,316 \end{aligned}$	$\begin{aligned} & 127 \\ & 142 \\ & 169 \\ & \hline \end{aligned}$	$\begin{array}{r} 497 \\ 460 \\ 564 \\ \hline \end{array}$

The overall estimates are from quantile regression models containing only the cubic spline terms, while estimates for the effect of each covariate are from quantile regression models containing the cubic spline terms, the covariate(s), and interactions between the covariate(s) and the spline terms. Estimates of the median ACR are transformed from quantile regression models for the $50^{\text {th }}$ percentile of $\log (A C R)$; estimates of the IQR of ACR are transformed from quantile regression models for the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of $\log (A C R)$. Estimates of PCR that give predicted median ACR at the KDIGO ACR category thresholds are from the $50^{\text {th }}$ percentile models. IQR = interquartile range.

Figure S1. Median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of predicted albumin:protein percent, by value of PCR, from quantile regression cubic spline models for $\log (A C R)$ including only the spline terms for $\log (P C R)$


Figure S2. Median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of predicted ACR by PCR value, log scale, from quantile regression cubic spline models of $\log (A C R)$ containing only the spline terms of $\log (P C R)$


Figure S3. Effect of sex on predicted median ACR, log scale (from a model containing the cubic spline, sex, and spline interactions).


Figure S4. Predicted median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of ACR for males and females, log scale (from quantile regression models containing the cubic spline, sex and spline interactions).


Figure S 5 . Effect of sex on predicted median ACR, linear scale, $\mathrm{PCR}<600 \mathrm{mg} / \mathrm{g}$ (from a model containing the cubic spline, sex, and spline interactions).


Figure S6. Effect of sex on predicted median albumin:protein percent (from a model containing the cubic spline, sex, and spline interactions).


Figure S7. Effect of age on predicted median ACR, log scale (from a model containing the cubic spline, age, and spline interactions).


Figure S8. Effect of age on predicted median ACR, linear scale (from a model containing the cubic spline, age, and spline interactions).


Figure S9. Effect of age on predicted median albumin:protein percent (from a model containing the cubic spline, age, and spline interactions).


Figure S10. Effect of eGFR category on predicted median ACR, log scale (from a model containing the cubic spline, eGFR category, and spline interactions).


Figure S11. Effect of eGFR category on predicted median ACR, linear scale (from a model containing the cubic spline, eGFR category, and spline interactions).


Figure S12. Effect of eGFR category on predicted median albumin to protein percent (from a model containing the cubic spline, eGFR category, and spline interactions).


Figure S13. Effect of diabetes on median ACR, log scale (from a model containing the cubic spline, diabetes, and spline interactions).


Figure S14. Effect of diabetes on median ACR, linear scale (from a model containing the cubic spline, diabetes, and spline interactions).


Figure S15. Effect of diabetes on percent albumin (from a model containing the cubic spline, diabetes, and spline interactions).


Figure S15. Effect of hypertension on median ACR, log scale (from a model containing the cubic spline, hypertension, and spline interactions).


Figure S17. Effect of hypertension on median ACR, linear scale (from a model containing the cubic spline, hypertension, and spline interactions).


Figure S18. Effect of hypertension on percent albumin (from a model containing the cubic spline, hypertension, and spline interactions).


Figure S19. Effect of lab location (proxy for analyzer and method) on median ACR, log scale (from a model containing the cubic spline, lab location, and spline interactions).


Figure S20. Effect of lab location (proxy for analyzer \& method) on median ACR, linear scale (from a model containing the cubic spline, lab location, and spline interactions).


Figure S21. Effect of lab location (proxy for analyzer and method) on percent albumin (from a model containing the cubic spline, lab location, and spline interactions).


Figure S22. Comparison of predicted median ACR based on models with PCR transformed with a restricted cubic spline (C1), and with PCR transformed with a linear spline (L1). The knots for the restricted cubic spline were at percentiles 5, 27.5, 50, 72.5 and 95 of $\log (P C R)(3.4668,4.0625,4.5664$, 5.3992 and 7.7333 , corresponding to PCR values of $32.0,58.1,96.2,221$ and $2283 \mathrm{mg} / \mathrm{g}$ ). Knots for the linear spline were at values of $\log (P C R)$ of $3.689,4.094,5.521$ and 6.908 , corresponding to PCR values of 40, 60, 250 and $1000 \mathrm{mg} / \mathrm{g}$.


Figure S23. Scatterplot of measured ACR and median ACR predicted from the linear spline model (L2) for a $20 \%$ random sample. The blue dots represent males and the red dots females. To convert ACR or PCR from $\mathrm{mg} / \mathrm{g}$ to $\mathrm{mg} / \mathrm{mmol}$, multiply by 0.113 .


Figure S24. Scatterplot of measured ACR versus ACR estimated from PCR measurements for a 20\% random sample, using the equations of Tangri et al. ${ }^{1}$ The equations are: $A C R=P C R / 1.7566$ if female; $A C R=P C R / 2.655$ if male. Blue dots represent males, red dots females.


Figure S25. Scatterplot showing measured ACR versus ACR estimated from PCR measurements for a $20 \%$ random sample, using the equation of Collier et al. ${ }^{2}$ Note that the lowest $22 \%$ of PCR values could not be shown as the predicted ACR was negative if the PCR was $<52 \mathrm{mg} / \mathrm{g}$. The equation is: $\mathrm{ACR}=(-4+$ $0.68^{*}$ PCR)/0.113. Blue dots represent males, red dots females.


Figure S26. Estimated median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of ACR at the KDIGO A1/A2 and A2/A3 PCR thresholds of 150 and $500 \mathrm{mg} / \mathrm{g}$, overall and by specified covariate. To convert ACR or PCR from mg/g to $\mathrm{mg} / \mathrm{mmol}$, multiply by 0.113 . The estimates are based on quantile regression models for the $25^{\text {th }}, 50^{\text {th }}$ and $75^{\text {th }}$ percentiles of $\log (A C R)$, with $\log (P C R)$ transformed with a restricted cubic spline, and with each model containing only the specified covariate, the spline terms, and the interactions between the specified covariate and the spline terms.


## References:

1. Tangri, N, Grams, ME, Levey, AS, Coresh, J, Appel, LJ, Astor, BC, et al., C. K. D. Prognosis Consortium: Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Metaanalysis. JAMA, 315: 164-174, 2016.
2. Collier, G, Greenan, MC, Brady, JJ, Murray, B, Cunningham, SK: A study of the relationship between albuminuria, proteinuria and urinary reagent strips. Ann Clin Biochem, 46: 247-249, 2009.
