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Figure S1. The spatial and temporal expression of Six2 and Cdhl6 (Ksp) in the mouse
kidney.



(A) Gene expression of Six2 and Cdhi16 (Ksp) in developing kidney based on Affymetrix
MOE430 microarray, obtained from GUDMAP database (https://www.gudmap.org/).

(B) RNA-seq based gene expression quantification of Six2 and Cdhl6 (Ksp) in kidney
development (https://www.encodeproject.org/).

(C) Gene expression of Cdhl6 (Ksp) in adult kidney based on single cell RNA-seq.

(D) Gene expression and chromatin accessibility of Six2 and Cdh16 (Ksp) in the developing
and adult kidney (https://www.encodeproject.org). Single cell ATAC-seq data was
obtained from Mouse sci-ATAC-seq Atlas (http://atlas.gs.washington.edu/mouse-atac/).
Cell types was assigned to clusters by Cusanovich et al. as following: PT_1: Proximal
tubule; PT 2: Proximal tubule; PT_3: Proximal tubule; PT_5: Proximal tubule; PT_S3:
Proximal tubule S3; DCT: Distal convoluted tubule; DCT_CD: DCT/CD; CD: Collecting
duct; LOH_2: Loop of henle; LOH_3: Loop of henle; Podocytes: Podocytes; Glomerular:
Endothelial I (glomerular); and Macrophages. Genome intervals of gene loci in mm10 were
converted to mm9 by lift-over and visualized by UCSC genome browser.
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Figure S2. Effect of Dnmt3a/3b deletion in FA-induced kidney fibrosis model.

(A) Relative mRNA level of fibrosis associated genes Collal, Col3al, Coldal,
Fibronectin and Vimentin in control and Ksp“Dnmt3a/3b mice following sham or folic



acid treatment. Data are represented as mean + SEM. P value was calculated by one-way
ANOVA.

(B)Serum BUN and creatinine levels.

(C) Representative images of HE-stained kidney sections in control and Ksp““Dnmt3a/3b
following sham or folic acid treatment.

(D) Relative mRNA level of kidney segment marker genes Agpl, Umod, Slc12a3 and Agp2
in control and Ksp“*Dnmt3a/3b following sham or folic acid treatment. Data are
represented as mean + SEM.
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Figure S3. Phenotypic characterization of Six2¢Dnmt3a/3b mice

(A) Breeding scheme of generating Six“"“Dnmt3a/3b double knock-out mice.

(B) Representative images of HE-stained kidney sections in control and Six“Dnmt3a/3b
mice. Scale bar: 50 pm.

(C) Relative mRNA level of kidney segment markers; such as Slc34al, Sici2al, Slc12a3
and Agp?2 in control and Six“"*Dnmt3a/3b mice. Data are represented as mean + SEM.
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Figure S4. Genome location of DMRs induced by Dnmt3a/3b double knock-out.

CpG islands were downloaded from UCSC genome browser and chromatin states from
fetal and adult kidneys were used to classify the genome location of each DMR.
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Figure S5. Cell-type specific base resolution methylation changes in Ksp‘Dnmt3a/3b

mice.



(A) Reproducibility of CpG methylation by RRBS in whole kidney and that by WGBS in
Cdhl16* cell from kidney. Mice kidneys were harvested at 3 weeks after birth.

(B) WGBS analysis pipeline and DMR identification thresholds.

(C) Fraction of DMRs overlapping with enhancers in fetal and adult kidneys. Chromatin
states from fetal and adult kidneys were used to classify the genome location of each DMR.

(D) Density plots of shared methylation changes of development and in Dnmt3a/3b knock-
out mice. X-axis shows the methylation differences in Dnmt3a/3b knock-out and control
mice; the y-axis shows the methylation changes of adult and fetal kidneys.

(E) Active enhancer (H3K27ac) enrichment of KspDnmt3a/3b DMRs on E15.5, PO and
adult.

(F) Methylation differences in fetal or adult enhancers or enhancer that act as enhancers
both in the adult and in the fetal kidneys.
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Figure S6.IGV genome browser of Hypo-DMR regions.

(A) IGV genome browser of the mouse chrl0:120419594-120423117 and (B)
chr4:148674273-148678031. Hypo DMRs were shown in red bar on the second track,
followed by CpG methylation, H3K27ac, chromatin states during kidney development, and
single cell open chromatin by single cell ATAC-Seq in adult kidney.
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Figure S7. Dnmt3a/3b mediated methylation changes overlap with fetal enhancers
and Six2-binding.



(A) IGV Genome browser view of four double knock-out hypo-DMRs (chr19:44643000-
44646161, chr16:30497592-30501344, chr1:86480489-86482950, and chr8:121218288-
121221325), followed by CpG methylation and H3K27ac during kidney development, and
Six2 binding sites by ChIP-seq in nephron progenitor cells (NPC). Bottom panel showed
the IGV genome browser of mouse Pax2 locus. Topologically associating domain (TAD)
was defined in the genome of mouse ES-cells by Dixon et al. (Nature 2012). Hi-C contact
matrices of data was detected by Kieffer-Kwon et al. (Molecular Cell 2017) and Juicebox.js
(http://www .aidenlab.org/juicebox/) was to use for visualization.

(B) Biological processes and mouse phenotype enrichment around loci that gain
methylation during development but not established in double knock-out kidneys, based
on GREAT v3.0.0 (http://great.stanford.edu/great/public-3.0.0/html/).
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Figure S8. Correlation between methylation changes and Six2 expression.

(A) Correlation between Six2 expression and CpG methylation in a region on chromosome
7 (chr7:24389472-24389973) which showed strongest significant correlation with Six2
expression.

(B) IGV genome browser of expression of Six2 (left panel) and methylation of fragment
(chr7:24389472-24389973, right panel) in kidney development. For both panels, enhancer
mark H3K27ac and Six2 peaks was shown in bottom tracks.
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Figure S9. Methylation and gene expression correlation of topologically define
enhancer DMRs and their target genes.

(A) Expression of 21 genes on control and Dnmt3a/3b double knock-out mice associated
with topologically define enhancer methylation. Y-axis is the normalized expression level

(Transcripts per million, TPM) detected by RNA-seq.

(B) Tiaml expression in the developing kidney and 3-week-old double knock-out mice.
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Figure S10. Species conservation of kidney enhancers and their epigenetic changes in
development and Kkidney disease.



(A) Genome location of all WGBS segments in fetal and adult kidneys. Chromatin states
from fetal and adult kidneys were used to classify the genome location of each segment by
WGBS.

(B) Fraction of segments conserved between mouse and human. All segments identified
from WGBS dataset were classified according to their location relative to enhancer and
methylation changes after Dnmt3a/3b double knock-out.

(C) CpG methylation of conserved segments in adult kidneys from mouse (8-week-old)
and human (47.4+15.8 years old). Spearman's rank correlation coefficient and significance
was calculated and showed.

(D) SNPs associated with gene UNCX obtained from GWAS catalog
(https://www .ebi.ac.uk/gwas/genes/UNCX). Among total 40 terms, 68.3% (28 terms) were
associated with kidney functions, and nearly all SNPs were localized in regulatory region
of gene UNCX.

(E-F) Gene expression of UNCX and HOXD9 in human fetal kidneys, normal adult kidneys
and kidneys of patient with diabetic kidney disease (DKD). Transcripts per million (TPM)
was used to quantify expression level. GraphPad Prism software (GraphPad Software Inc.,
La Jolla, CA) was used to plot and Dunnett's multiple comparisons test was used to
calculate the significance of difference between normal adult human kidneys and fetal
human kidneys and DKD kidneys.



