Supplemental material Table of Contents

Supplemental Figure 1. Diagram of the glomerular structure

Supplemental Figure 2. Unbiased clustering reveals the major cell types of the glomerulus

Supplemental Figure 3. Mapping of FSGS and CKD susceptibility gene expression to

glomerular cell types

Supplemental Figure 4. Nephrotoxic serum nephritis in C57BL/6J mice

Supplemental Figure 5. scRNA-Seq analysis of glomerular cells from nephritic mice

Supplemental Figure 6. Induction of Ccl2 expression in nephrotoxic serum nephritis

Supplemental Figure 7. Conditional deletion of TAZ and YAP

Supplemental Figure 8. scRNA-Seq analysis of glomerular cells from diabetic, doxorubicintreated, and CD2AP-deficient mice

Supplemental Figure 9. Validation of previously reported mesangial cell-specific genes

Supplemental Figure 10. Glomerular cells show distinct responses to different types of injury

Supplemental Table 1. Genes differentially expressed between two podocyte sub-clusters (2

and 4) in Supplemental Figure 2A

Supplemental Table 2. List of canonical cell type markers used to determine the identity of cell clusters

Supplemental Table 3. Composition of glomerular cells from a C57BL/6J mouse analyzed by scRNA-Seq

Supplemental Table 4. Top 50 cell type marker genes

Supplemental Table 5. Genes differentially expressed between mesangial cells (cluster 3) and SMCs/JG cells (cluster 5)

- Supplemental Table 6. Genes enriched in mesangial cells
- Supplemental Table 7. Number of differentially expressed genes in nephritic mice
- Supplemental Table 8. Comparison of kidney single cell datasets
- Supplemental Table 9. Genes commonly induced in mesangial cells after different injury types

Supplemental Figure 1. Diagram of the glomerular structure. The glomerulus is a capillary tuft that is supplied by the afferent arteriole and drained by the efferent arteriole. Mesangial cells provide structural support for the glomerular capillaries, which are lined by specialized fenestrated endothelial cells that allow water and soluble molecules to pass. Blood is filtered through the glomerular basement membrane (GBM) and between the branched foot processes of podocytes. The primary filtrate is collected in the Bowman's capsule, which is lined with a layer of parietal epithelial cells, then further processed in the downstream tubules to produce urine. The juxtaglomerular apparatus (JGA) is composed of the macula densa that senses changes in salt levels in the tubules and sends signals to regulate constriction of the afferent arterioles by vascular smooth muscle cells (SMCs) and secretion of renin by juxtaglomerular (JG) cells.

Supplemental Figure 2. Unbiased clustering reveals the major cell types of the glomerulus. **A**. t-SNE representation of 5,488 glomerular cells isolated from a C57BL/6J mouse. Labels indicate clusters identified by unsupervised clustering analysis *before* removal of dissociation-induced genes and tubular epithelial cells. Analysis of the two podocyte sub-clusters (2 and 4) showed that the sub-clustering was driven by immediate early genes known to be induced by enzymatic tissue dissociation (Supplemental Table 1). **B**. Violin plots of marker gene expression in each cluster shown in **A**. **C**. Expression levels of immune cell marker genes are shown in a t-SNE plot of immune cells. Majority of the cells express the monocyte/macrophage markers *Csf1r*, *Adgre1, Itgam*, and *Ly6c2*. **D**. Violin plots showing expression levels of novel PEC marker genes. **E**. *Dlk1* and *Ednrb* are highly expressed in a sub-cluster of glomerular endothelial cells

(outlined in black). Expression levels are shown in a t-SNE plot of endothelial cells. Capillary endothelial cells are outlined in red, arteriolar endothelial cells are outlined in blue. **F**. Immunofluorescence staining of kidney sections shows mesangial expression of the identified marker genes. PDGFR β , which stains mesangial cells in the glomerulus (dotted circle) and stromal cells outside the glomerulus, was used as reference. Scale bars, 20 µm. **G**. Examples of 'mesangial-enriched' genes that are also expressed in SMC/JG cells. Normalized expression levels are shown in the violin plots. SMC: smooth muscle cells, JG: juxtaglomerular cells, PEC: parietal epithelial cells, TEC: tubular epithelial cells.

Supplemental Figure 3. Mapping of FSGS and CKD susceptibility gene expression to glomerular cell types. A, C. Heatmaps showing the expression levels of (A) FSGS genes and (C) CKD susceptibility genes in each cell type. Each column represents a cell type, each row represents a gene. Results are depicted in z-score. P: podocytes, M: mesangial cells, E: endothelial cells, S: smooth muscle cells, T: tubular epithelial cells, I: immune cells. B, D. Violin

plots showing expression of **(B)** FSGS and **(D)** CKD susceptibility genes. Normalized expression levels are shown in the violin plots.

Supplemental Figure 4. Nephrotoxic serum nephritis in C57BL/6J mice. A.

Immunofluorescence staining of kidney sections shows deposition of the nephrotoxic antibodies (sheep IgG) in the glomerulus. Glomerular deposition of mouse IgG was not observed at any time point. Scale bar, 200 μ m. **B.** Albumin/creatinine ratios measured from spot urine collected at the indicated time points after nephrotoxic serum injection. n=5. **C.** Representative light microscopy of PAS and Masson's trichrome stained kidney sections from control and nephrotoxic serum-injected mice show glomerulosclerosis (arrowheads) and periglomerular

fibrosis (arrows) in the nephritic mice. Kidneys were analyzed 5 weeks after injection. Scale bars, 50 μ m.

Supplemental Figure 5. scRNA-Seq analysis of glomerular cells from nephritic mice. A-F. Unsupervised clustering analysis reveals the major glomerular cell types in cells isolated from mice at (A-C) 1 day or (D-F) 5 days after nephrotoxic serum injection. t-SNE plots were generated from cells isolated at each time point and are labeled to show (A, D) replicate samples, (B, E) clusters identified by clustering analyses, and (C, F) cell types. G. Down-sampling analysis of nephritic glomerular cells. Since podocytes, mesangial cells, and endothelial cells comprise ~90% of the cells in the dataset, they have a larger effect on the outcome of clustering analyses compared to the remaining cell types. To reduce this bias, clustering analysis was performed after podocytes, mesangial cells, and endothelial cells were randomly down-sampled to match the number of the remaining cell types. The results are shown as a UMAP plot. Nephritic podocytes, mesangial cells, endothelial cells still form distinct clusters from control cells, while PECs, SMCs, and tubular epithelial cells from normal and nephritic mice are grouped as single clusters. This supports the conclusion that the distinct clustering of nephritic podocytes, mesangial cells, and endothelial cells in Figure 2A is not due to batch effect. **H**. qPCR validation of DE genes from freshly isolated glomeruli. A subset of genes identified to be up-regulated (blue) or down-regulated (red) from scRNA-Seq analysis were analyzed by realtime qPCR using cDNA prepared from isolated glomeruli. qPCR results (normalized to Rpl13a levels) are plotted against pseudo-bulk (podocyte, mesangial, endothelial) expression levels calculated from scRNA-Seq data and shown as fold change nephritis vs. control. I. Pathways up-regulated (blue) or down-regulated (red) after nephrotoxic injury are shown. J. Expression levels of cell cycle genes reveal sub-clusters of proliferating mesangial cells (black dotted circle) and endothelial cells (red dotted circle) 5 days after nephrotoxic injury. t-SNE plot is identical to (E). K. Expression levels of *Apln*, *Pgf*, and *Serpine1* in a sub-cluster of endothelial cells

11

(outlined) found at day 5. t-SNE plot is identical to (E). L. Expression levels of immune cell marker genes overlaid on the t-SNE plot shown in Figure 2E.

Supplemental Figure 6. Induction of *Ccl2* expression in nephrotoxic serum nephritis. **A**. t-SNE plot of mesangial cells, myofibroblasts (MF), and immune cells from control and nephritic

glomeruli shows increased number of Ccl2-expressing cells after nephrotoxic injury. Ccl2positive cells are labeled in color and *Ccl2*-negative cells are in gray. **B**. Induction of the YPet reporter in peritoneal macrophages isolated from CCL2-reporter mice upon in vitro stimulation with LPS and poly(I:C). Results represent three individual experiments analyzed by two-tailed Student's *t* test (** P<0.01, **** P<0.0001). C. qPCR analysis shows similar fold-induction of YPet and *Ccl2* transcript levels in peritoneal macrophages isolated from CCL2-reporter mice after *in vitro* LPS stimulation. Results are representative of 2 individual experiments. **D**. Expression of YPet reporter correlates well with CCL2 production/secretion. Peritoneal macrophages isolated from CCL2-reporter mice were treated in vitro with increasing concentrations of LPS. Cells were analyzed by FACS to measure YPet flurorescence; the culture supernatant was used to measure secreted CCL2 protein levels. Pearson's correlation R²=0.9738, P=0.0018. E. Images of adipose tissue from control and HFD-fed CCL2-reporter mice obtained using 2-photon microscopy. YPet expression is only detected in peri-vascular cells in normal chow-fed mice. In the HFD-fed mice, reporter expression is induced in fat cells (arrowheads) and macrophages (arrows). F. Images of glomeruli from control and nephritic CCL2-reporter mice obtained by 2-photon microscopy show progressive increase in YPet expression after nephrotoxic injury. G. Glomerular cells were isolated from CCL2-reporter mice at the indicated time points after nephrotoxic serum injection and analyzed by flow cytometry to determine the percentage of YPet-expressing cells. Three mice from two individual experiments were analyzed by multiple *t* tests using the two-stage linear step-up method (*q <0.05, ***q<0.001). H. CCL2 is expressed in mesangial cells. Glomerular cells isolated from CCL2-reporter mice were stained for the mesangial cell marker PDGFRβ and analyzed by flow cytometry. >80% of YPet-positive cells are PDGFRβ-positive mesangial cells.

14

Supplemental Figure 7. Conditional deletion of TAZ and YAP. **A**. Wild-type (Rosa26.CreERT2, *Wwtr1*^{+/+}, *Yap1*^{+/+}), TAZ conditional knockout (Rosa26.CreERT2, *Wwtr1*^{+/+}, *Yap1*^{flox/flox}) mice were given 5 daily injections of tamoxifen. Glomerular lysates were prepared one week after the final injection and immunoblotted for TAZ and YAP. β-actin was used as loading control. **B**. Deletion of TAZ or YAP does not cause proteinuria. WT, *Wwtr1*^{-/-}, and *Yap1*^{-/-} mice were injected with sterile saline. Albumin/creatinine ratios (ACR) were measured from spot urine collected at the indicated time points.

Supplemental Figure 8. scRNA-Seq analysis of glomerular cells from diabetic, doxorubicintreated, and CD2AP-deficient mice. **A.** t-SNE plot of glomerular cells from control (*ob*/+) and diabetic mice (*ob*/<u>*ob*</u>). **B**. Pathways up-regulated in podocytes and mesangial cells in diabetic mice are shown. **C**. t-SNE plot of glomerular cells from doxorubicin-treated mice. **D**. Violin plots show down-regulation of podocyte-specific genes in podocytes after doxorubicin treatment. **E**. Pathways up-regulated (blue) or down-regulated (red) in podocytes after doxorubicin treatment are shown. **F**. Violin plots show induction of p53 signaling target genes in podocytes after doxorubicin treatment. **G**, **H**. Violin plots show induction of *Mt1* and *Mt2* in **(G)** mesangial cells and **(H)** endothelial cells after doxorubicin treatment. **I**. Expression of immune cell markers in control and doxorubicin-treated mice. t-SNE plot is identical to Figure 4D. **J**. t-SNE plot of glomerular cells from 3 week-old wild-type and *Cd2ap*^{-/-} mice. **K**. Pathways up-regulated in podocytes and mesangial cells in *Cd2ap*^{-/-} mice are shown. **L**, **M**. Violin plots show increased expression of matrix genes in **(L)** podocytes and **(M)** mesangial cells. Normalized expression levels are shown in violin plots.

Supplemental Figure 9. Validation of previously reported mesangial cell-specific genes. A. Violin plots showing expression of previously reported mesangial-specific genes. Normalized expression levels are shown. B. Expression level of *Meis1* overlaid on a t-SNE plot of glomerular cells (identical to Figure 1A). *Meis1* is broadly expressed in non-mesangial cells, including vascular SMCs, endothelial cells, and podocytes. P: podocytes, M: mesangial cells, E: endothelial cells, SMC: vascular smooth muscle cells, PEC: parietal epithelial cells, I: immune cells.

Supplemental Figure 10. Glomerular cells show distinct responses to different types of injury.A, B. Venn diagrams showing the number of (A) up-regulated and (B) down-regulated genes commonly altered in different injury models in podocytes, mesangial cells, and endothelial cells.

podocyte	mesangial	endothelial	PEC	SMC	immune	TEC
Nphs1	Pdgfrb	Flt1	Cldn1	Acta2	Ptprc	Fxyd2
Nphs2	Gata3	Tiel	Pax8	Myh11	Lyz1	Slc12a1
Pdpn	Des	Pecaml		Tagln	Csflr	Slc12a3
Wt1	Itga8	Kdr			Itgam	Slc14a2
Mafb	-	Emcn			Cd3d	Aqpl
Synpo					Ms4a1	Aqp2
Cdkn1c						Umod
Ptpro						

PEC: parietal epithelial cell, SMC: smooth muscle cell, TEC: tubular epithelial cell

Supplemental Table 1. List of canonical cell type markers used to determine the identity of cell clusters.

Cono symbol	Adi n valua	Fold change	Mean	Mean	Dissociation-induced
Gene symbol	Auj p-value	(4 vs. 2)	(cluster 4)	(cluster 2)	gene
Fos	0.00E+00	6.65	51.53	7.75	Y
Cyr61	3.24E-213	5.29	25.21	4.77	Y
Ier2	2.12E-279	5.02	13.92	2.77	Y
Atf3	5.48E-125	4.69	7.59	1.62	Y
Junb	1.49E-244	4.54	19.51	4.30	Y
Fosb	4.18E-169	4.26	6.12	1.44	Y
Hspala	2.75E-234	4.06	97.50	24.02	Y
Dusp 1	2.15E-204	3.79	18.03	4.76	Y
Jun	1.16E-183	3.61	32.85	9.09	Y
Egrl	8.96E-126	3.59	7.63	2.13	Y
Hspb1	2.76E-107	3.25	15.87	4.89	Y
Nr4a1	2.54E-110	2.98	6.09	2.05	Y
Hspa1b	9.08E-123	2.97	7.79	2.62	Y
Btg2	1.91E-119	2.92	9.61	3.29	Y
Hsp25-ps1	1.05E-82	2.81	6.61	2.35	
Ubc	6.39E-180	2.74	36.36	13.29	Y
Dnajb1	1.76E-70	2.70	5.27	1.95	Y
Nfkbia	3.54E-80	2.57	7.02	2.73	Y
Slc38a2	1.44E-123	2.45	6.09	2.48	Y
Klf6	6.89E-70	2.38	4.75	1.99	Y
Hsp90aa1	3.17E-78	2.36	8.08	3.43	Y
Zfp36	2.29E-70	2.30	4.32	1.88	Y
Btg1	4.64E-71	2.29	5.00	2.18	Y
Gadd45b	2.46E-54	2.29	4.17	1.82	
Hesl	1.88E-26	2.12	4.06	1.92	
Ier3	1.27E-49	2.02	7.42	3.66	Y
Ppp1r15a	6.54E-59	1.99	4.13	2.08	Y
Socs3	8.01E-28	1.95	2.91	1.50	Y
Jund	2.93E-62	1.93	24.14	12.49	Y
Pnrc1	8.25E-54	1.89	4.16	2.20	Y
Sertad1	4.97E-47	1.88	4.71	2.51	
Phlda1	3.41E-25	1.86	4.02	2.16	Y
Hspe 1	3.21E-41	1.82	4.09	2.24	Y
Txnip	3.83E-44	1.80	5.62	3.12	
Ccnll	1.63E-43	1.80	3.26	1.81	Y
Klf2	6.09E-16	1.79	2.97	1.65	Y

Adm	1.02E-34	1.79	7.87	4.41	
Cited2	1.28E-28	1.70	4.77	2.81	
Dnajb4	7.70E-40	1.69	3.66	2.17	Y
CT009757.7	8.00E-61	1.67	3.35	2.01	
Arrdc3	8.60E-55	1.64	3.42	2.08	
Hsph1	1.45E-17	1.61	2.63	1.63	Y
Srf	8.00E-61	1.61	2.13	1.32	Y
Csrnp1	1.63E-16	1.58	2.01	1.27	Y
Hspa8	3.48E-36	1.57	5.83	3.72	Y
Rhob	5.09E-21	1.55	3.40	2.19	Y
Clk1	6.59E-32	1.54	3.61	2.35	
Gm12346	1.04E-19	1.53	1.95	1.27	
Ifrd 1	2.72E-09	1.50	2.45	1.63	Y

Supplemental Table 2. Genes differentially expressed between two podocyte sub-clusters (2 and 4) in Supplemental Figure 2A. 38 of

49 differentially expressed genes are dissociation-induced genes.

Cell type	# of cells	% of total
podocyte	1930	35.17%
endothelial cells	1858	33.86%
mesangial cells	1197	21.81%
tubular epithelial cells	207	3.77%
vascular SMCs	109	1.99%
immune cells	98	1.79%
parietal epithelial cells	89	1.62%
total	5488	100.00%

Supplemental Table 3. Composition of glomerular cells from a C57BL/6J mouse analyzed by scRNA-Seq.

5

podocyte	mesangial	endothelial	vascular SMCs	immune	PECs	TECs
Cdkn1c	Sfrp2	Ly6c1	Acta2	Lyz2	Gpx3	Umod
H2-Q6	Ptn	Emcn	Rgs5	Cd74	Lsp1	Fxyd2
Clic3	Serpine2	Plpp1	Tagln	Il1b	Cpe	Spp1
Nphs2	Adamts5	Pil6	Tpm2	Tyrobp	Pcp4	Atp1b1
Enpep	Bgn	Cd24a	Myh11	Fcerlg	Igsf5	Slc12a1
H2-Q7	Fhl2	Cyp4b1	Sparcl1	Lgals3	Igfbp6	Defb1
Nphs1	Agtrla	Gimap6	Mustn1	Cd52	Dkk3	Wfdc15b
Tcf21	Igfbp4	Egfl7	Rergl	Plac8	Igfbp2	Klk1
Dpp4	Gata3	Kdr	Akr1b7	Ccl4	Ptgis	Apela
Mafb	Ctgf	Gimap4	Map3k7cl	Ctss	Cst12	mt-Nd1
Rab3b	Itga8	Ctla2a	Fxyd1	<i>Cd14</i>	Stc2	Ppplrla
Cldn5	Lhfp	Ly6e	Pln	Clec4e	Pamrl	Cdh16
<i>Pth1r</i>	Rgs2	Pecaml	Nrip2	Corola	Lbp	mt-Cytb
Rhpn1	Sept4	Cd300lg	Ppp1r14a	Wfdc17	Cacnalg	Wfdc2
Wt1	Mfge8	Ehd3	Cox4i2	Ccl3	Plppr4	Ldhb
Sema3g	Myl9	Ramp2	Lmod1	Lyzl	Mir147	Epcam
Thsd7a	Plvap	Fabp4	Cnn1	Ccl9	Efemp l	Tmem213
Angptl2	Maf	Ly6a	Olfr558	Plek	Ms4a2	Pdzk1ip1
Fgfbp1	Gdf10	AU021092	Gm13861	Ifi27l2a	Wnt16	Tmem52b
Col4a3	Serpini l	Plk2	Pdlim3	Ms4a6c	AA467197	Kng2
Hs3st6	Prkca	Srgn	Ptgis	Slfn2	Col6a1	Mal
Cd59a	Art3	Plpp3	Atp1a2	Chil3	Vit	Kcnj l
Arhgap24	Lmo7	Cdh5	Ramp 1	Alox5ap	Scrn1	Plet1
Tmem150c	Pdgfrb	Sgk1	Aoc3	Laptm5	Fam180a	Cldn8
Synpo	Apoe	<i>Flt1</i>	Rgs7bp	Cybb	Nkain4	Kl
Pak1	Dkk2	Cdkn1a	Kcna5	Spi1	Gxylt2	Sostdc1
Itgb5	Nt5e	Cavin2	Itga7	Tnf	Tagln	Paqr5
Cmtm7	Gucy1a3	Cd200	Jph2	Ccl6	Col6a2	Cldn4
Eif3m	Ndufa4l2	Cd9	Kcnab1	Lsp1	Loxl1	Pcbd1
Htral	Rasgrp2	Sox17	Heyl	Samsn1	Pebp4	Sfrp1
Metrnl	Aldh2	Gimap5	Lmol	Cd83	Sod3	Cdh1
Podxl	Gpc3	Cmtm8	Gpc6	Ctsc	Ogn	1700011H14Rik
Aplp1	Cald1	Hsp25-ps1	Susd5	Lilrb4a	Pax8	Slc16a7
Npnt	Срт	Tspan7	Ppp1r12b	Lst1	Clstn2	Gm45886
Ptpro	Slc12a2	Mmrn2	1700120C14Rik	Cd44	Cldn1	Cyfip2
Pdpn	Vcl	Rasip1	Fbxl22	<i>Ifitm6</i>	Prss23	Krt18
Mmp23	Col4a1	AC160962.1	Adamts11	Cytip	Osr2	Clcnkb

Gasl	Sorbs2	Adgrf5	Sh3bgr	Нр	Proser2	Cldn7
Snx31	Ebf1	Gimap1	Grip2	Rac2	Rspo1	Car2
Ezr	Mecom	Icaml	Asb2	Mir5107	Č3	Wwc1
Itm2b	S1pr3	Adgrl4	Ldb3	Ms4a6b	Pla2g7	Kcnj16
Ddn	Pcp4l1	Lmo2	Thsd4	Ms4a4c	Ncaml	Rbm47
Aif1l	Gstm1	Esam	Kcnk3	Cd68	Msmp	Wnk4
Nupr1	Atp1b2	CT010498.1	Prkg2	Tlr2	Spo	Eps8l2
P3h2	Col4a2	Hbegf	Nkx3-1	Napsa	Acotl	Tfcp2l1
Vegfa	Scarf2	Ramp3	Synpo2	Ptafr	Bdh2	Cdkl1
Nes	Scn1b	Icam2	Dhx58os	Bcl2a1d	Ccdc3	Aldh111
Col4a4	Rasl11b	Pde2a	Rbm24	C5ar1	Dgkg	Cox7a1
Gsn	Csrp1	Gm45837	Gpr20	Pld4	Smim5	Elovl7
Shisa3	Pik3r1	Tiel	Cap2	Pou2f2	Adra2c	Ppargcla

Supplemental Table 4. Top 50 cell type marker genes. Genes are listed in order of greatest fold-change compared to all other cell

types.

Cono grandal	Adj p-value	Fold change	Mean	Mean
Gene symbol	(5 vs. 3)	(5 vs. 3)	(cluster 5)	(cluster 3)
Ren1	1.33E-177	126.85	153.49	1.21
Acta2	0.00E+00	90.80	146.81	1.62
Tagln	0.00E+00	61.45	77.07	1.25
Crip1	0.00E+00	26.30	72.39	2.75
Rgs5	0.00E+00	24.93	68.51	2.75
Myh11	0.00E+00	22.87	23.63	1.03
Sparcl1	0.00E+00	21.13	24.36	1.15
Rergl	0.00E+00	12.23	12.41	1.01
Tpm2	0.00E+00	11.15	48.94	4.39
Sncg	0.00E+00	10.80	13.82	1.28
Map3k7cl	0.00E+00	10.15	10.30	1.01
Pln	0.00E+00	9.82	9.97	1.02
Akr1b7	0.00E+00	9.73	14.00	1.44
Mustn1	0.00E+00	8.58	21.91	2.55
Nrip2	0.00E+00	7.39	7.63	1.03
Cd9	1.11E-194	7.32	8.59	1.17
Fxyd1	0.00E+00	6.18	13.57	2.20
Palld	1.74E-251	6.17	8.31	1.35
Lmod1	0.00E+00	6.16	6.32	1.03
Cnn1	0.00E+00	5.90	5.94	1.01
Lgals1	2.50E-267	5.85	19.83	3.39
Cavin3	1.02E-134	5.75	9.51	1.65
Ppp1r14a	0.00E+00	5.38	6.71	1.25
Olfr558	0.00E+00	5.28	5.32	1.01
Actn1	1.23E-198	5.12	10.01	1.95
Zfhx3	2.11E-172	4.99	8.98	1.80
Chchd10	1.78E-113	4.90	5.64	1.15
Rasd1	2.12E-106	4.63	4.86	1.05
Cavin1	9.47E-127	4.60	10.98	2.39
Cox4i2	0.00E+00	4.59	6.88	1.50
Id2	1.17E-66	4.33	9.62	2.22
Gm13861	0.00E+00	4.28	5.05	1.18
Pdlim3	0.00E+00	4.27	4.31	1.01
Ptgis	0.00E+00	4.24	4.32	1.02
Dstn	5.72E-94	4.24	10.29	2.43
Nrarp	4.62E-156	4.18	5.41	1.29

Col18a1	2.76E-73	4.11	5.17	1.26
Atp1a2	0.00E+00	3.95	3.98	1.01
Hspb2	2.47E-257	3.95	4.09	1.04
Uba2	2.42E-102	3.94	8.94	2.27
Nme2	2.04E-86	3.84	8.58	2.23
Tpm1	1.32E-94	3.84	26.22	6.83
Ramp1	0.00E+00	3.83	3.86	1.01
Mef2c	4.99E-114	3.81	11.75	3.08
Filip11	2.38E-173	3.78	4.76	1.26
Eln	8.62E-84	3.72	3.89	1.05
Aoc3	0.00E+00	3.67	4.07	1.11
Cenpa	1.49E-264	3.63	3.90	1.07
Rgs7bp	0.00E+00	3.62	3.68	1.02
Kcna5	0.00E+00	3.56	3.59	1.01
Mylk	4.71E-70	3.38	27.94	8.28
Ppp1r12a	2.01E-86	3.29	8.27	2.51
Cd200	4.41E-59	3.26	5.13	1.57
Gng11	3.11E-47	3.24	16.39	5.05
Tubalc	4.56E-78	3.22	4.71	1.46
Mgst3	2.36E-64	3.20	4.71	1.47
Cavl	8.28E-73	3.20	3.44	1.07
Myl9	4.62E-105	3.18	91.43	28.77
Csrp2	6.22E-49	3.17	4.62	1.46
Tsc22d1	5.28E-55	3.05	18.45	6.04
Nbl1	3.19E-69	3.05	3.69	1.21
Cd24a	4.47E-62	3.02	5.85	1.93
Nexn	8.28E-117	3.00	3.98	1.32
Angptl4	2.75E-71	-3.02	1.26	3.81
Pdlim2	2.22E-69	-3.03	1.57	4.77
Coil	4.24E-74	-3.03	1.18	3.59
Gpsm3	8.76E-72	-3.07	1.29	3.94
Bst2	1.91E-55	-3.07	1.66	5.11
Mrc1	2.73E-155	-3.08	1.07	3.30
Ср	2.17E-102	-3.10	1.00	3.10
Gm9844	2.01E-71	-3.11	1.33	4.14
Evalb	7.90E-79	-3.14	2.64	8.28
Mxd4	1.93E-76	-3.15	2.24	7.06
Srgn	5.86E-91	-3.19	1.41	4.51
Psen2	3.69E-100	-3.21	1.06	3.40
Срт	5.66E-168	-3.22	1.57	5.04

Cxcl13	1.13E-31	-3.22	1.05	3.39
Col4a1	3.01E-92	-3.23	3.05	9.85
Tmsb4x	9.84E-241	-3.25	41.44	134.81
Sgk1	7.74E-72	-3.31	2.37	7.86
Rgl1	4.33E-71	-3.31	1.20	3.97
Marcks11	5.40E-63	-3.43	1.81	6.21
S100a10	2.22E-71	-3.50	1.46	5.11
Slc12a2	2.98E-168	-3.51	1.38	4.85
Igfbp7	7.31E-183	-3.52	54.72	192.44
Cd53	1.18E-76	-3.53	1.15	4.07
Nupr1	6.62E-72	-3.62	1.78	6.42
Anxa2	4.76E-118	-3.70	2.35	8.68
Agtrla	0.00E+00	-3.72	4.01	14.91
Ifitm3	5.16E-142	-3.75	8.71	32.65
Tmsb10	5.46E-109	-3.78	1.73	6.53
Gstm1	8.36E-114	-3.78	3.28	12.39
Cited2	1.41E-55	-3.78	2.24	8.49
Nrp1	9.46E-177	-3.79	5.29	20.07
Fhl2	2.23E-304	-3.83	4.23	16.19
Gm13588	7.58E-110	-3.90	1.63	6.34
Gpc3	4.58E-169	-3.95	1.61	6.37
Ets1	3.39E-107	-3.96	1.61	6.36
H2-D1	2.97E-203	-4.00	3.54	14.18
Lmo7	8.47E-232	-4.02	1.98	7.98
Serpine2	1.08E-228	-4.06	8.56	34.77
Igfbp5	5.37E-97	-4.12	7.90	32.53
Tns3	7.06E-121	-4.13	2.41	9.95
Gata3	2.94E-287	-4.14	3.02	12.52
Gm22133	3.38E-210	-4.16	8.30	34.52
Ftll	2.42E-214	-4.18	8.49	35.49
Ehd3	8.11E-111	-4.20	2.25	9.47
B2m	1.76E-170	-4.29	5.94	25.45
Maf	2.37E-216	-4.33	1.84	7.96
Nt5e	1.97E-271	-4.58	1.24	5.67
Dkk2	1.79E-173	-4.61	4.75	21.86
F2r	3.96E-129	-4.67	2.13	9.96
Sept4	0.00E+00	-4.93	2.28	11.22
Itga8	0.00E+00	-5.59	2.09	11.68
Apoe	9.23E-174	-5.68	2.08	11.83
Art3	2.84E-300	-5.86	1.11	6.48

Cd34	9.36E-177	-5.98	1.30	7.75
Ctgf	2.04E-267	-6.17	2.46	15.19
Eng	9.89E-281	-6.21	2.18	13.54
Prkca	5.07E-227	-6.63	1.51	10.00
Plscr2	5.66E-232	-6.88	1.85	12.73
Plvap	3.42E-318	-8.33	1.21	10.09
Adamts5	0.00E+00	-8.56	2.53	21.63
Sfrp2	0.00E+00	-11.63	3.87	45.03
Igfbp4	0.00E+00	-14.36	1.56	22.37
Ptn	0.00E+00	-19.08	2.10	40.00

Supplemental Table 5. Genes differentially expressed between mesangial cells (cluster 3) and SMCs/JG cells (cluster 5)

		Fold									
Gene	Adj	change	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	
symbol	p-value	(mesangial	(mesangial)	(rest)	(podocyte)	(endothelial)	(SMC)	(PEC)	(immune)	(TEC)	
		vs. rest)									
Sfrp2	0.00E+00	22.75	44.97	1.98	1.56	1.52	3.82	1.70	1.63	1.64	
Ptn	0.00E+00	20.79	39.94	1.92	1.80	1.78	2.09	2.53	1.67	1.66	
Igfbp4	0.00E+00	12.72	22.34	1.76	1.33	2.89	1.57	1.82	1.43	1.50	
Serpine2	0.00E+00	12.45	34.77	2.79	1.62	2.00	8.05	1.71	1.80	1.59	
Adamts5	0.00E+00	11.36	21.61	1.90	1.33	2.25	2.37	2.62	1.42	1.42	
Itga8	0.00E+00	8.41	11.67	1.39	1.25	1.29	2.08	1.25	1.22	1.24	
Agtrla	0.00E+00	8.08	14.91	1.85	1.25	1.25	3.86	2.23	1.21	1.27	
Gata3	0.00E+00	7.72	12.51	1.62	1.22	1.27	2.94	1.28	1.20	1.82	
Plvap	0.00E+00	7.42	10.07	1.36	1.21	1.91	1.22	1.26	1.38	1.17	
Ctgf	0.00E+00	7.38	15.18	2.06	1.77	1.41	2.36	3.78	1.33	1.68	
Dkk2	0.00E+00	7.26	21.85	3.01	1.35	8.02	4.50	1.37	1.45	1.38	
Sept4	0.00E+00	7.09	11.20	1.58	1.17	1.43	2.24	1.38	1.15	2.11	
Fhl2	0.00E+00	6.82	16.20	2.38	1.26	1.31	3.93	4.89	1.39	1.48	
Lhfp	0.00E+00	6.55	11.37	1.74	1.24	1.37	3.80	1.58	1.21	1.22	
Bgn	0.00E+00	6.46	28.85	4.46	1.64	2.71	12.92	5.99	1.85	1.68	
Des	0.00E+00	6.23	15.29	2.45	1.33	1.25	7.67	1.96	1.34	1.17	
Mfge8	0.00E+00	6.03	32.16	5.34	3.88	3.66	16.23	3.53	2.13	2.57	
Prkca	0.00E+00	5.86	9.99	1.70	1.70	1.87	1.42	1.64	2.20	1.39	
Art3	0.00E+00	5.70	6.47	1.14	1.07	1.22	1.11	1.16	1.13	1.12	
Rgs2	0.00E+00	5.69	15.20	2.67	1.45	1.95	6.45	1.62	2.80	1.77	
Lmo7	0.00E+00	5.20	7.99	1.54	1.14	1.62	1.75	1.34	1.11	2.27	
Nt5e	0.00E+00	4.98	5.67	1.14	1.11	1.14	1.21	1.08	1.15	1.14	
Gdf10	0.00E+00	4.95	7.12	1.44	1.12	1.16	2.97	1.11	1.15	1.12	
Serpini l	0.00E+00	4.39	7.77	1.77	1.14	1.43	4.53	1.07	1.23	1.23	
Igfbp5	0.00E+00	4.32	32.48	7.52	2.12	27.86	8.00	2.25	2.31	2.56	
Maf	0.00E+00	4.25	7.96	1.87	1.06	1.37	1.83	3.86	1.74	1.38	
Slc12a2	0.00E+00	4.06	4.84	1.19	1.07	1.23	1.39	1.12	1.10	1.25	
Gucy1a3	0.00E+00	4.01	6.01	1.50	1.13	1.16	3.35	1.17	1.06	1.12	
Срт	0.00E+00	3.94	5.04	1.28	1.12	1.20	1.58	1.07	1.33	1.37	
Gpc3	0.00E+00	3.93	6.37	1.62	1.60	1.16	1.59	2.82	1.10	1.43	
Cd34	0.00E+00	3.90	7.75	1.98	1.21	5.69	1.27	1.34	1.21	1.19	
Col4a1	0.00E+00	3.87	9.83	2.54	1.22	3.53	3.05	3.96	1.39	2.08	
F2r	0.00E+00	3.79	9.95	2.63	2.05	5.11	2.12	3.82	1.28	1.39	

Epas 1	0.00E+00	3.75	13.64	3.64	1.81	8.00	6.49	2.04	1.73	1.78
Rasgrp2	0.00E+00	3.69	7.49	2.03	1.11	2.02	4.23	1.21	2.45	1.14
Mecom	0.00E+00	3.68	5.92	1.61	1.06	1.83	2.33	1.10	1.07	2.27
Tns3	0.00E+00	3.62	9.94	2.74	3.77	2.51	2.40	3.25	2.00	2.52
Ebfl	0.00E+00	3.58	10.86	3.04	1.14	4.11	9.02	1.28	1.49	1.18
Pdgfrb	0.00E+00	3.51	6.98	1.99	1.30	1.19	4.34	2.74	1.24	1.12
Nrp1	0.00E+00	3.47	20.06	5.78	2.91	18.91	5.08	4.18	1.79	1.84
Vcl	0.00E+00	3.45	7.17	2.08	1.59	1.72	2.78	2.65	1.54	2.20
Scn1b	0.00E+00	3.43	4.09	1.19	1.05	1.21	1.62	1.06	1.04	1.17
Col4a2	0.00E+00	3.37	7.23	2.15	1.17	2.76	3.10	3.03	1.24	1.56
Scarf2	0.00E+00	3.33	3.91	1.17	1.05	1.07	1.38	1.39	1.04	1.11
Cxcl13	2.92E-166	3.26	3.38	1.04	1.03	1.03	1.05	1.06	1.04	1.02
Evalb	0.00E+00	3.22	8.28	2.57	2.68	4.23	2.50	2.63	1.35	2.06
Angptl4	0.00E+00	3.18	3.80	1.19	1.16	1.09	1.27	1.39	1.08	1.18
Amotl1	0.00E+00	3.14	5.01	1.60	1.18	2.53	1.96	1.35	1.27	1.28
Pik3r1	0.00E+00	3.12	4.74	1.52	1.32	1.32	1.81	1.46	1.38	1.82
Aldh2	0.00E+00	3.10	10.02	3.23	1.75	2.24	4.69	3.39	4.61	2.71
Isyna1	0.00E+00	3.10	7.07	2.28	2.08	1.89	2.96	2.76	1.74	2.27
Mrc1	0.00E+00	3.06	3.29	1.08	1.06	1.04	1.07	1.03	1.20	1.06
Coil	0.00E+00	3.02	3.58	1.19	1.12	1.35	1.19	1.14	1.22	1.10
Ets1	0.00E+00	3.02	6.36	2.11	1.52	4.36	1.53	1.66	2.23	1.36

Supplemental Table 6. Genes enriched in mesangial cells. Genes with very low expression levels (Mean < 2) in all non-mesangial

cell types are in bold.

5

	up-reg	up-regulated		down-regulated		
	day 1	day 5	day1	day 5		
podocytes	263	80	312	132		
mesangial	85	101	56	99		
endothelial	165	206	189	248		

Supplemental Table 7. Number of differentially expressed genes in nephritic mice (> 1.5 FC vs. control, adjusted p-value < 0.01)

	Karaiskos <i>et al.</i> ²³	Fu et al. ²⁴	Park <i>et al.</i> ²⁸	Ransick et al. ⁴⁶		W et a	⁷ u 1. ⁴⁷		Lake <i>et al</i> . ⁴⁸	this study
species	mouse	mouse	mouse	mouse		mo	use		human	mouse
sample	purified glomeruli (cells)	purified glomeruli (cells)	whole kidney (cells)	whole kidney (cells)	whole kidney (cells)	whole kidney (nuclei)	whole kidney (nuclei)	whole kidney (nuclei)	whole kidney (nuclei)	purified glomeruli (cells)
method	Drop-Seq	Fluidigm C1	10X	10X	Drop-Seq	DroNc-Seq	Drop-Seq	10X	snDrop-Seq	10X
detected genes/cell (median)	626	3457	940	1571	812	937	736	757	589	2878*
mitochondrial reads % (median)	4.92%	10.91%	19.26%	1.02%	22.77%	NA	NA	NA	NA	0.72*
# of podocytes	10,364	48	78	24	0	45	75	107	859	11,431
# of total cells	12,954	644	43,745	31,265	3,535	2,772	3,056	2,159	17,659	74,149
% podocyte of total cells	80.01%	7.45%	0.18%	0.08%	0.00%	1.62%	2.45%	4.96%	4.86%	15.42%
notes	skewed cell population conflated vSMCs and mesangial cell low yield (required 32 mice to obtain ~13,000 cells)	low cell numbers conflated vSMCs and mesangial cells	low detection of glomerular cells did not identify mesangial cells	low detection of glomerular cells did not identify mesangial cells	did not distingu	ish glomerular/non	-glomerular endot	helial cells		*values calculated from healthy B6 sample. values are similar for all samples

5

Supplementary Table 8. Comparison of kidney single cell datasets.

D, C, O, N	D , O , N	C, O, N	D, C, O	D , C, N
Spink8	Spink8	Acta2	Spink8	Spink8
Lgals1	F2r	P2rx1	Lgals1	Lgals1
Vegfd	Lgals1	Tagln	Vegfd	Vegfd
Acta2	Vegfd	Lgals1	Acta2	Tpm2
Ccnd1	Acta2	Ankrd1	Ccnd1	Acta2
	Ccnd1	Spon2		Ccnd1
		Enho		
		Spink8		
		Vegfd		
		Ccnd1		

D: doxorubicin

C: *Cd2ap*^{-/-}

O: BTBR ob/ob

N: nephrotoxic serum nephritis

5 **Supplemental Table 9.** List of genes induced in mesangial cells in 3 or more injury models. Genes involved in wound healing response are in bold.