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Supplemental methods 

Untargeted metabolomic profiling by Metabolon 

For compound identification, Metabolon maintains a library based on authenticated standards 

that contain the retention time/index, mass to charge ratio, ad chromatographic data on all molecules 

present in the library. Furthermore, biochemical identifications are based on three criteria: retention 

index within a narrow window of proposed identification, accurate mass match to the library +/- 0.005 

amu, and the MS/MS forward and reverse scores between the experimental data and the authenticated 

standards. More than 3300 commercially available purified standard compounds have been acquired 

and registered.  

Lasso penalized logistic regression 

 Lasso is a penalized logistic regression model in which input features that do not significantly 

contribute to model performance have their coefficient estimates shrink towards zero by imposing a 

shrinkage parameter lambda. At optimized lambda with minimized misclassification error, there will be 

a number of input features with non-zero coefficient estimates. All features’ coefficients will have 

downward penalties applied in this algorithm. Thus, Lasso is a more restrictive approach that will 

identify a smaller panel of metabolites with stronger signals. Those input features were selected for 

further analysis. 

Random forest (RF) 

 RF is an aggregated tree-based model that randomly samples n-number of metabolites at 

branch points to determine classification. The number of metabolites (hyperparameter mtry) sampled at 

each branch point was determined based on the square root of total input metabolites (n Lasso-selected 

metabolites). In R caret, RF grows n-number of trees until model accuracy plateaus. The trees are 

aggregated into a final model. Metabolite importance was determined by how the exclusion of each 

metabolite decreased model accuracy.  



Support vector machine (SVM) 

 Linear kernel SVM maps input data (Lasso-selected metabolites) to a high-dimensional space 

and determine the optimal hyperplane for binary classification (CKD etiology). The cost (C) 

hyperparameter is a penalization factor for misclassification, where a lower C is more generalizable. C 

was set at 1 to favor generalizability. Metabolite importance was determined by the coordinates of each 

data point’s orthogonal vector to the hyperplane (weight).  

Extreme gradient boosting (XGB) 

 XGB applies regression models in sequence (boosting) to minimize misclassification error of the 

preceding models, and then assembles them into an aggregated model. The number of rounds is the 

number of trees that XGB grows. Max depthcontrols how many times XGB will boost within each tree. 

Gamma is the regularization factor that penalizes multicollinear input features that do not improve 

model performance. These hyperparameters were manually set to favor generalizability and limit 

overfitting. Metabolite importance was determined by improvement in accuracy/gain as how each 

individual metabolite contributed to the model’s overall performance. 

Evaluation metrics 

In ML, no-skill prediction is defined as a model that cannot discriminate between classes and 

would generate random or constant classes. ROC-AUC can overestimate performance in datasets with 

low case prevalence. The precision-recall (PR) curve evaluates ML performance and accounts of low case 

prevalence by plotting the positive predictive value (precision) against sensitivity (recall). No-skill ML 

models generating constant classes would plot as a horizontal line at the case prevalence rate on the PR 

curve. The F-1 score is a harmonic mean of the precision and recall values in which the magnitude is 

relative to model performance (no-skill = 0, perfect prediction = 1). The MCC is similar to the F-1 score, 

but includes directionality and accounts for true negatives (no-skill = 0, perfect negative prediction = -1, 

perfect positive prediction = 1). 



F1-score = 2* (precision * recall)/(precision + recall)  

= (true positives)/[true positives + 0.5*(false positives + false negatives)] 

MCC =  [(true positives * true negatives) – (false positives * false negatives)]/ 

 Square-root[(true positives + false positive) * (true positives + false negatives) *(true negatives +

 false positives) * (true negatives + false negatives)] 

  



Supplemental Table 2: ML model hyperparameter tuning analysis for FSGS 

Support Vector Machine 

Hyperparameter Default Tuned 

C (cost) 1 1 (range 1-20, by 1) 

Metric Default Tuned 

ROC-AUC 0.93 

No changes in performance metrics 
PR-AUC 0.60 

F1-score 0.43 

MCC 0.44 

Top 10% metabolites 

Default Tuned 

sphingomyelin (d18:1/18:1, d18:2/18:0) 

No changes in metabolites detected 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC 
(P-16:0/20:4) 

sphingomyelin (d18:2/24:2) 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-
16:0/16:0) 

glycosyl ceramide (d18:2/24:1, 
d18:1/24:2) 

glycosyl-N-behenoyl-sphingadienine 
(d18:2/22:0) 

Random forest 

Hyperparameter Default Tuned 

Number of metabolites sampled at 
each branch point 

8 14 (range 5-15, by 1) 

Number of trees 500 500 

Metric Default Tuned 

ROC-AUC 0.89 0.89 

PR-AUC 0.50 0.49 

F1-score 0.50 0.53 

MCC 0.48 0.50 

Top 10% metabolites 

Default Tuned 

sphingomyelin (d18:1/18:1, d18:2/18:0) 

No changes in metabolites detected 

1-arachidonoyl-GPI (20:4) 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-
16:0/16:0) 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC 
(P-16:0/20:4) 

6-bromotryptophan 

homoarginine 

Extreme gradient boosting 

Hyperparameter Default Tuned 

Number of rounds 100 100 (range 10-100, by 10) 

Max depth 6 9 (range 5-10, by 1) 

gamma 0 0 (range 0-1, by 0.5) 

Metric Default Tuned 

ROC-AUC 0.92 0.91 

PR-AUC 0.55 0.55 

F1-score 0.49 0.48 

MCC 0.48 0.46 

Top 10% metabolites 

Default Tuned 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC 
(P-16:0/20:4) 

sphingomyelin (d18:1/18:1, 
d18:2/18:0) 

palmitoyl-arachidonoyl-glycerol 
(16:0/20:4) [1] 

homoarginine 



homoarginine 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC 
(P-16:0/16:0) 

sphingomyelin (d18:1/18:1, d18:2/18:0) sphingomyelin (d18:2/24:2) 

1-arachidonoyl-GPI (20:4) palmitoyl-arachidonoyl-glycerol 
(16:0/20:4) [1] 

2-hydroxyarachidate urate 

 

We performed hyperparameter tuning analysis for FSGS to determine if ML model performance (i.e., 

ROC-AUC, PR-AUC, F1-score, and MCC)  and metabolite signals detected (top10% metabolites) would be 

significantly different between default and hyperparameter-tuned ML models. Analysis was performed 

on the entire CKiD cohort (n=702) on the Lasso-selected metabolites for FSGS (n=56). Hyperparameter 

tuning was performed with a grid-search approach, with the ranges and increments of hyperparameters 

tested reported in parentheses. The best-tuned model was chosen based on maximized training 

prediction accuracy. 

In SVM, the cost hyperparameter (C) is the penalization factor for misclassification. In RF, the number of 

metabolites sampled at each brand point (mtry) at default is determined by the square root of the 

number of input features, while the number of trees to grow has been optimized in the R ‘caret’ 

package source code to be capped once model performance plateaus. There was no significant 

differences in performance metrics or metabolite signals detected between default and 

hyperparameter-tuned models for both SVM and RF.  

In XGB, the number of rounds is comparable to the number of trees in RF. The max depth controls XGB 

model depth. Gamma is the regularization factor that penalizes large coefficients that do not improve 

model performance.  Default and hyperparameter-tuned model did not differ significantly in the 

performance metrics. There were some differences in important feature rankings (highlighted and 

bolded). Lipid subpathway metabolites were consistently implicated between the default and 

hyperparameter-tuned models (sphingomyelin, plasmalogen, lysophospholipid, and ceramide 

subpathways). 4 out of the 6 different metabolites were ultimately implicated as associated with FSGS in 

our final analyses. 

  



Supplemental Table 3: ML model hyperparameter tuning analysis for OU 

Support Vector Machine 

Hyperparameter Default Tuned 

C (cost) 1 2 (range 1-20, by 1) 

Metric Default Tuned 

ROC-AUC 0.86 0.86 

PR-AUC 0.54 0.54 

F1-score 0.57 0.56 

MCC 0.47 0.47 

Top 10% metabolites 

Default Tuned 

imidazole propionate 

No changes in metabolites detected 
trans-urocanate 

4-methoxyphenol sulfate 

5,6-dihydrothymine 

Extreme gradient boosting 

Hyperparameter Default Tuned 

Number of rounds 100 80 (range 10-100, by 10) 

Max depth 6 9 (range 5-10, by 1) 

gamma 0 1 (range 0-1, by 0.5) 

Metric Default Tuned 

ROC-AUC 0.80 0.80 

PR-AUC 0.47 0.47 

F1-score 0.48 0.47 

MCC 0.37 0.36 

Top 10% metabolites 

Default Tuned 

imidazole propionate 

No changes in metabolites detected 
trans-urocanate 

4-methoxyphenol sulfate 

glycerol 3-phosphate 

Random forest 

Hyperparameter Default Tuned 

Number of metabolites sampled at each branch point 7 15 (range 5-15, by 1) 

Number of trees 500 500 

Metric Default Tuned 

ROC-AUC 0.74 0.73 

PR-AUC 0.40 0.39 

F1-score 0.43 0.42 

MCC 0.29 0.28 

Top 10% metabolites 

Default Tuned 

trans-urocanate 

No changes in metabolites detected 
imidazole propionate 

N-acetylkynurenine 

glycerol 3-phosphate 

 

We performed hyperparameter tuning analysis for OU to determine if ML model performance and 

metabolite signals would be significantly different between default and hyperparameter-tuned ML 

models. Analysis was performed on the entire CKiD cohort (n=702) on the 43 Lasso-selected 

metabolites. There were slight differences in optimized hyperparameters for all ML models, but there 

were no significance changes in performance metrics or metabolite importance weighting. 

  



Supplemental Table 5: Feature importance rankings comparison 

FSGS – Logistic regression – metabolites meeting FDR threshold 

Pathway Metabolite P-value 

Sphingomyelin Sphingomyelin (d18:1/18:1, d18:2/18:0) 2.95e-10 

Plasmalogen 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 8.19e-9 

Plasmalogen 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 2.32e-8 

Hexosylceramide Glycosyl ceramide (d18:2/24:1, d18:1/24:2) 3.09e-8 

Tryptophan 6-bromotryptophan 7.00e-8 

Sphingomyelin Sphingomyelin (d18:2/24:2) 9.52e-8 

Hexosylceramide Glycosyl-N-behenoyl-sphingadienine (d18:2/24:1(2OH)) 1.42e-7 

Tryptophan Indole-3-carboxylate 2.14e-6 

Tryptophan Indoleproprionate 4.51e-6 

Fatty acid Hydroxyl-CMPF* 1.54e-5 

Lysophospholipid 1-arachidonoyl-GPI* (20:4) 1.78e-5 

Glutamate N-acetyl-aspartyl-glutamate (NAAG) 2.76e-5 

Urea cycle Homoarginine 3.26e-5 

Tyrosine Thyroxine 3.45e-5 

Acetylacetate Phenylacetylglycine 4.10e-5 

Diacylglycerol Palmitoyl-arachidonoyl-glyecerol (16:0/20:4) [1] 4.31e-5 

Glutamate Beta-citrylglutamate 6.77e-5 

Lysine N,N-dimethyl-5-aminovalerate 7.94e-5 

Bile acid isoursodeoxycholate 1.54e-4 

Tyrosine N-formylphenylalanine 2.83e-4 

Lysophospholipid 1-palmitoyl-GPG (16:0)* 3.35e-4 

Pantothenate/CoA Pantothenate (Vitamin B5) 5.39e-4 

Fatty acid 2-hydroxyarachidate* 5.44e-4 

Sterol 7-HOCA 5.82e-4 

Urea cycle N-acetylcitrulline 6.50e-4 

FSGS – Support vector machine – top 10th percentile metabolite ranked weightings in 1 training iteration example, ROC-AUC = 0.93, PR-
AUC = 0.50 

Pathway Metabolite Ranked weight 

Sphingomyelin Sphingomyelin (d18:1/18:1, d18:2/18:0) 100.00 

Plasmalogen 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 97.29 

Tryptophan Indole-3-carboxylate 92.74 

Sphingomyelin Sphingomyelin (d18:2/24:2) 92.63 

Plasmalogen 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 88.36 

Glutamate N-acetyl-aspartyl-glutamate (NAAG) 83.43 

FSGS – Random forest – top 10th percentile metabolite ranked weightings in 1 training iteration example, ROC-AUC = 0.88, PR-AUC = 0.49 

Pathway Metabolite Ranked weight 

Sphingomyelin  Sphingomyelin (d18:1/18:1, d18:2/18:0) 100.00 

Plasmalogen 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 50.96 

Glutamate beta-citrylglutamate 49.25 

Lysophospholipid 1-arachidonoyl-GPI (20:4) 46.30 

Plasmalogen 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 45.71 

Pantothenate/CoA Pantothenate (Vitamin B5) 42.54 

FSGS – Extreme gradient boosting – top 10th percentile metabolite ranked weightings in 1 training iteration example, ROC-AUC = 0.91, PR-
AUC = 0.40 

Pathway Metabolite Gain 

Fatty acid 2-hydroxyarachidate 0.050 

Tryptophan Indole-3-carboxylate 0.048 

Glutamate N-acetyl-aspartyl-glutamate (NAAG) 0.044 

Acetylacetate Phenylacetylglycine 0.043 

Plasmalogen 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 0.038 

Plasmalogen 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 0.036 

This table shows the metabolites that met the significance/importance designations per modeling 

approach for FSGS: Bonferroni threshold for LR, and top 10th percentile ranked weight/gain in 1 out of 

10 training iterations of SVM and XGB respectively. Metabolites that were ultimately implicated as 

defined by our analytic schematic are shown to be similarly highly ranked across all 3 modeling 

approaches. 



Supplemental: annotated machine learning sample code – Annotations are denoted by italicized text following 
“###”. All analyses were performed in R studio version 4.0.5. All R packages utilized are bolded and available from 
the Comprehensive R Archive Network (CRAN) repository. Package versions are annotated. This sample code has 
been uploaded to a GitHub repository (https://github.com/leeam-
chop/CKiD_rcode/blob/a450ca7e64011750e928b0c90ca98e66d248f55e/etiologies_metabolomics). 
 
Consistent with CKD Biocon and CKiD data sharing policies, a de-identified dataset can be provided for replication 
purposes through a data use agreement (DUA) between the investigator’s institution and Johns Hopkins 
University. Investigators interested in accessing the de-identified dataset should contact Judith Jerry-Fluker at the 
Kidney Disease in Children Data Management and Analysis Center (KIDMAC): jjerry@jhu.edu. 
 
 
###================================1. Load Required Packages===================================== 
library(readr) ###version==1.4.0 
library(dplyr) ###version==1.0.6 
library(caret) ###version==6.0-88 
library(e1071) ###version==1.7-7 
library(MLeval) ###versio== 0.3 
library(xgboost) ###version==1.4.1.1 
library(stringr) ###version==1.4.0 
library(car) ###version==3.0-10 
 
###================================2. Load Data================================================ 
###Data has undergone QC procedures as detailed in the manuscript 
###Categorical variables have been assigned as factors: hypertension, sex, ACEi/ARB usage, race 
###Each primary etiology is coded as a binary factor, ex: fsgs (FSGS =1, not FSGS =0) 
###Proteinuria and eGFR have been log-2-transformed 
 
###================================3. Feature selection using Lasso regression======================== 
lasso <- select(data, c(id, etiology, age, sex, race, eGFR, proteinuria, hypertension, ACEi/ARB usage) 
levels(lasso#etiology) <- c(“negative, “positive”) 
trctrl <- trainControl(method=”repeatedcv”, number=10, repeats=3, classProbs=TRUE, savePredictions=TRUE) 
trgrid <- expand.grid (alpha=1, lambda=seq(0.01, 0.1, by=0.01) 
set.seed(1)  
model <- train(etiology~.,  
 data=lasso,  
 method=”glmnet”, 
 metric=”Accuracy”, 
 trControl=trctrl, 
 tuneGrid=trgrid, 
 preProc=c(“zv”, “center”, “scale”)) 
model#bestTune 
evalm(model, plots=”r”) 
coef <- coef(model$finalModel, model$bestTune$lambda)[,1] 
coef <- data.frame(coef) 
coef <- abs(coef) 
sum(coef != 0) 
write.csv(coef, file=”coef.csv) 
 ###identified features with non-zero coefficients at cross-validated, tuned lambda 
 
###================================4. Subset data with Lasso-selected metabolites for each etiology====== 
###Use 10 unique seeds to repeat training process 10 times 
set.seed(1)  

https://github.com/leeam-chop/CKiD_rcode/blob/a450ca7e64011750e928b0c90ca98e66d248f55e/etiologies_metabolomics
https://github.com/leeam-chop/CKiD_rcode/blob/a450ca7e64011750e928b0c90ca98e66d248f55e/etiologies_metabolomics
mailto:jjerry@jhu.edu


levels(data_subset$etiology) <- c(“negative”, “positive”) 
###80-20 train-test split 
train <- data_subset %>% dplyr::sample_frac(0.8) 
test <- dplyr::anti_join(data_subset, train, by=”id”) 
###Remove subject ID from data for modeling 
train <- train[,-1] 
test <- test[,-1] 
trctrl <- trainControl(method=”repeatedcv”, number=10, repeats=3, classProbs=TRUE, savePredictions=TRUE) 
 
###================================5. Fit Support Vector Machine================================ 
svm <- train(etiology~., 
 data=train, 
 method=”svmLinear”, 
 trControl=trctrl) 
pred <- predict(svm, newdata=test, type=”prob”) 
evalm(data.frame(pred, test$etiology) 
 ###assesses model performance on hold-out test split 
varImp(svm) 
 ###identifies 10% important metabolites 
###repeat this with the 10 unique seedings 
 
###================================6. Fit Extreme gradient boosting================================ 
grid <- expand.grid(nrounds=100, max_depth=6, colsample_bytree=0.5, eta=0.1, gamma=0, min_child_weight =1) 
xgb <- train(etiology~.,  
 data=train, 
 method=”xgbTree”, 

trControl=trctrl, 
 tuneGrid=grid) 
pred <- predict(xgb, newdata=test, type=”prob”) 
evalm(data.frame(pred, test$etiology) 
varImp(xgb) 
 
###================================7. Fit Random forest========================================== 
grid <- expand.grid(.mtry = ###square root of the number of lasso-selected metabolites per etiology) 
rf <- train(etiology~., 
 data=train, 
 method=”rf”, 
 tuneGrid=grid, 
 trControl=trctrl) 
pred <- predict(rf, newdata=test, type=”prob”) 
evalm(data.frame(pred, test$etiology) 
varImp(rf) 

 


