Supplemental material

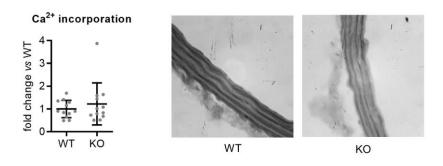
Table of contents

Table S1	Pg. 2
Table S2	Pg. 3
Figure S1	Pg. 4
Figure S2	Pg. 5
Figure S3	Pg. 6
Figure S4	Pg. 7
Figure S5	Pg. 8
Figure S6	Pg. 9
Figure S7	Pg. 10
Figure S8	Pg. 11

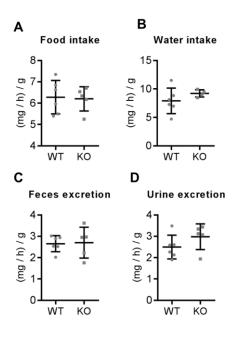
Table S1: Blood biochemistry of 18-month-old WT and KO mouse. * p < 0.05, ** p < 0.01,mean \pm SD, two-tailed T-test. "CaSR" indicates concentration of N-terminal soluble CaSR /CaSR-fragment. Osmolality and CaSR were measured in male and female mice.

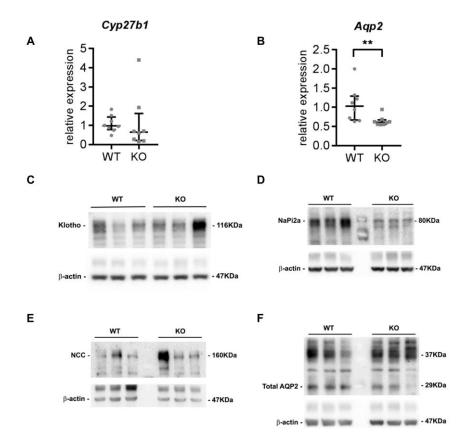
Parameter	Unit	WT	Ν	КО	Ν	<i>p</i> -value
Na ⁺	mmol / l	149.0 ± 3.61	3	146.3 ± 3.06	3	0.3837
K^+	mmol/l	10.64 \pm 0.61	3	11.88 ± 2.53	3	0.4541
Cl	mmol / l	114.33 ± 1.15	3	111.00 ± 3.61	3	0.2020
Ca ²⁺	mmol / l	2.34 ± 0.13	3	$2.99 \hspace{0.2cm} \pm \hspace{0.2cm} 0.35$	3	0.0401 *
Mg^{2+}	mmol / l	1.65 \pm 0.18	3	2.04 ± 0.33	3	0.1369
FGF23	pg / ml	131.1 ± 45.5	3	330.0 ± 49.7	3	0.0069 **
α-Klotho	pg / ml	2005.9 ± 1342.1	4	1873.0 ± 1016.5	4	0.8797
Osmolality	mosmol/kg	$289.2 \hspace{0.2cm} \pm \hspace{0.2cm} 11.7$	5	288.1 ± 5.6	7	0.8369
CaSR	ng / ml	2.17 ± 0.98	5	2.03 ± 0.78	7	0.7816

Table S2: Organ weights of 6 and 18-month-old animals. WT vs. KO, mean \pm SD, two-tailed


T-test.

Organ	Unit	WT	Ν	КО	Ν	<i>p</i> -value	
Kidney	mg	235.0 ± 32.3	7	$232.9 \hspace{0.2cm} \pm \hspace{0.2cm} 23.8$	7	0.8899	
Liver	mg	1332.2 ± 134.2	8	1445.6 ± 190.9	7	0.2016	
Stomach	mg	$339.4 \hspace{0.2cm} \pm \hspace{0.2cm} 86.8$	8	444.6 ± 256.8	7	0.2938	
Spleen	mg	88.1 ± 31.3	8	99.1 ± 34.3	6	0.5467	
Heart	mg	148.8 ± 31.0	8	145.4 ± 17.7	6	0.8144	
18-month-old animals							
Kidney	mg	$313.1 \hspace{0.2cm} \pm \hspace{0.2cm} 37.6$	6	$313.0 \hspace{0.2cm} \pm \hspace{0.2cm} 12.9$	4	0.9950	
Liver	mg	2294.1 ± 461.2	6	2399.8 ± 107.9	4	0.6703	
Stomach	mg	846.8 ± 372.0	6	738.8 ± 247.6	4	0.6268	
Spleen	mg	129.1 ± 52.6	6	101.6 ± 24.8	4	0.3637	
Heart	mg	$201.8 \hspace{0.2cm} \pm \hspace{0.2cm} 20.4$	5	$231.9 \hspace{0.2cm} \pm \hspace{0.2cm} 8.4$	4	0.0285 *	


6-month-old animals


Figure S1: Generation of explant derived aortic VSMC. A: The thoracic aorta is dissected from the spine and **B:** removed to a Petri dish filled with sterile isolation medium where **C and D:** the vessel is cleared from tunica adventitia by gently pulling / scraping the connective tissue until **E:** only the semi-translucent tunica media remains. **F:** The vessel is then cut into small (ca. 1 mm) pieces that are then **G:** transferred into a T-25 cell culture flask by the use of a hypodermic needle. **H:** The flask is kept in an upright position at 37 °C for 10–15 minutes so that the explants are not in contact with medium and can attach firmly to the surface of the flask. 5 ml isolation medium is added, and the explants are kept at 37 °C / 95 % relative humidity (rh) / 5 % CO2 for ca. 7 days after which the medium is changed. **I:** VSMC will start to grow out of the explants. **J:** After ca. 2-3 weeks, the explants are removed and the VSMC passaged to generate a monolayer of cells.

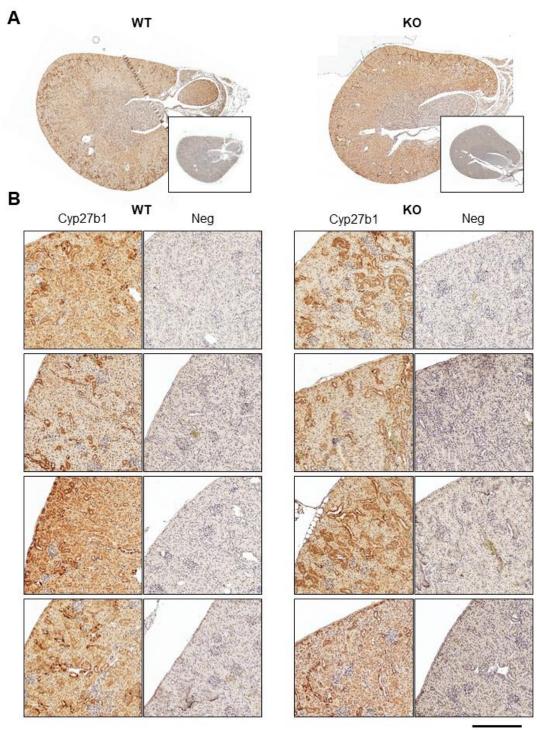

Figure S2: *Ex vivo* **aortic calcification.** Graph: Quantification of Ca^{2+} deposition in WT and KO aortas or 3-month-old mice. Mean±SD. Pictures: Alizarin Red S stainings of thoracic aorta sections from 12-month-old WT and KO animals incubated for 10 days in the presence of medium containing 1.8 mM Ca²⁺ and 3 mM Pi.

Figure S3: Metabolic cage studies of WT and KO mice. A. Food intake, **B**: Water intake, **C**: Feces excretion, **D**: Urine excretion. Data are shown as consumption (in mg) per h per g bodyweight. Mean±SD.

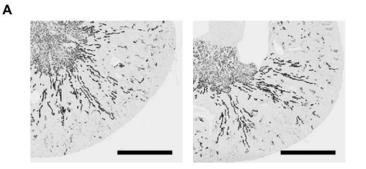


Figure S4: **Supplemental kidney mRNA and protein expression. A**: *Cyp27b1*, and **B**: *Aqp2* mRNA expression levels relative to calibrator (mean ΔCT WT). Representative Western blots showing **C**: Klotho, **D**: NaPi2a, **E**: NCC, **F**: AQP2 expression in kidneys from WT and KO mice.

200 µm

Figure S5: Immunohistochemistry stainings of Cyp27b1 in kidneys of WT and KO mice. Stainings were performed as described in the methods section for Cyp27b1 using the LSBio (Seattle, USA) rabbit anti-Cyp27b1 antibody at 1:1000 dilution. **A:** Overview of representative whole kidney sections stained for Cyp27b1. Insert: negative control. **B:** Cortex of N=4 WT and KO kidneys stained for Cyp27b1 and respective negative controls.

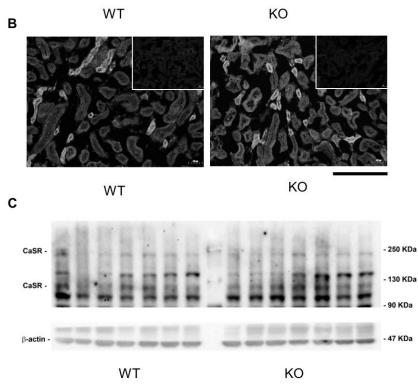


Figure S6: Supplemental kidney CaSR expression data and representative images from Figure 3. A: immunohistochemistry of CaSR expression pattern in WT and KO kidney sections. Scale bar = 1 mm. B: immunofluorescence analysis of CaSR expression levels in WT and KO kidneys used for quantitative immunofluorescence analysis. Scale bar = 200 μ m. C: representative Western blot for CaSR in the kidney (~120-150 kDa: monomer; 250 kDa: dimer).

9

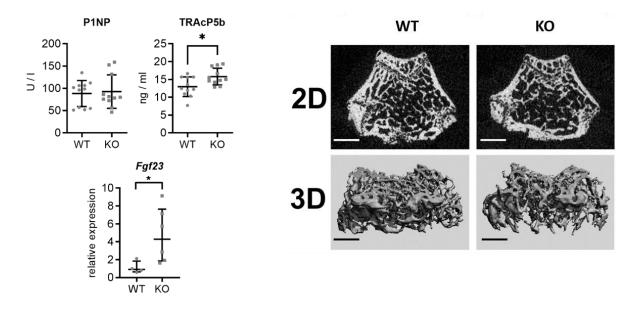


Figure S7: Plasma levels of bone metabolism markers procollagen type 1 (P1NP) and Tartrate-resistant acid phosphatase 5b (TRAcP5b), Fgf23 mRNA expression in bone, and μ CT. Bone metabolism markers: * p < 0.05, two tailed T-test; measured in male and female mice. RT-qPCR: * p < 0.05, Mann-Whitney test. μ CT: representative 2-dimension (2D) radiographs and 3-dimension (3D) reconstructed images from distal femures of 3 months old KO and WT (control) littermates. The 2D radiographs were taken 100 μ m below the growth plate. Scale bar: 400 μ m

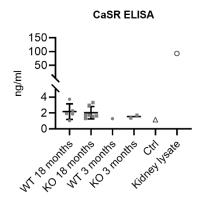


Figure S8: Serum levels of "soluble" CaSR / CaSR fragment. N = 5 (WT, 18 months), N = 7 (KO, 18 months), N = 3 (WT, 3 months), and N = 3 (KO, 3 months). Three of the 3-month samples, (2 WT, 1 KO) were below the detection range and are thus not included in the graph. An additional serum sample of a genetically non-modified 14 month-old mouse ("Ctrl") was added for reference, which had a comparable level of CaSR in the serum. Finally, a sample of 100 mg / ml kidney lysate from a genetically non-modified mouse was tested as positive control.