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1. Spatially resolved single cell datasets 

 

Spatial transcriptomics was voted as the method of the year in 2020. Experimental and 

computational method development for spatially resolved single cell profiling is probably the 

fastest growing area in single cell biology.1 At present there are a large number of experimental 

methods available to generate spatial transcriptomics data. The most ambitious methods employ 

direct in situ sequencing. Other methods use multiplexed fluorescent in situ hybridization such as 

SeqFISH,2 SeqFISH+3 or MerFISH4 to read out cell type gene expression. In addition, barcoding 

and bead-based methods are improving significantly such as 10x Visium spatial transcriptomics,5 

Slide-Seq,6 and sci-Space (currently under development by the Trapnell lab), which are spatially 

resolved single nucleus RNA-seq techniques that use an array of oligonucleotides arranged in a 

grid on a slide. This field is rapidly developing and several additional methods, such as e.g., DBiT-

seq7 for co-mapping of mRNAs and proteins have recently been published. 

 

Data integration for spatial transcriptomics is also developing rapidly. The Yuan lab has recently 

developed Giotto, an open-source pipeline for spatial transcriptomic data analysis and 

visualization.8 The data analysis module implements tasks from pre-processing to cell-cell 

interaction characterization. The data visualization module allows interactive visualization, 

exploration, and comparison of multiple layers of information. Giotto can resolve tissue spatial 

organization and allows the interactive exploration of multi-layer information in spatial 

transcriptomic and imaging data.9 Giotto provides a single cell resolution spatial information for 
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the investigation of ligand-receptor mediated cell-cell interactions. This is superior to previous 

methods described  Skelly et al.10 and Ramilowski et al.11  or CellPhoneDB.12 Seurat13, 14 is also 

capable of analyzing spatial transcriptomics data. Employing such analyses will help to identify 

altered cellular interactions under a disease condition and reveal signals that are missed in 

univariate-based differential gene expression analysis. 

 

2. Integration of multi-omics datasets: epigenome, protein expression and beyond 

 

Multi-omics profiles can recover the missing values lost in single modality analysis. For instance, 

dropout issues are prevalent in scRNA-seq but they are likely recoverable by employing snATAC-

seq, either in a separate experiment or in parallel such as with the 10X Single Cell Multiome 

ATAC+Gene Expression kit. However, analyzing multi-omics data can be challenging because 

people must harmonize different modalities and correct the underlying batch effects between 

them.15 To address this issue, several theoretical models have been developed for multi-omics 

integration. Some models co-cluster16 data from different experiments. Canonical correlation 

vectorization (CCV)16 hypothesizes that cells originating from identical biological state, even 

though coming from different data sets, should correspond to each other. Through maximizing the 

pairwise correspondences, CCV is able to establish mapping between data sets. The advantage of 

these co-clustering approaches is that they can upregulate features distinguishing cell types while 

depressing batch-specific noise, which helps link different modalities to each other. Other methods 

tackle individual cells and multilayer data types at the same time, where they capture the innate 

heterogeneity via different regression models. For example, Hidden Markov random field (HMRF) 

performs spatial transcription analysis by connecting gene expression patterns with cell spatial 



5 
 

coordinates.16 Other models depend on decomposing the data into such matrices as one for 

identifying gene co-expression patterns and another for clustering cells. 

 

Multiple integration methods can also be used for comprehensive data analysis. We have found 

Seurat particularly powerful for co-embedding scRNA-seq and unmatched snATAC-seq data to 

reveal cell type-specific regulatory loci, such that joint analysis can improve cluster predition.17 It 

can also be used for spatial transcriptomic data to predict spatial gene expression patterns and 

classify subpopulations. MATCHER18 also uses co-clustering and a manifold alignment and has 

the advantage that it can provide a trajectory path and gene expression changes along the path. 

LIGER19 uses matrix factorization method to understand relationship between the epigenome and 

gene expression.  

 

Genome-wide association studies (GWAS) have identified close to 300 loci where nucleotide 

variants are associated with kidney function.20 More than 90% of these signals are in the non-

coding region of the genome and more often than not the closest gene is the GWAS target gene.21 

snATAC-seq can provide critical information to GWAS signal annotation by prioritizing the 

causal variants, causal cell types and even imply the causal gene. Our group has successfully used 

human kidney snATAC-seq data for GWAS SNP, gene and cell type prioritization.22 Interestingly, 

epigenetic signals appear to be conserved for many loci and even the mouse kidney snATAC-seq 

data can be successfully used.17 Leveraging cis-coaccessibility network analyses such as Cicero,23 

single cell open chromatin information enables to infer not only the implication of affected cell 

type and variant, but also the target gene. Analysis of allelic imbalance in snATAC-seq data is 

another important step. Allelic imbalance is defined as the unequal contribution of paternal and 
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maternal DNA sequences to chromatin openness or gene expression. Allelic expression in scRNA-

seq data could also be detected by e.g. SCALE24 and scBASE25 (ASE). Furthermore, when 

imputing transcription factor (TF) binding sites, one needs to be aware of the limitations of motif 

enrichment analyses as implemented by packages HOMER,26 SCENIC,27 and chromVAR,28 as 

these are mostly not able to exactly distinguish between TFs with similar binding sites. Generation 

of promoter-enhancer pairs and looking for TF binding are also important downstream analyses. 

These are exciting new prioritization methods, however at present they will still need to be 

combined with experimental validation. 
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