Supplemental information

Current methodological challenges of single-cell and singlenucleus RNA-sequencing in glomerular diseases

Authors:

Deleersnijder, Dries, MD; Callemeyn, Jasper, MD; Arijs, Ingrid, PhD; Naesens, Maarten, MD PhD, Van Craenenbroeck, Amaryllis H, MD PhD; Lambrechts, Diether, PhD; Sprangers, Ben, MD PhD

Supplemental table of contents

Supplementary tables	2
Table S1	
Table S2	
Table S3	
Table S4	9
Table S5	
Supplementary figures	12
Figure S1	12
Figure S2	13
References	14

Supplementary tables

Table S1: Overview of all studies reporting on scRNA-seq and/or snRNA-seq on mouse tissue

Author	Protocol	Age	Disease?	T°	Cells	Depth	Genes	Glom.	Remarks
Adam <i>et</i> <i>al.</i> ¹ , 2017	Drop-seq	N	Healthy (n=12)	(+), C (+), W	20,424	?	> 1,000	Р	First use of CAP on renal tissue (4853 cells, remaining cells with warm dissociation) P°: not mentioned
Chen <i>et</i> <i>al.</i> ² , 2017	Fluidigm C1 SMART-seq	A	Healthy (n=?)	(+), W	184	> 10^7	2,855	-	scRNA-seq on FACS-isolated collecting duct cells (A-ICs, B-ICs, PCs)
Lu <i>et al</i> .³, 2017	Fluidigm C1 SMART-seq	A	Healthy (n=1)	(+), W	14*	±23 x10^6	6,220	М	scRNA-seq on magnetic bead-isolated glomeruli *: only mesangial cells
Lu <i>et al.</i> 4, 2017	Fluidigm C1 SMART-seq	A	Healthy (n=?)	(+), W	20*	±17 x10^6	3,737	Р	scRNA-seq on magnetic bead-isolated glomeruli *: only podocytes P°: 20 cells (100%)
Wang <i>et</i> <i>al.</i> ⁵, 2018	SMART- seq2	С	Healthy (n=?)	(+),W	502	?	±1,900	-	scRNA-seq on FACS-isolated kidney immune cells (CD45+) Study on preservation fidelity of Hypothermosol FRS
Karaiskos <i>et al.⁶,</i> 2018	Drop-seq	A	Healthy (n=8)	(-), W Met.	12,954	9,400	630	Р, Е, М	scRNA-seq on magnetic bead-isolated glomeruli P°: 10,364 cells (80.01%)
Park <i>et al.</i> ⁷ , 2018	10x Chromium	A (?)	Healthy (n=7)	(+), W	43,745	38,588	940	Ρ, Μ	P°: 78 cells (0.18%)
	Drop-seq	A	Healthy (n=1)	(-),W Met.	3,531	±5,500	±1,000	-	*: data from validation study with sn10x platform P°: 227 cells (2.4%) ⁹ (mean of
Wu <i>et al.</i> ⁸ , 2018	sNuc-Drop- Seq DroNC-seq sNuc-10x*	A	Healthy (n=3) UUOS (n=1)*	(-), C Snap.	7,860; 6,147*	±7,000	±850- 1,100; 763*	P, E, M	sNuc-Drop-Seq, DroNC-seq and sNuc-10x)
Kramann <i>et</i> <i>al.</i> ¹⁰ 2018	SMART-seq	A	UUOS (n=3)	(+), W	357	?	?	-	scRNA-seq on FACS-isolated myofibroblasts (PDGFRβ+)
Cao <i>et al.</i> ¹¹ , 2018	Sci-CAR*	A	Healthy (n=2)	(-),C Snap.	13,893	140,000 ;1,011**	±500	Р	*: =sci-RNA-seq+sci-ATAC- seq **: mUMIs per cell P°: not mentioned
Schaum <i>et al.</i> ¹² , 2018	SMART- seq2 10x Chromium	A	Healthy (n=6)* Healthy (n=3)**	(+),W	519*; 2,781**	10^5- 10^6*; 4,000**, ***	±1,250* ;±1,800 **	Μ	Study on mouse atlas (Tabula Muris) *: SMART-seq2 **: droplet-based ***: mUMIs per cell
Fu <i>et al.</i> ¹³ , 2019	Fluidigm C1 mRNA Seq HT	A	streptozotocin- induced DM (n=3) Healthy (n=3)	(+), W	644	40,000	3,457	P, E, M	scRNA-seq on magnetic bead-isolated glomeruli P°: 66 cells (10.25%)
Zimmerman <i>et al.</i> ¹⁴ , 2019	10x Chromium Fluidigm C1 SMART-seq*	A	Healthy (n=3)	(+), W	3,013	80,508	952	-	scRNA-seq on FACS-isolated immune cells (CD45+, exclusion of lymphocytes) *: validation study on macrophages
Ransick <i>et</i> <i>al.</i> ¹⁵ , 2019	10x Chromium	A	Healthy (n=4)	(+), C	31,265	70,446	1,395	Р	Three kidney regions were dissected before dissociation P°: 24 cells (0.08%) ⁹
Barry <i>et</i> <i>al.</i> ¹⁶ , 2019	Drop-seq*	F N A	Healthy (n=?)	(+), W	4,552	?	200- 2,500	E	*: ddSEQ by Illumina scRNA-seq on FACS-isolated endothelial cells (CD31+)
Dumas <i>et</i> <i>al.</i> ¹⁷ , 2020	10x Chromium	A	Healthy (n=?) Total of 60 kidneys	(+), W	40,662	63,692	1,141	E	Cortex and medulla dissected before separate dissociation. scRNA-seq on FACS/MACS- isolated endothelial cells (CD31+)
Denisenko <i>et al.</i> ¹⁸ , 2020	10x Chromium	A	Healthy (n=18)*	(+), W/C (-), W/C Met.,Cry 0.	77,656	52,000	981	P, M	Comparison of different dissociation and storage techniques P°: 3 cells (0.03%) in W P°: 330 cells (2.78%) in C

	10x Chromium	A	Healthy (n=18)*	(-),C Snap.	98,303	52,000	1,819	Р, М	P°: 0.7% *: total amount of mice (scRNA-seq/snRNA-seq/bulk)
Chung et al. ⁹ , 2020	10x Chromium	A	Healthy (n=?) Nephritis (n=?) DM (n=?) Toxic (n=?) CD2AP def. (n=?)	(+), W	74,149	?	2,878	P, E, M	scRNA-seq on magnetic bead-isolated glomeruli P°: 11,431 cells (15.42%)
Kreiman <i>et</i> <i>al.</i> ¹⁹ , 2020	10x Chromium	A	Healthy (n=3) IRI (n=3)	(+), W	?	?	?	?	Exclusive focus on cluster of CXCR5+ cells
Conway <i>et</i> <i>al.</i> ²⁰ , 2020	10x Chromium SMART- seq2	A	Sham (n=3*,1**) UUO-2 (n=3*,1**) UUO-7 (n=3*,1**) R-UUO (n=3*,1**)	(+), W	16,967*; 362**	87,500* ;41,000 **; ±4,600*	1,218*; 3,156**	- ****	*: 10x **: SMART-seq2 ***: mUMIs per cell ****: very few podocytes, too few for cluster
Kirita <i>et</i> <i>al.</i> ²¹ , 2020	10x Chromium	A	IRI (n=15) Sham (n=3)	(-),C Snap.	126,578	?	150- 8,000	Р, М	P°: not mentioned
Zhao <i>et al.</i> ²² , 2020	10x Chromium	A	IRI ± XJB-5-131 (n=5)* Sham (n=5)**	(+), W	7,581*; 6,069**	27,920* ; 39,310* *	2,369	-	*: ischemia/reperfusion mice **: sham mice
Ge <i>et al.</i> ²³ , 2020	Fluidigm C1 mRNA Seq HT	A	Healthy (n=12)	(+), W	326	40,000	3,417	Р, Е, М	scRNA-seq on magnetic bead-isolated glomeruli P°: 50 cells (15.3%)
Do Valle Duraes <i>et</i> <i>al.</i> ²⁴ , 2020	10x Chromium	A	Healthy (n=2*+2**) IRI + CN (n=2*+2**) IRI - C (n=4*+4**)	(+), W	28,767*; 22,851* *	?	1,500*; ?**	-	*: scRNA-seq on FACS- isolated CD45+ **: scRNA-seq on FACS- isolated CD4+
Hyndman <i>et al.</i> ²⁵ , 2020	10x Chromium	A	Healthy (n=2) HDAC-KO mouse (n=2)	(-), C Snap.	25,075	23,000	1,804	Р	Study focusing on Hdac1/2 KO mice P°: 311 cells (1.2%)
Rudman- Melnick <i>et</i> <i>al.²⁶,</i> 2020	Drop-seq	A	Healthy (n=?) IRI (n=21) + mice for validation study	(+), W	54,730	?	>500	Р	P°: not mentioned
Kalucka <i>et</i> <i>al.</i> ²⁷ , 2020	10x Chromium	A	Healthy (n=6)	(+), W	4,003	60,000; 1,580*	898	E	scRNA-seq on FACS/MACS- isolated endothelial cells (CD31+) *: mUMIs per cell
Legouis <i>et</i> <i>al.²⁸,</i> 2020	10x Chromium	A	Healthy (n=?) 64h after IRI (n=?) 96h after IRI (n=?) 28d after IRI (n=?)	(+), C	6,086*; 11,274* *	?	400- 3,000	P	snRNA-seq on FACS-isolated GFP+-nuclei (with GFP labelling renal tubule cells) *: healthy mice (GFP+ and - nuclei) **: IRI-mice (GFP+ nuclei) P°: not mentioned
Dangi <i>et</i> <i>al.²⁹,</i> 2020	10x Chromium	A	Untransplanted (n=2) Transplated, rejecting (n=2) Transplanted, tolerized (n=2)	(+), W	30,053	?	?	-	Study using a murine kidney transplant model. Allografts retrieved at 15d post-transplant.
Marshall et al. ³⁰ , 2020	HyPR-seq	A	Healthy (n=2)* DKD (n=2)**	(+), W	14,288*; 14,837* *	203***	Probing of 32 genes	P, M	New targeted scRNA-seq technique using specific DNA probes (HyPR-seq) *: BTBR <i>wt/wt</i> mice **: BTBR <i>ob/ob</i> mice ***: mUMIs per cell P°: 132 cells (0.9%)*; 12 cells (0.08%)**
Omori et al. ³¹ , 2020	10x Chromium	A	p16-Cre ^{ERT2} - tdTomato mouse (n=?)	(+), W	2,403	> 800*	> 200	-	New mouse model on cell senescence; Td-tomato labelling of p16-high cells as a marker for cell senescence *: UMIs per cell
Ni et al. ³² , 2021	10x Chromium	A	Healthy (n=?)	(+), W	?	?	200- 3,000	-	Study focusing on phosphate metabolism and FGF23- mediated pathways
Sidhom <i>et</i> <i>al.</i> ³³ , 2021	10x Chromium	A	Pdss2 ^{kd/kd} mice (n=3)*	(-), C Snap.	20,441*; 16,119*	±1,000	±1,500	Ρ	*: Mice with homozygous mutation in Pdss2-gene (CoQ-

			Healthy (n=3)**		*				pathyway) **: controls P°: 61 cells (0.3%)*, 41 cells (0.25%)**
	Drop-seq	A	Healthy (n=2)	(-), C Met.	5,675*; 6,327**	772***	456	Ρ	Study incorporates NovoSpaRc Grhl2 ^{CD2-/-} mice are a model
Hinze <i>et</i> <i>al.</i> ³⁴ , 2021	10x Chromium	A	Healthy (n=2) Grhl2 ^{CD2-/-} (n=1 mouse, 2 kidneys)	(-), C Snap.	?	?	500- 5,000	Ρ	for lower corticomedullary osmolality gradient *: 'whole kidney' **: dissected kidney regions before dissociation ***: mean transcripts per cell P°: not mentioned P°: not mentioned
Dhillon <i>et</i> <i>al.</i> ³⁵ , 2021	10x Chromium	A	Healthy (n=6)* FAN mice (n=2)**	(+), W	37,361*; 27,730* *	?	200- 3,000	P, E	Study also performed scRNA- seq on UUO-mice and human kidney organoids *: Healthy controls **: CKD/fibrosis mouse model P°: 97 cells (0.15%)
Janosevic et al. ³⁶ , 2021	10x Chromium	A	Endotoxin treated mice (n=7 mice, 14 kidneys)	(+), W	63,287	±50,000	200- 3,000	-	Study of murine endotoxemia model. Analysis on 7 timepoints after LPS-injection (0h, 1h, 4h, 16h, 27h, 36h, 48h), 1 mouse per timepoint.

Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments are shown in red; 'Age': age of mice (F = fetal, N = newborn, C = child, A =adult); 'Disease': healthy or pathological kidney tissue (with n = number of mice used); 'T°': fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, C = cold dissociation, 'Met'=methanol-fixation, 'Cryo'=cryopreservation, 'Snap'=snap-frozen tissue); 'Cells': total number of cells isolated and analyzed after quality control; 'Depth': sequencing depth defined as 'mean reads per cell'; 'mean transcripts per cell' or 'mean UMIs per cell' are reported with an '*'; 'Genes': mean number of genes per cell; 'Glom.': isolation of glomerular cells ('-' = no glomerular cells isolated, 'P' = podocytes, 'E' = glomerular endothelial cells, 'M' = mesangial cells; '?' is used when data could not be found in the published paper. The 'sequencing depth' or 'mean genes per cell' may be written as a range or '>' or '±' when no exact figure could be extracted from the published studies. 'Po' refers to the absolute and relative number of podocytes isolated in scRNA-seq or snRNA-seq studies.

Abbreviations:

CAP: cold active protease; FACS: fluorescence-activated cell sorting; A-ICs: A-intercalated cells; B-ICs: B-intercalated cells; PCs: principal cells; UUOS: unilateral ureteral obstruction surgery; UMI: unique molecular identifier; mUMI: mean UMIs (per cell); MACS: magnetic-activated cell sorting; DKD: diabetic kidney disease; CD2AP def.: CD2AP deficiency; IRI: ischemia reperfusion injury; UUO-2: two days after unilateral ureteral obstruction surgery; UUO-7: seven days after unilateral ureteral obstruction surgery; sham: sham surgery; XJB-5-131: a synthetic anti-oxidant; IRI \pm CN: unilateral ischemia reperfusion injury with or without immediate contralateral nephrectomy; HDAC-KO mouse: Hdac1/2 knockout mouse; GFP: green fluorescent protein; Grhl2^{CD2-/-}: mouse lacking Grhl2 transcription factor in collecting ducts; FAN: Folic acid nephropathy.

Author	Protocol	Age	Tx?	Disease?	Biopsy	Τ°	Cells	Depth	Genes	Glom.	Remarks
Der <i>et al</i> . ³⁷ , 2017	Fluidigm C1 SMART-seq	A	N	SLE (n=10)	CNB (n=16)	(+),W	899*	500,000	700	-	*: pooling of renal, skin and PBMCs
Gillies <i>et</i> <i>al.</i> ³⁸ , 2018	10x Chromium	A	N	Healthy (T) (n=3)	Neph (n=3)	(-), W Cryo	4,734	?	?	Р, М	Study on eQTL and integration with scRNA- seq P°: 49 cells (1%)
Wu <i>et al</i> . ³⁹ ,	inDrops	A	Т	Acute TCMR (n=1),	CNB (n=1)	(+),W	4,487	50,000	827	-	P°: not mentioned
2018	inDrops	A	Ν	Healthy (D) (n=1)	Neph. (n=1)	(+), C	4,259	50,000	>400	Р	_
Young <i>et</i> <i>al.,⁴⁰</i> 2018	10x Chromium	F, C, A	N	Fetal (n=2) Healthy (D) (n=1) Healthy (T)* (n=8) Tumor* (n=8)	Neph. (n=20) Whole (n=2) Other** (n=16)	(+), W	72,501	?	?	P, E	*: same patients **: tissue from renal pelvis, ureter and tumor P°: 259 cells (0.3%)
Wilson <i>et al.</i> ⁴¹ , 2019	10x Chromium	A	N	Healthy (T) (n=3) DKD (T) (n=3)	Neph. (n=6)	(-), C Snap.	23,980	6,894*	2,541	P, E, M	*: mUMIs per cell P°: 663 cells (2.76%)
Der <i>et al</i> . ⁴² , 2019	Fluidigm C1 mRNA Seq HT	A	N	SLE (n=21) Healthy (P) (n=3)	CNB (n=24)	(-),W Cryo.	4,019*	200,000	?	М	*: pooling of renal and skin cells
Arazi et al. ⁴³ , 2019	CEL-seq2* 10x Chromium**	A	N	SLE (n=24) Healthy (P) (n=10)	CNB (n=34)	(-),W Cryo	2,838*; 122**	± 10^6*; ?**	1,000- 5,000*; 250- 3,500**	-	scRNA-seq on FACS- isolated leukocytes (CD45+) vs. epithelial cells (CD45-, CD10+) *: CEL-seq2 **: 10x on 2 healthy donor biopsies
Lake <i>et</i> <i>al.</i> ⁴⁴ , 2019	snDrop-seq	A	N	Healthy (T) (n=14) Healthy (D) (n=2)	Neph. (n=19)	(+),C (-), C Snap.	17,659	1,082*	589	P, E, M	*: mean transcripts per cell, not raw reads P°: 859 cells (4.86%)
Stewart <i>et al.</i> ⁴⁵ , 2019	10x Chromium	F, C, A	N	Fetal (n=6) Healthy (T) (n=10) Healthy (D) (n=3)	Neph. (n=14) Whole (n=6)	(+),W	40,268*; 27,203**	?	?	P, E	*: mature kidneys **: fetal kidneys P°: 126 cells (0.3%) for F & C
Zimmerman <i>et al.</i> ¹⁴ , 2019	10x Chromium Fluidigm C1 SMART- seq*	A	N	Healthy (T) (n=1)	Neph. (n=1)	(+), W	2,868	112,080	878	-	scRNA-seq on FACS- isolated immune cells (CD45+, exclusion of lymphocytes) *: validation study on macrophages
Menon <i>et</i> <i>al.</i> ⁴⁶ , 2020	10x Chromium	A	N T	Healthy (T) (n=16) Healthy (P) (n=3) Healthy (S) (n=5)	CNB (n=8) Neph. (n=16)	(-), W Cryo.	7,524*; 14,744**	3,971*,***; 3,089**, ***	1,339*; 1,134**	P, E, M	*: CNB **: nephrectomies ***: mUMIs per cell P°: 11 cells (0.14%)*, 159 cells (1.08%)**
Liao <i>et al</i> . ⁴⁷ , 2020	10x Chromium	A	N	Healthy (T) (n=3)	Neph. (n=3)	(+),W	23,366	±30,000	±800	-	
Malone <i>et</i> <i>al.</i> ⁴⁸ , 2020	10x Chromium	A	Т	ABMR (n=3) Non- rejection AKI (n=2)	CNB (n=5)	(+),W	81,139	2,497*	1,124	-	*: mean transcripts per cell, not raw reads
Liu <i>et al</i> . ⁴⁹ , 2020	10x Chromium	A	Т	Chronic rejection (n=2)	Neph* (n=2)	(+),W	27,197	±2,500**	200- 2,500	-	*: reason for nephrectomy unclear **: mUMIs per cell
Han <i>et al</i> . ⁵⁰ , 2020	Microwell- seq	F* A**	N	Fetal (n=4)* Healthy (D) (n=1)** Healthy (T) (n=2)**	Whole* (n=4) Neph** (n=3)	(+), W	22,439*; 22,692**	±858*,***; ±1,251**, ***	?	P*, M* E**	*: fetal kidney **: adult kidney ***: mUMIs per cell

Table S2: Overview of all studies reporting on scRNA-seq and/or snRNA-seq on human tissue

											Large study constructing the 'human cell landscape' P°: not mentioned
Deng <i>et</i> <i>al.⁵¹,</i> 2020	10x Chromium	A	N	Healthy (T) (n=1)	Neph (n=1)	(+), W	6,138	?	?	?	Study also performed nested PCR and Sanger sequencing on FACS-isolated PTs
Menon <i>et</i> <i>al.</i> ⁵² , 2020	10x Chromium	A	N	Healthy (P) (n=18) DKD (n=44)	CNB (n=62)	(-), W Cryo	25,163*; 85,872**	?	500- 5000	Р, М	*: healthy **: DKD P°: not mentioned
Zheng et al. ⁵³ , 2020	STRT-seq	A	N	IgAN (n=13)* Healthy (T)** (n=6)	CNB (n=13) Neph (n=6)	(+), W ***	2,022*; 763**	37,875*; 38,391**	3,348*; 3,105**	Р, М	*: IgAN **: healthy ***: Stepwise dissociation: 1) glomeruli isolation (pipetting), 2) MACS CD14+ cells, 3) MACS CD326+ cells, 4) unselected cells P°: 22 cells (1%)*, 4 cells (0.52%)**
Kuppe <i>et</i> <i>al.</i> ⁵⁴ , 2021	10x Chromium	A	N	CKD aHT (n=6) Healthy (T) (n=7)	Neph (n=13)	(+), W	53,672*; 33,690**	?	?	P*, E*	scRNA-seq on FACS- sorted CD10+ and CD10- cells *: CD10- cells (11 pts) **: CD10+ cells (8 pts) P°: 44 cells (0.08%)* Study also performed scRNA-seq on FACs- isolated PDGFRα+,PDGFRβ+ cells in mouse kidney fibrosis experiments

Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments is shown in red; 'Age': age of patients (F = fetal, N = newborn, C= child, A = adult); 'Tx': tissue from native kidneys or transplant kidneys (N = native, T = transplant); '**Disease**': healthy or pathological kidney tissue ('(D)' = healthy tissue from discarded kidneys after prelevation for potential transplantation, (T)' = tumorfree tissue at maximal distance of mass or tumor, '(P)'= preperfusion or pretransplant core needle biopsy of living donor kidney, '(S)'=surveillance kidney transplant biopsy, 'Tumor' = tumorally invaded tissue, with n = number of patients); '**Biopsy**': biopsy technique (CNB = core needle biopsy, Neph. = biopsy from partial/total nephrectomy, Whole = dissection of whole fetal kidney, n = biopsy samples taken); 'To': fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, C = cold dissociation, 'Met'=methanol-fixation, 'Cryo'=cryopreservation, 'Snap'=snap-frozen tissue); 'Cells': total number of cells isolated and analyzed after quality control (QC); 'Depth': sequencing depth defined as 'mean (raw) reads per cell'; 'mean transcripts per cell' or 'mean UMIs per cell' are reported with an '*'; 'Genes': mean number of genes per cell; 'Glom.': isolation of glomerular cells ('-' = no glomerular cells isolated, 'P'= podocytes, 'E' = glomerular endothelial cells, 'M' = mesangial cells); '?' is used when data could not be found in the published paper. The 'sequencing depth' or 'mean genes per cell' may be written as a range or '>' or ' \pm ' when no exact figure could be extracted from the published studies. ' P° ' refers to the absolute and relative number of podocytes isolated in scRNA-seq or snRNA-seq studies.

Abbreviations:

PBMC: peripheral blood mononuclear cells; eQTL: expression quantitative trait loci; SLE: systemic lupus erythematosus; TCMR: T-cell mediated rejection; DKD: diabetic kidney disease; FACS: fluorescence-activated cell sorting; ABMR: acute antibody-mediated rejection; AKI: acute kidney injury; PTs: proximal tubule cells; IgAN: IgA nephropathy; MACS: magnetic-activated cell sorting; CKD aHT: 'hypertensive nephrosclerosis'; pts: patients.

Author	Protocol	Age	Disease?	T°	Cells	Depth	Genes	Glom.	Remarks
Karaiskos <i>et al.⁶</i> , 2018	Drop-seq	A	Healthy (n=8)	(-), W Met.	12,954	9,400	630	P, E, M	scRNA-seq on magnetic bead-isolated glomeruli P°: 10,364 cells (80.01%)
Wu <i>et al.</i> ⁸ , 2018	Drop-seq	A	Healthy (n=1)	(-),W Met.	3,531	±5,500	±1,000	-	Study also performed snRNA-seq on healthy tissue (Table S1)
Denisenko <i>et al.</i> ¹⁸ , 2020	10x Chromium	A	Healthy (n=18)*	(+), W/C (-), W/C Met.,Cry o.	77,656	52,000	981	Р, М	Comparison of different dissociation and storage techniques P°: 3 cells (0.03%) in W P°: 330 cells (2.78%) in C *: total of 18 mice for all experiments including bulk RNA-seq and snRNA-seq
Hinze <i>et</i> <i>al</i> . ³⁴ , 2021	Drop-seq	A	Healthy (n=2)	(-), C Met.	5,675*; 6,327**	772***	456	Ρ	Study incorporates NovoSpaRc *: 'whole kidney' **: dissected kidney regions before dissociation ***: mean transcripts per cell P°: not mentioned

Table S3: scRNA-seq studies on methanol-fixed or cryopreserved tissue of mouse kidneys

Legend: 'Age': age of mice (A =adult); 'Disease': healthy or pathological kidney tissue (with n = number of mice used); 'T^o': fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, C = cold dissociation, 'Met'=methanol-fixation, 'Cryo'=cryopreservation); 'Cells': total number of cells isolated and analyzed after quality control; 'Depth': sequencing depth defined as 'mean reads per cell'; 'Genes': mean number of genes per cell; 'Glom.': isolation of glomerular cells ('-' = no glomerular cells isolated, 'P' = podocytes, 'E' = glomerular endothelial cells, 'M' = mesangial cells. The 'sequencing depth' or 'mean genes per cell' may be written as '±' when no exact figure could be extracted from the published studies. 'P'' refers to the absolute and relative number of podocytes isolated in scRNA-seq studies.

Author	Protocol	Age	Tx?	Disease?	Biopsy	T°	Cells	Depth	Genes	Glom.	Remarks
Gillies <i>et</i> <i>al</i> . ³⁸ , 2018	10x Chromium	A	N	Healthy (T) (n=3)	Neph (n=3)	(-), W Cryo	4,734	?	?	Р, М	Study on eQTL and integration with scRNA-seq P°: 49 cells (1%)
Der <i>et al.</i> ⁴² , 2019	Fluidigm C1 mRNA Seq HT	A	N	SLE (n=21) Healthy (P) (n=3)	CNB (n=24)	(-),W Cryo.	4,019*	200,000	?	М	*: pooling of renal and skin cells
Arazi et al. ⁴³ , 2019	CEL-seq2* 10x Chromium**	A	Ν	SLE (n=24) Healthy (P) (n=10)	CNB (n=34)	(-),W Cryo	2,838*; 122**	± 10^6*; ?**	1,000- 5,000*; 250- 3,500**	-	scRNA-seq on FACS-isolated leukocytes (CD45+) vs.epithelial cells (CD45-, CD10+) *: CEL-seq2 **: 10x on 2 healthy donor biopsies
Menon <i>et</i> <i>al.</i> ⁴⁶ , 2020	10x Chromium	A	N T	Healthy (T) (n=16) Healthy (P) (n=3) Healthy (S) (n=5)	CNB (n=8) Neph. (n=16)	(-), W Cryo.	7,524*; 14,744**	3,971*,***; 3,089**,***	1,339*; 1,134**	P, E, M	*: CNB **: nephrectomies ***: mUMIs per cell P°: 11 cells (0.14%)*, 159 cells (1.08%)**
Menon <i>et al.⁵², 2020</i>	10x Chromium	A	N	Healthy (P) (n=18) DKD (n=44)	CNB (n=62)	(-), W Cryo	25,163*; 85,872**	?	500-5000	Р, М	*: healthy **: DKD P°: not mentioned

Table S4: scRNA-seq studies on cryopreserved human renal tissue

Legend: 'Age': age of patients (A =adult); 'Tx': tissue from native kidneys or transplant kidneys (N = native, T = transplant); 'Disease': healthy or pathological kidney tissue ('(P)'= preperfusion or pretransplant core needle biopsy of living donor kidney, '(S)'=surveillance kidney transplant biopsy, n = number of patients); 'Biopsy': biopsy technique (CNB = core needle biopsy, Neph. = biopsy from partial/total nephrectomy, n = biopsy samples taken); 'T°': fresh *vs.* frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, 'Cryo'=cryopreservation); 'Cells': total number of cells isolated and analyzed after quality control; 'Depth': sequencing depth defined as 'mean (raw) reads per cell'; 'mean transcripts per cell' or 'mean UMIs per cell' are reported with an '*'; 'Genes': mean number of genes per cell; 'Glom.': isolation of glomerular cells ('-' = no glomerular cells, 'P' = podocytes, 'E' = glomerular endothelial cells, 'M' = mesangial cells). '?' is used when data could not be found in published paper. 'P°' refers to the absolute and relative number of podocytes isolated in scRNA-seq studies.

Abbreviations: eQTL: expression quantitative trait loci; SLE: systemic lupus erythematosus; DKD: diabetic kidney disease.

Table S5: scRNA-sec	or snRNA-sea	studies on u	nsorted mouse renal	tissue
		studies on a	mouse renai	ussue

Author	Protocol	Age	Disease?	T°	Cells	Depth	Genes	Glom.	Remarks
Adam <i>et</i> <i>al.</i> ¹ , 2017	Drop-seq	N	Healthy (n=12)	(+), C (+), W	20,424	?	> 1,000	Ρ	First use of CAP on renal tissue (4853 cells, remaining cells with warm dissociation) P°: not mentioned
Park <i>et al.</i> ⁷ , 2018	10x Chromium	A (?)	Healthy (n=7)	(+), W	43,745	38,588	940	Р, М	P°: 78 cells (0.18%)
Wu <i>et al.</i> ⁸ ,	Drop-seq sNuc-Drop-	A	Healthy (n=1) Healthy (n=3)	(-),W Met.	3,531 7,860;	±5,500 ±7,000	±1,000 ±850-	- P, E,	*: data from validation study with sn10x platform P°: 227 cells (2.4%) ⁹ (mean of sNuc-Drop-Seq, DroNC-seq
2018	Seq DroNC-seq sNuc-10x*	A	UUOS (n=1)*	(-), C Snap.	6,147*		1,100; 763*	М	and sNuc-10x)
Cao <i>et al.</i> ¹¹ , 2018	Sci-CAR*	A	Healthy (n=2)	(-),C Snap.	13,893	140,000 ;1,011**	±500	Ρ	*: =sci-RNA-seq+sci-ATAC- seq **: mUMIs per cell P°: not mentioned
Schaum <i>et al.</i> ¹² , 2018	SMART- seq2 10x Chromium	A	Healthy (n=6)* Healthy (n=3)**	(+),W	519*; 2,781**	10^5- 10^6*; 4,000**, ***	±1,250* ; ±1,800* *	М	Study on mouse atlas (Tabula Muris) *: SMART-seq2 **: droplet-based ***: mUMIs per cell
Ransick <i>et</i> <i>al.</i> ¹⁵ , 2019	10x Chromium	A	Healthy (n=4)	(+), C	31,265	70,446	1,395	Р	Three kidney regions were dissected before dissociation P°: 24 cells (0.08%) ⁹
Denisenko <i>et al.</i> ¹⁸ , 2020	10x Chromium	A	Healthy (n=18)*	(+), W/C (-), W/C Met.,Cry o.	77,656	52,000	981	Р, М	Comparison of different dissociation and storage techniques P°: 3 cells (0.03%) in W P°: 330 cells (2.78%) in C
2020	10x Chromium	A	Healthy (n=18)*	(-),C Snap.	98,303	52,000	1,819	P, M	P°: 0.7% *: total amount of mice (scRNA-seq/snRNA-seq/bulk)
Conway <i>et</i> <i>al.</i> ²⁰ , 2020	10x Chromium SMART- seq2	A	Sham (n=3*,1**) UUO-2 (n=3*,1**) UUO-7 (n=3*,1**) R-UUO (n=3*,1**)	(+), W	16,967* ; 362**	87,500* ; 41,000 **; ±4,600*	1,218*; 3,156**	- ****	*: 10x **: SMART-seq2 ***: mUMIs per cell ****: very few podocytes, too few for cluster
Kirita <i>et</i> <i>al.</i> ²¹ , 2020	10x Chromium	A	IRI (n=15) Sham (n=3)	(-),C Snap.	126,578	?	150- 8,000	Р, М	P°: not mentioned
Zhao et al. ²² , 2020	10x Chromium	A	IRI ± XJB-5-131 (n=5)* Sham (n=5)**	(+), W	7,581*; 6,069**	27,920* ;39,310 **	2,369	-	*: ischemia/reperfusion mice **: sham mice
Hyndman <i>et al.</i> ²⁵ , 2020	10x Chromium	A	Healthy (n=2) HDAC-KO mouse (n=2)	(-), C Snap.	25,075	23,000	1,804	Р	Study focusing on Hdac1/2 KO mice P°: 311 cells (1.2%)
Rudman- Melnick <i>et</i> <i>al.</i> ²⁶ , 2020	Drop-seq	A	Healthy (n=?) IRI (n=21) + mice for validation study	(+), W	54,730	?	>500	Ρ	P°: not mentioned
Dangi <i>et</i> <i>al.²⁹,</i> 2020	10x Chromium	A	Healthy (n=2) Tx, rejecting (n=2) Tx, tolerized (n=2)	(+), W	30,053	?	?	-	Study using a murine kidney transplant model. Allografts retrieved at 15d post-transplant.
Marshall et al. ³⁰ , 2020	HyPR-seq	A	Healthy (n=2)* DKD (n=2)**	(+), W	14,288*; 14,837* *	203***	Probing of 32 genes	Р, М	New targeted scRNA-seq technique using specific DNA probes (HyPR-seq) *: BTBR <i>wt/wt</i> mice **: BTBR <i>ob/ob</i> mice ***: mUMIs per cell P°: 132 cells (0.9%)*; 12 cells (0.08%)**
Omori et al. ³¹ , 2020	10x Chromium	A	p16-Cre ^{ERT2} - tdTomato mouse (n=?)	(+), W	2,403	> 800*	> 200	-	New mouse model on cell senescence; Td-tomato labelling of p16-high cells as a marker for cell senescence *: UMIs per cell

Ni et al. ³² , 2021	10x Chromium	A	Healthy (n=?)	(+), W	?	?	200- 3,000	-	Study focusing on phosphate metabolism and FGF23- mediated pathways
Sidhom <i>et</i> <i>al</i> . ³³ , 2021	10x Chromium	A	Pdss2 ^{kd/kd} mice (n=3)* Healthy (n=3)**	(-), C Snap.	20,441*; 16,119* *	±1,000	±1,500	Ρ	*: Mice with homozygous mutation in Pdss2-gene (CoQ- pathyway) **: controls P°: 61 cells (0.3%)*, 41 cells (0.25%)**
	Drop-seq	A	Healthy (n=2)	(-), C Met.	5,675*; 6,327**	772***	456	Р	Grhl2 ^{CD2-/-} mice are a model for lower corticomedullary osmolality gradient
Hinze <i>et</i> <i>al</i> . ³⁴ , 2021	10x Chromium	A	Healthy (n=2) Grhl2 ^{CD2-/-} (n=1 mouse, 2 kidneys)	(-), C Snap.	?	?	500- 5,000	Ρ	*: 'whole kidney' **: dissected kidney regions before dissociation ***: mean transcripts per cell P°: not mentioned P°: not mentioned
Dhillon <i>et</i> <i>al.</i> ³⁵ , 2021	10x Chromium	A	Healthy (n=6)* FAN mice (n=2)**	(+), W	37,361*; 27,730* *	?	200- 3,000	P, E	*: Healthy controls **: CKD/fibrosis mouse model P°: 97 cells (0.15%)
Janosevic et al. ³⁶ , 2021	10x Chromium	A	Endotoxin treated mice (n=7 mice, 14 kidneys)	(+), W	63,287	±50,000	200- 3,000	-	Study of murine endotoxemia model. Analysis on 7 timepoints after LPS-injection (0h, 1h, 4h, 16h, 27h, 36h, 48h), 1 mouse per timepoint.

Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments are shown in red; '**Age**': age of mice (N = newborn, A =adult); '**Disease**': healthy or pathological kidney tissue (with n = number of mice used); '**T**°': fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, C = cold dissociation, 'Met'=methanol-fixation, 'Cryo'=cryopreservation, 'Snap'=snap-frozen tissue); '**Cells'**: total number of cells isolated and analyzed after quality control; '**Depth'**: sequencing depth defined as 'mean reads per cell'; '**Genes'**: mean number of genes per cell; '**Glom**.': isolation of glomerular cells ('-' = no glomerular cells isolated, 'P' = podocytes, 'E' = glomerular endothelial cells, 'M' = mesangial cells, green color = podocytes identified, red color = no podocytes identified); 'Po' refers to the absolute and relative number of podocytes isolated in scRNA-seq studies.

Abbreviations: CAP: cold active protease; UUOS: unilateral ureteral obstruction surgery; UUO-2: two days after unilateral ureteral obstruction surgery; UUO-7: seven days after unilateral ureteral obstruction surgery; R-UUO: reversible unilateral ureteral obstruction (surgery); sham: sham surgery; IRI: ischemia reperfusion injury; XJB-5-131: a synthetic anti-oxidant; HDAC-KO mouse: Hdac1/2 knockout mouse; Tx: mice receiving kidney transplant; DKD: diabetic kidney disease; Grhl2^{CD2-/-}: mouse lacking Grhl2 transcription factor in collecting ducts; FAN: Folic acid nephropathy.

Supplementary figures

Search strategy

Aim:

- The following search strategy was used to compile the available scRNA-seq and snRNA-seq studies on human and mouse kidney tissue, as outlined in Tables S1-S2.

Sources:

- An electronic search on the database of PubMed was performed:
 - last literature search was done on 2th of March 2021; studies were screened from 2009 (= first publication of a scRNA-seq technique by Tang *et al.*¹) up until 2th of March 2021; included studies ranged from August 2017 up until January 2021.
- Additional searches:
 - o Handsearching of references lists of primary studies and reviews.

Study eligibility criteria:

- Publication language: studies in English were included
- Only peer reviewed studies were included, pre-prints were excluded
- Study characteristics:
 - Inclusion criteria:
 - Primary studies reporting on single-cell transcriptomics (scRNA-seq and/or snRNA-seq) experiments
 - Experiments should be performed on human or mouse renal tissue
 - Exclusion criteria:
 - Review articles/editorials without primary data on experiments
 - Articles exclusively using previously published single-cell transcriptomics databases
 - Studies on kidney organoids and stem cells (incl. hESC and iPSC)
 - Studies exclusively on urinary cells
 - Studies exclusively on developing fetal renal tissue (human or animal)
 - Studies on commercially available cultured kidney cells
 - Studies exclusively on renal tumors
 - Studies on other animals (e.g. zebrafish, hamster)
 - Reviews without scRNA-seq or snRNA-seq experiments were excluded

Data collection process:

- DD reviewed the literature, screened the studies and included the eligible studies.

Search terms/strategy:

- DD used a combined scRNA-seq and snRNA-seq 'query'.
- Combined Pubmed search query:

("Single-Cell Analysis"[Mesh] OR "scRNA-seq"[tiab] OR "single cell RNA seq*"[tiab] OR "single cell RNA"[tiab] OR "single cell mRNA"[tiab] OR "scRNA"[tiab] OR "snRNA-seq"[tiab] OR "single nucleus RNA seq*"[tiab] OR "single nucleus RNA"[tiab] OR "single nucleus RNA"[tiab] OR "single nuclei RNA"[tiab] OR "snRNA"[tiab] OR "single cell transcript*"[tiab]) AND ("Kidney"[Mesh] OR "Nephrology"[Mesh] OR kidney*[tiab] OR renal*[tiab] OR neph*[tiab])

Figure S1: Literature search strategy ¹ = literature reference⁵⁵

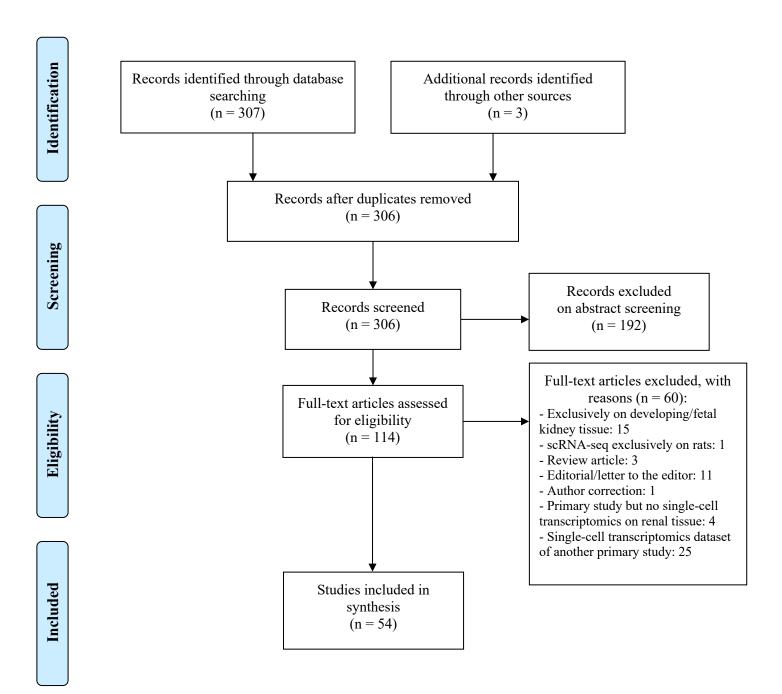


Figure S2: PRISMA 2009 flow diagram of the literature search strategy⁵⁶

References

- Adam, M., Potter, A. S. & Potter, S. S. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: A molecular atlas of kidney development. *Dev.* 144, 3625–3632 (2017).
- 2. Chen, L. *et al.* Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. *Proc. Natl. Acad. Sci.* **114**, 9989–9998 (2017).
- 3. Lu, Y., Ye, Y., Yang, Q. & Shi, S. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. *Kidney Int.* **92**, 504–513 (2017).
- 4. Lu, Y. *et al.* Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. *Kidney Int.* **92**, 1119–1129 (2017).
- 5. Wang, W., Penland, L., Gokce, O., Croote, D. & Quake, S. R. High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. *BMC Genomics* **19**, 140 (2018).
- 6. Karaiskos, N. *et al.* A single-cell transcriptome atlas of the mouse glomerulus. *J. Am. Soc. Nephrol.* **29**, 2060–2068 (2018).
- 7. Park, J. *et al.* Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. *Science* **360**, 758–763 (2018).
- 8. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. J. Am. Soc. Nephrol. **30**, 23–32 (2018).
- 9. Chung, J.-J. *et al.* Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury. *J. Am. Soc. Nephrol.* **31**, 2341–2354 (2020).
- Kramann, R. *et al.* Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. *JCI Insight* 3, e99561 (2018).
- 11. Cao, J. *et al.* Joint profiling of chromatin accessibility and gene expression in thousands of single cells. *Science* **361**, 1380–1385 (2018).
- 12. Schaum, N. *et al.* Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nature* **562**, 367–372 (2018).
- 13. Fu, J. *et al.* Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. *J. Am. Soc. Nephrol.* **30**, 533–545 (2019).
- Zimmerman, K. A. *et al.* Single-cell RNA sequencing identifies candidate renal resident macrophage gene expression signatures across species. *J. Am. Soc. Nephrol.* 30, 767–781 (2019).
- 15. Ransick, A. *et al.* Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. *Dev. Cell* **51**, 399–413 (2019).
- 16. Barry, D. M. *et al.* Molecular determinants of nephron vascular specialization in the kidney. *Nat. Commun.* **10**, 5705 (2019).
- Dumas, S. J. *et al.* Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. *J. Am. Soc. Nephrol.* 31, 118–138 (2020).
- 18. Denisenko, E. *et al.* Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. *Genome Biol.* **21**, 130 (2020).
- Kreimann, K. *et al.* Ischemia Reperfusion Injury Triggers CXCL13 Release and B-Cell Recruitment After Allogenic Kidney Transplantation. *Front. Immunol.* 11, 1204 (2020).
- 20. Conway, B. R. et al. Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in

Progression and Regression of Kidney Disease. J. Am. Soc. Nephrol. **31**, 2833–2854 (2020).

- Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. *Proc. Natl. Acad. Sci. U. S. A.* 117, 15874–15883 (2020).
- 22. Zhao, Z. *et al.* XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. *Cell Death Dis.* **11**, 629 (2020).
- 23. Ge, X. *et al.* LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. *J. Am. Soc. Nephrol.* **31**, 2372–2391 (2020).
- 24. do Valle Duraes, F. *et al.* Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. *JCI Insight* **5**, e130651 (2020).
- 25. Hyndman, K. A. *et al.* Fluid-electrolyte homeostasis requires histone deacetylase function. *JCI Insight* **5**, e137792 (2020).
- 26. Rudman-Melnick, V. *et al.* Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. *J. Am. Soc. Nephrol.* **31**, 2793–2814 (2020).
- Kalucka, J. *et al.* Single-Cell Transcriptome Atlas of Murine Endothelial Cells. *Cell* 180, 764–779 (2020).
- 28. Legouis, D. *et al.* Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. *Nat. Metab.* **2**, 732–743 (2020).
- 29. Dangi, A. *et al.* Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. *JCI Insight* **5**, e141321 (2020).
- 30. Marshall, J. L. *et al.* HyPR-seq: Single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 33404–33413 (2020).
- 31. Omori, S. *et al.* Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16high Cells In Vivo. *Cell Metab.* **32**, 814–828 (2020).
- 32. Ni, P. *et al.* Targeting fibroblast growth factor 23-responsive pathways uncovers controlling genes in kidney mineral metabolism. *Kidney Int.* **99**, 598–608 (2021).
- 33. Sidhom, E. *et al.* Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease. *J. Clin. Invest.* **131**, e141380 (2021).
- 34. Hinze, C. *et al.* Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. *J. Am. Soc. Nephrol.* **32**, 291–306 (2021).
- 35. Dhillon, P. *et al.* The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation. *Cell Metab.* **33**, 379–394 (2021).
- 36. Janosevic, D. *et al.* The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. *Elife* **10**, e62270 (2021).
- 37. Der, E. *et al.* Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. *JCI insight* **2**, 118–138 (2017).
- 38. Gillies, C. E. *et al.* An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. *Am. J. Hum. Genet.* **103**, 232–244 (2018).
- Wu, H. *et al.* Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. J. Am. Soc. Nephrol. 29, 2069– 2080 (2018).
- 40. Young, M. D. *et al.* Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. *Science (80-.).* **361**, 594–599 (2018).
- 41. Wilson, P. C. *et al.* The single-cell transcriptomic landscape of early human diabetic nephropathy. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 19619–19625 (2019).
- 42. Der, E. *et al.* Tubular cell and keratinocyte single-cell transcriptomics applied to lupus

nephritis reveal type I IFN and fibrosis relevant pathways. *Nat. Immunol.* **20**, 915–927 (2019).

- 43. Arazi, A. *et al.* The immune cell landscape in kidneys of patients with lupus nephritis. *Nat. Immunol.* **20**, 902–914 (2019).
- 44. Lake, B. B. *et al.* A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. *Nat. Commun.* **10**, 2832 (2019).
- 45. Stewart, B. J. *et al.* Spatiotemporal immune zonation of the human kidney. *Science* (80-.). **365**, 1461–1466 (2019).
- 46. Menon, R. *et al.* Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. *JCI Insight* **5**, e133267 (2020).
- 47. Liao, J. et al. Single-cell RNA sequencing of human kidney. Sci. Data 7, 4 (2020).
- 48. Malone, A. F. *et al.* Harnessing Expressed Single Nucleotide Variation and Single Cell RNA Sequencing To Define Immune Cell Chimerism in the Rejecting Kidney Transplant. J. Am. Soc. Nephrol. **31**, 1977–1986 (2020).
- 49. Liu, Y. *et al.* Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. *Theranostics* **10**, 8851–8862 (2020).
- 50. Han, X. *et al.* Construction of a human cell landscape at single-cell level. *Nature* **581**, 303–309 (2020).
- 51. Deng, Z. *et al.* Single-cell RNA sequencing confirms IgG transcription and limited diversity of VHDJH rearrangements in proximal tubular epithelial cells. *Sci. Rep.* **10**, 19657 (2020).
- 52. Menon, R. *et al.* SARS-CoV-2 receptor networks in diabetic and COVID-19– associated kidney disease. *Kidney Int.* **98**, 1502–1518 (2020).
- 53. Zheng, Y. *et al.* Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy. *Cell Rep.* **33**, 108525 (2020).
- 54. Kuppe, C. *et al.* Decoding myofibroblast origins in human kidney fibrosis. *Nature* **589**, 281–286 (2021).
- 55. Tang, F. *et al.* mRNA-Seq whole-transcriptome analysis of a single cell. *Nat. Methods* 6, 377–382 (2009).
- 56. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* **6**, e1000097 (2009).