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Supplementary tables 
Table S1: Overview of all studies reporting on scRNA-seq and/or snRNA-seq on mouse tissue 

Author Protocol Age Disease? T° Cells Depth Genes Glom. Remarks 

Adam et 
al.1, 2017 

Drop-seq N Healthy (n=12) (+), C 
(+), W  

20,424 ? > 1,000 P First use of CAP on renal 
tissue (4853 cells, remaining 
cells with warm dissociation) 
P°: not mentioned 

Chen et 
al.2, 
2017 

Fluidigm C1 
SMART-seq 

A Healthy (n=?) (+), W 184 > 10^7 2,855 - scRNA-seq on FACS-isolated 
collecting duct cells (A-ICs, B-
ICs, PCs) 

Lu et al.3, 
2017 

Fluidigm C1 
SMART-seq 

A Healthy (n=1) (+), W 14* ±23 
x10^6 

6,220 M scRNA-seq on magnetic 
bead-isolated glomeruli 
*: only mesangial cells 

Lu et al.4, 
2017 

Fluidigm C1 
SMART-seq 

A Healthy (n=?) (+), W 20* ±17 
x10^6 

3,737 P scRNA-seq on magnetic 
bead-isolated glomeruli 
*: only podocytes 
P°: 20 cells (100%) 

Wang et 
al.5, 2018 

SMART-
seq2 

C Healthy (n=?) (+),W 502 ? ±1,900 - scRNA-seq on FACS-isolated 
kidney immune cells (CD45+) 
Study on preservation fidelity 
of Hypothermosol FRS 

Karaiskos 
et al.6, 2018 

Drop-seq A Healthy (n=8) (-), W 
Met. 

12,954 9,400 630 P, E, 
M 

scRNA-seq on magnetic 
bead-isolated glomeruli 
P°: 10,364 cells (80.01%) 

Park et al.7, 
2018 

10x 
Chromium 

A 
(?) 

Healthy (n=7) (+), W 43,745 38,588 940 P, M P°: 78 cells (0.18%) 

Wu et al.8, 
2018 

Drop-seq 
 

A 
 

Healthy (n=1) 
 

(-),W 
Met. 
 

3,531 
 

±5,500 
 

±1,000 
 

- 
 

*: data from validation study 
with sn10x platform 
P°: 227 cells (2.4%)9 (mean of 
sNuc-Drop-Seq, DroNC-seq 
and sNuc-10x) 

sNuc-Drop-
Seq 
DroNC-seq 
sNuc-10x* 

A Healthy (n=3) 
UUOS (n=1)* 

(-), C 
Snap. 

7,860; 
6,147* 

±7,000 ±850-
1,100;  
763* 

P, E, 
M 

Kramann et 
al.10 
2018 

SMART-seq A UUOS (n=3) (+), W 357 ? ? - scRNA-seq on FACS-isolated 
myofibroblasts (PDGFRβ+) 

Cao et al.11, 
2018 

Sci-CAR* A Healthy (n=2) (-),C 
Snap. 

13,893 140,000
;1,011** 

±500 P *: =sci-RNA-seq+sci-ATAC-
seq 
**: mUMIs per cell 
P°: not mentioned 

Schaum et 
al.12, 2018 

SMART-
seq2 
10x 
Chromium 

A Healthy (n=6)* 
Healthy (n=3)** 

(+),W 519*; 
2,781** 
 

10^5-
10^6*; 
4,000**,
*** 

±1,250*
;±1,800
** 

M Study on mouse atlas (Tabula 
Muris) 
*: SMART-seq2 
**: droplet-based 
***: mUMIs per cell 

Fu et al.13, 
2019 

Fluidigm C1 
mRNA Seq 
HT 

A streptozotocin-
induced DM 
(n=3) 
Healthy (n=3) 

(+), W 644 40,000 3,457 P, E, 
M 

scRNA-seq on magnetic 
bead-isolated glomeruli 
P°: 66 cells (10.25%) 

Zimmerman 
et al.14, 
2019 

10x 
Chromium 
Fluidigm C1 
SMART-seq* 

A Healthy (n=3) (+), W 3,013 80,508 952 - scRNA-seq on FACS-isolated 
immune cells (CD45+, 
exclusion of lymphocytes) 
*: validation study on 
macrophages 

Ransick et 
al.15, 2019 

10x 
Chromium 

A Healthy (n=4) (+), C 31,265 70,446 1,395 P Three kidney regions were 
dissected before dissociation 
P°: 24 cells (0.08%)9 

Barry et 
al.16, 2019 

Drop-seq* F  
N 
A 

Healthy (n=?) (+), W 4,552 ? 200-
2,500 

E *: ddSEQ by Illumina 
scRNA-seq on FACS-isolated 
endothelial cells (CD31+) 

Dumas et 
al.17, 2020 

10x 
Chromium 

A Healthy (n=?) 
Total of 60 
kidneys 

(+), W 40,662 63,692 1,141 E Cortex and medulla dissected 
before separate dissociation.  
scRNA-seq on FACS/MACS-
isolated endothelial cells 
(CD31+) 

Denisenko 
et al.18, 
2020 

10x 
Chromium 
 

A 
 

Healthy (n=18)* 
 

(+), W/C 
(-), W/C 
Met.,Cry
o. 
 

77,656 
 

52,000 
 

981 
 

P, M 
 

Comparison of different 
dissociation and storage 
techniques 
P°: 3 cells (0.03%) in W 
P°: 330 cells (2.78%) in C 
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10x 
Chromium 

A Healthy (n=18)* 
 

(-),C 
Snap. 

98,303 52,000 1,819 P, M P°: 0.7% 
*: total amount of mice 
(scRNA-seq/snRNA-seq/bulk) 

Chung et 
al.9, 2020 

10x 
Chromium 

A Healthy (n=?) 
Nephritis (n=?) 
DM (n=?) 
Toxic (n=?) 
CD2AP def. 
(n=?) 

(+), W 74,149 ? 2,878 P, E, 
M 

scRNA-seq on magnetic 
bead-isolated glomeruli 
P°: 11,431 cells (15.42%) 

Kreiman et 
al.19, 2020 

10x 
Chromium 

A Healthy (n=3) 
IRI (n=3) 

(+), W ? ? ? ? Exclusive focus on cluster of 
CXCR5+ cells 

Conway et 
al.20, 2020 

10x 
Chromium 
SMART-
seq2 

A Sham (n=3*,1**) 
UUO-2 (n=3*,1**) 
UUO-7 (n=3*,1**) 
R-UUO 
(n=3*,1**) 

(+), W  16,967*; 
362** 

87,500*
;41,000 
**; 
±4,600*
,*** 

1,218*; 
3,156** 

- 
**** 

*: 10x 
**: SMART-seq2 
***: mUMIs per cell 
****: very few podocytes, too 
few for cluster 

Kirita et 
al.21, 
2020 

10x 
Chromium 

A IRI (n=15) 
Sham (n=3) 

(-),C 
Snap. 

126,578 ? 150-
8,000 

P, M P°: not mentioned 

Zhao et 
al.22,  
2020 

10x 
Chromium 

A IRI ± XJB-5-131 
(n=5)* 
Sham (n=5)** 

(+), W 7,581*; 
6,069** 
 

27,920*
; 
39,310*
* 

2,369 - *: ischemia/reperfusion mice 
**: sham mice 

Ge et al.23, 
2020 

Fluidigm C1 
mRNA Seq 
HT 

A Healthy (n=12) (+), W 326 40,000 3,417 P, E, 
M 

scRNA-seq on magnetic 
bead-isolated glomeruli 
P°: 50 cells (15.3%) 

Do Valle 
Duraes et 
al.24, 2020 

10x 
Chromium 

A Healthy 
(n=2*+2**) 
IRI + CN 
(n=2*+2**) 
IRI - C 
(n=4*+4**) 

(+), W 28,767*; 
22,851*
* 

? 1,500*; 
?** 

- *: scRNA-seq on FACS-
isolated CD45+ 
**: scRNA-seq on FACS-
isolated CD4+ 

Hyndman 
et al.25, 
2020 

10x 
Chromium 

A Healthy (n=2) 
HDAC-KO 
mouse (n=2) 

(-), C 
Snap. 

25,075 23,000 1,804 P Study focusing on Hdac1/2 
KO mice 
P°: 311 cells (1.2%) 

Rudman-
Melnick et 
al.26, 2020 

Drop-seq A Healthy (n=?) 
IRI (n=21) 
+ mice for 
validation study 

(+), W 54,730 ? >500 P P°: not mentioned 

Kalucka et 
al.27, 2020 

10x 
Chromium 

A Healthy (n=6) (+), W 4,003 60,000; 
1,580* 

898 E scRNA-seq on FACS/MACS-
isolated endothelial cells 
(CD31+) 
*: mUMIs per cell 

Legouis et 
al.28, 2020 

10x 
Chromium 
 

A Healthy (n=?) 
64h after IRI 
(n=?) 
96h after IRI 
(n=?) 
28d after IRI 
(n=?) 

(+), C 
 

6,086*; 
11,274*
* 

? 400-
3,000 

P snRNA-seq on FACS-isolated 
GFP+-nuclei (with GFP 
labelling renal tubule cells) 
*: healthy mice (GFP+ and - 
nuclei) 
**: IRI-mice (GFP+ nuclei) 
P°: not mentioned 

Dangi et 
al.29, 2020 

10x 
Chromium 

A Untransplanted 
(n=2) 
Transplated, 
rejecting (n=2)  
Transplanted, 
tolerized (n=2) 

(+), W 30,053 ? ? - Study using a murine kidney 
transplant model. 
Allografts retrieved at 15d 
post-transplant. 

Marshall et 
al.30, 2020 

HyPR-seq A Healthy (n=2)* 
DKD (n=2)** 

(+), W 14,288*; 
14,837*
* 

203*** Probing 
of 32 
genes 

P, M New targeted scRNA-seq 
technique using specific DNA 
probes (HyPR-seq) 
*: BTBR wt/wt mice 
**: BTBR ob/ob mice 
***: mUMIs per cell 
P°: 132 cells (0.9%)*; 12 cells 
(0.08%)** 

Omori et 
al.31, 2020 

10x 
Chromium 

A p16-Cre
ERT2

-
tdTomato mouse 
(n=?) 

(+), W 2,403 > 800* > 200 - New mouse model on cell 
senescence; Td-tomato 
labelling of p16-high cells as a 
marker for cell senescence 
*: UMIs per cell 

Ni et al.32, 
2021 

10x 
Chromium 

A Healthy (n=?) (+), W ? ? 200-
3,000 

- Study focusing on phosphate 
metabolism and FGF23-
mediated pathways 

Sidhom et 
al.33, 2021 

10x 
Chromium 

A Pdss2kd/kd mice 
(n=3)* 

(-), C 
Snap. 

20,441*; 
16,119*

±1,000 ±1,500 P *: Mice with homozygous 
mutation in Pdss2-gene (CoQ-
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 Healthy (n=3)** * 
 
 

pathyway) 
**: controls 
P°: 61 cells (0.3%)*, 41 cells 
(0.25%)** 

Hinze et 
al.34, 2021 

Drop-seq A Healthy (n=2) (-), C 
Met. 

5,675*; 
6,327** 
 

772*** 456 P Study incorporates 
NovoSpaRc 
Grhl2CD2-/- mice are a model 
for lower corticomedullary 
osmolality gradient  
*: ‘whole kidney’ 
**: dissected kidney regions 
before dissociation 
***: mean transcripts per cell 
P°: not mentioned 
P°: not mentioned 

10x 
Chromium 

A Healthy (n=2) 
Grhl2CD2-/- (n=1 
mouse, 2 
kidneys) 

(-), C 
Snap. 

? ? 500-
5,000 

P 

Dhillon et 
al.35, 2021 

10x 
Chromium 

A Healthy (n=6)* 
FAN mice (n=2)** 

(+), W 37,361*; 
27,730*
* 

? 200-
3,000 

P, E Study also performed scRNA-
seq on UUO-mice and human 
kidney organoids 
*: Healthy controls 
**: CKD/fibrosis mouse model 
P°: 97 cells (0.15%) 

Janosevic 
et al.36, 
2021 

10x 
Chromium 

A Endotoxin 
treated mice 
(n=7 mice, 14 
kidneys) 

(+), W 63,287 ±50,000 200-
3,000 

- Study of murine endotoxemia 
model. Analysis on 7 
timepoints after LPS-injection 
(0h, 1h, 4h, 16h, 27h, 36h, 
48h), 1 mouse per timepoint. 

 
Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments are shown in red; ‘Age’: 

age of mice (F = fetal, N = newborn, C = child, A =adult); ‘Disease’: healthy or pathological kidney 

tissue (with n = number of mice used); ‘T°’: fresh vs. frozen tissue and warm vs. cold dissociation ((+) 

= fresh tissue, (-) = frozen tissue, W = warm dissociation, C = cold dissociation, ‘Met’=methanol-

fixation, ‘Cryo’=cryopreservation, ‘Snap’=snap-frozen tissue); ‘Cells’: total number of cells isolated 

and analyzed after quality control; ‘Depth’: sequencing depth defined as ‘mean reads per cell’; ‘mean 

transcripts per cell’ or ‘mean UMIs per cell’ are reported with an ‘*’; ‘Genes’: mean number of genes 

per cell; ‘Glom.’: isolation of glomerular cells (‘-‘ = no glomerular cells isolated, ‘P’ = podocytes, ‘E’ 

= glomerular endothelial cells, ‘M’ = mesangial cells; ‘?’ is used when data could not be found in the 

published paper. The ‘sequencing depth’ or ‘mean genes per cell’ may be written as a range or ‘>’ or 

‘±’ when no exact figure could be extracted from the published studies. ‘P°’ refers to the absolute and 

relative number of podocytes isolated in scRNA-seq or snRNA-seq studies. 

 
Abbreviations: 

CAP: cold active protease; FACS: fluorescence-activated cell sorting; A-ICs: A-intercalated cells; B-

ICs: B-intercalated cells; PCs: principal cells; UUOS: unilateral ureteral obstruction surgery; UMI: 

unique molecular identifier; mUMI: mean UMIs (per cell); MACS: magnetic-activated cell sorting; 

DKD: diabetic kidney disease; CD2AP def.: CD2AP deficiency; IRI: ischemia reperfusion injury; 

UUO-2: two days after unilateral ureteral obstruction surgery; UUO-7: seven days after unilateral 

ureteral obstruction surgery; R-UUO: reversible unilateral ureteral obstruction (surgery); sham: sham 

surgery; XJB-5-131: a synthetic anti-oxidant; IRI ± CN: unilateral ischemia reperfusion injury with or 

without immediate contralateral nephrectomy; HDAC-KO mouse: Hdac1/2 knockout mouse; GFP: 

green fluorescent protein; Grhl2CD2-/-: mouse lacking Grhl2 transcription factor in collecting ducts; 

FAN: Folic acid nephropathy.  
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Table S2: Overview of all studies reporting on scRNA-seq and/or snRNA-seq on human tissue 
Author Protocol Age Tx? Disease? Biopsy T° Cells Depth Genes Glom. Remarks 

Der et al.37, 
2017 

Fluidigm C1 
SMART-seq 
 

A N SLE (n=10) CNB 
(n=16) 

(+),W 899* 500,000 700 - *: pooling of renal, skin 
and PBMCs 

Gillies et 
al.38, 2018 

10x 
Chromium 

A N Healthy (T) 
(n=3) 

Neph 
(n=3) 

(-), W 
Cryo 

4,734 ? ? P, M Study on eQTL and 
integration with scRNA-
seq 
P°: 49 cells (1%) 

Wu et al.39, 
2018 

inDrops 
 

A 
 

T 
 

Acute 
TCMR 
(n=1), 

CNB 
(n=1) 
 

(+),W 
 

4,487 
 

50,000 
 

827 
 

- 
 

P°: not mentioned 

inDrops A N Healthy (D) 
(n=1) 

Neph. 
(n=1) 

(+), C 4,259 50,000 >400 P 

Young et 
al.,40 
2018 

10x 
Chromium 

F, 
C, A 

N Fetal (n=2) 
Healthy (D) 
(n=1) 
Healthy (T)* 
(n=8) 
Tumor* 
(n=8) 

Neph. 
(n=20) 
Whole 
(n=2) 
Other** 
(n=16) 

(+), 
W 

72,501 ? ? P, E *: same patients 
**: tissue from renal 
pelvis, ureter and tumor  
P°: 259 cells (0.3%) 

Wilson et 
al.41, 2019 

10x 
Chromium 

A N Healthy (T) 
(n=3) 
DKD (T) 
(n=3) 

Neph. 
(n=6) 

(-), C 
Snap. 

23,980 6,894* 2,541 P, E, M *: mUMIs per cell 
P°: 663 cells (2.76%) 

Der et al.42, 
2019 

Fluidigm C1 
mRNA Seq 
HT 

A N SLE (n=21) 
Healthy (P) 
(n=3) 
 
 

CNB 
(n=24) 

(-),W 
Cryo. 

4,019* 200,000 ? M *: pooling of renal and 
skin cells 

Arazi et 
al.43, 
2019 

CEL-seq2* 
10x 
Chromium** 

A N SLE (n=24) 
Healthy (P) 
(n=10) 

CNB 
(n=34) 

(-),W 
Cryo 

2,838*; 
122** 

± 10^6*; 
?** 

1,000-
5,000*; 
250-
3,500** 

- scRNA-seq on FACS-
isolated leukocytes 
(CD45+) vs. epithelial 
cells (CD45-, CD10+)  
*: CEL-seq2 
**: 10x on 2 healthy 
donor biopsies 

Lake et 
al.44, 2019 

snDrop-seq A N Healthy (T) 
(n=14) 
Healthy (D) 
(n=2) 

Neph. 
(n=19) 

(+),C 
(-), C 
Snap. 

17,659 1,082* 589 P, E, M *: mean transcripts per 
cell, not raw reads 
P°: 859 cells (4.86%) 

Stewart et 
al.45, 2019 

10x 
Chromium 

F, 
C, A 

N Fetal (n=6) 
Healthy (T) 
(n=10) 
Healthy (D) 
(n=3) 

Neph. 
(n=14) 
Whole 
(n=6) 

(+),W 40,268*; 
27,203** 

? ? P, E *: mature kidneys 
**: fetal kidneys 
P°: 126 cells (0.3%) for 
F & C 

Zimmerman 
et al.14, 
2019 

10x 
Chromium 
Fluidigm C1 
SMART-
seq* 

A N Healthy (T) 
(n=1) 

Neph. 
(n=1) 

(+), 
W 

2,868 112,080 878 - scRNA-seq on FACS-
isolated immune cells 
(CD45+, exclusion of 
lymphocytes) 
*: validation study on 
macrophages 

Menon et 
al.46, 2020 

10x 
Chromium 

A N 
T 

Healthy (T) 
(n=16) 
Healthy (P) 
(n=3) 
Healthy (S) 
(n=5) 

CNB  
(n=8) 
Neph. 
(n=16) 

(-), W 
Cryo. 

7,524*; 
14,744** 
 

3,971*,***; 
3,089**, 
*** 

1,339*; 
1,134** 
 

P, E, M *: CNB 
**: nephrectomies 
***: mUMIs per cell 
P°: 11 cells (0.14%)*, 
159 cells (1.08%)** 
 

Liao et al.47, 
2020 

10x 
Chromium 

A N Healthy (T) 
(n=3) 

Neph. 
(n=3) 

(+),W 23,366 ±30,000 ±800 -  

Malone et 
al.48, 2020 

10x 
Chromium 

A T ABMR (n=3) 
Non-
rejection 
AKI (n=2) 

CNB 
(n=5) 

(+),W 81,139 2,497* 1,124 - *: mean transcripts per 
cell, not raw reads 

Liu et al.49, 
2020 

10x 
Chromium 

A T Chronic 
rejection 
(n=2) 

Neph* 
(n=2) 

(+),W 27,197 ±2,500** 200-
2,500 

- *: reason for 
nephrectomy unclear 
**: mUMIs per cell 

Han et al.50, 
2020 

Microwell-
seq 

F* 
A** 

N Fetal (n=4)* 
Healthy (D) 
(n=1)** 
Healthy (T) 
(n=2)** 

Whole* 
(n=4) 
Neph** 
(n=3) 

(+), 
W 

22,439*; 
22,692** 

±858*,***; 
±1,251**, 
*** 

? P*, M* 
E** 
 

*: fetal kidney 
**: adult kidney 
***: mUMIs per cell 
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Large study 
constructing the ‘human 
cell landscape’ 
P°: not mentioned 

Deng et 
al.51, 2020 

10x 
Chromium 

A N Healthy (T) 
(n=1) 
 
 

Neph 
(n=1) 
 

(+), 
W 

6,138 ? ? ? Study also performed 
nested PCR and 
Sanger sequencing on 
FACS-isolated PTs 

Menon et 
al.52, 2020 

10x 
Chromium 

A N Healthy (P) 
(n=18) 
DKD (n=44) 

CNB 
(n=62) 

(-), W 
Cryo 

25,163*; 
85,872** 

? 500-
5000 

P, M *: healthy 
**: DKD 
P°: not mentioned 

Zheng et 
al.53, 2020 

STRT-seq A N IgAN 
(n=13)* 
Healthy 
(T)** (n=6) 
 

CNB 
(n=13) 
Neph 
(n=6) 
 

(+), 
W 
*** 

2,022*; 
763** 
 

37,875*; 
38,391** 
 

3,348*; 
3,105** 
 

P, M *: IgAN 
**: healthy 
***: Stepwise 
dissociation: 
1) glomeruli isolation 
(pipetting),  
2) MACS CD14+ cells,  
3) MACS CD326+ cells,  
4) unselected cells 
P°: 22 cells (1%)*, 4 
cells (0.52%)** 

Kuppe et 
al.54, 2021 

10x 
Chromium 

A N CKD aHT 
(n=6) 
Healthy (T) 
(n=7) 

Neph 
(n=13) 

(+), 
W 

53,672*; 
33,690** 

? ? P*, E* scRNA-seq on FACS-
sorted CD10+ and 
CD10- cells 
*: CD10- cells (11 pts) 
**: CD10+ cells (8 pts) 
P°: 44 cells (0.08%)* 
Study also performed 
scRNA-seq on FACs-
isolated 
PDGFRα+,PDGFRβ+ 
cells in mouse kidney 
fibrosis experiments 

 
Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments is shown in red; ‘Age’: 

age of patients (F = fetal, N = newborn, C= child, A =adult); ‘Tx’: tissue from native kidneys or 

transplant kidneys (N = native, T = transplant); ‘Disease’: healthy or pathological kidney tissue (‘(D)’ 

= healthy tissue from discarded kidneys after prelevation for potential transplantation, ‘(T)’ = tumor-

free tissue at maximal distance of mass or tumor, ‘(P)’= preperfusion or pretransplant core needle 

biopsy of living donor kidney, ‘(S)’=surveillance kidney transplant biopsy, ‘Tumor’ = tumorally 

invaded tissue, with n = number of patients); ‘Biopsy’: biopsy technique (CNB = core needle biopsy, 

Neph. = biopsy from partial/total nephrectomy, Whole = dissection of whole fetal kidney, n = biopsy 

samples taken); ‘T°’: fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = 

frozen tissue, W = warm dissociation, C = cold dissociation, ‘Met’=methanol-fixation, 

‘Cryo’=cryopreservation, ‘Snap’=snap-frozen tissue); ‘Cells’: total number of cells isolated and 

analyzed after quality control (QC); ‘Depth’: sequencing depth defined as ‘mean (raw) reads per cell’; 

‘mean transcripts per cell’ or ‘mean UMIs per cell’ are reported with an ‘*’; ‘Genes’: mean number of 

genes per cell; ‘Glom.’: isolation of glomerular cells (‘-‘ = no glomerular cells isolated, ‘P’= podocytes, 

‘E’ = glomerular endothelial cells, ‘M’ = mesangial cells); ‘?’ is used when data could not be found in 

the published paper. The ‘sequencing depth’ or ‘mean genes per cell’ may be written as a range or ‘>’ 

or ‘±’ when no exact figure could be extracted from the published studies. ‘P°’ refers to the absolute 

and relative number of podocytes isolated in scRNA-seq or snRNA-seq studies. 
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Abbreviations: 

PBMC: peripheral blood mononuclear cells; eQTL: expression quantitative trait loci; SLE: systemic 

lupus erythematosus; TCMR: T-cell mediated rejection; DKD: diabetic kidney disease; FACS: 

fluorescence-activated cell sorting; ABMR: acute antibody-mediated rejection; AKI: acute kidney 

injury; PTs: proximal tubule cells; IgAN: IgA nephropathy; MACS: magnetic-activated cell sorting; 

CKD aHT: ‘hypertensive nephrosclerosis’; pts: patients. 
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Table S3: scRNA-seq studies on methanol-fixed or cryopreserved tissue of mouse kidneys 
Author Protocol Age Disease? T° Cells Depth Genes Glom. Remarks 

Karaiskos 
et al.6, 2018 

Drop-seq A Healthy (n=8) (-), W 
Met. 

12,954 9,400 630 P, E, M scRNA-seq on magnetic bead-isolated 
glomeruli 
P°: 10,364 cells (80.01%) 

Wu et al.8, 
2018 

Drop-seq  A Healthy (n=1) (-),W 
Met. 
 

3,531 ±5,500 ±1,000 - 
 

Study also performed snRNA-seq on 
healthy tissue (Table S1) 

Denisenko 
et al.18, 2020 

10x 
Chromium 

A Healthy (n=18)* (+), W/C 
(-), W/C 
Met.,Cry
o. 
 

77,656 
 

52,000 981 P, M Comparison of different dissociation and 
storage techniques 
P°: 3 cells (0.03%) in W 
P°: 330 cells (2.78%) in C 
*: total of 18 mice for all experiments 
including bulk RNA-seq and snRNA-seq 

Hinze et 
al.34, 2021 

Drop-seq A Healthy (n=2) (-), C 
Met. 

5,675*; 
6,327** 
 

772*** 456 P Study incorporates NovoSpaRc 
*: ‘whole kidney’ 
**: dissected kidney regions before 
dissociation 
***: mean transcripts per cell 
P°: not mentioned 

 

Legend: ‘Age’: age of mice (A =adult); ‘Disease’: healthy or pathological kidney tissue (with n = 

number of mice used); ‘T°’: fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, 

(-) = frozen tissue, W = warm dissociation, C = cold dissociation, ‘Met’=methanol-fixation, 

‘Cryo’=cryopreservation); ‘Cells’: total number of cells isolated and analyzed after quality control; 

‘Depth’: sequencing depth defined as ‘mean reads per cell’; ‘Genes’: mean number of genes per cell; 

‘Glom.’: isolation of glomerular cells (‘-‘ = no glomerular cells isolated, ‘P’ = podocytes, ‘E’ = 

glomerular endothelial cells, ‘M’ = mesangial cells. The ‘sequencing depth’ or ‘mean genes per cell’ 

may be written as ‘±’ when no exact figure could be extracted from the published studies. ‘P°’ refers to 

the absolute and relative number of podocytes isolated in scRNA-seq studies. 
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Table S4: scRNA-seq studies on cryopreserved human renal tissue 
Author Protocol Age Tx? Disease? Biopsy T° Cells Depth Genes Glom. Remarks 

Gillies et 
al.38, 2018 

10x 
Chromium 

A N Healthy (T) 
(n=3) 

Neph 
(n=3) 

(-), W 
Cryo 

4,734 ? ? P, M Study on eQTL 
and integration 
with scRNA-seq 
P°: 49 cells (1%) 

Der et al.42, 
2019 

Fluidigm C1 
mRNA Seq 
HT 

A N SLE (n=21) 
Healthy (P) 
(n=3) 
 
 

CNB 
(n=24) 

(-),W 
Cryo. 

4,019* 200,000 ? M *: pooling of renal 
and skin cells 

Arazi et 
al.43, 
2019 

CEL-seq2* 
10x 
Chromium** 

A N SLE (n=24) 
Healthy (P) 
(n=10) 

CNB 
(n=34) 

(-),W 
Cryo 

2,838*; 
122** 

± 10^6*; 
?** 

1,000-
5,000*; 
 
250-
3,500** 

- scRNA-seq on 
FACS-isolated 
leukocytes 
(CD45+) 
vs.epithelial cells 
(CD45-, CD10+)  
*: CEL-seq2 
**: 10x on 2 
healthy donor 
biopsies 

Menon et 
al.46, 2020 

10x 
Chromium 

A N 
T 

Healthy (T) 
(n=16) 
Healthy (P) 
(n=3) 
Healthy (S) 
(n=5) 

CNB  
(n=8) 
Neph. 
(n=16) 

(-), W 
Cryo. 

7,524*; 
14,744** 
 

3,971*,***; 
3,089**,*** 

1,339*; 
1,134** 
 

P, E, 
M 

*: CNB 
**: nephrectomies 
***: mUMIs per cell 
P°: 11 cells 
(0.14%)*, 159 cells 
(1.08%)** 

Menon et 
al.52, 2020 

10x 
Chromium 

A N Healthy (P) 
(n=18) 
DKD (n=44) 

CNB 
(n=62) 

(-), W 
Cryo 

25,163*; 
85,872** 

? 500-5000 P, M *: healthy 
**: DKD 
P°: not mentioned 

 

Legend: ‘Age’: age of patients (A =adult); ‘Tx’: tissue from native kidneys or transplant kidneys (N = 

native, T = transplant); ‘Disease’: healthy or pathological kidney tissue (‘(P)’= preperfusion or 

pretransplant core needle biopsy of living donor kidney, ‘(S)’=surveillance kidney transplant biopsy, n 

= number of patients); ‘Biopsy’: biopsy technique (CNB = core needle biopsy, Neph. = biopsy from 

partial/total nephrectomy, n = biopsy samples taken); ‘T°’: fresh vs. frozen tissue and warm vs. cold 

dissociation ((+) = fresh tissue, (-) = frozen tissue, W = warm dissociation, ‘Cryo’=cryopreservation); 

‘Cells’: total number of cells isolated and analyzed after quality control; ‘Depth’: sequencing depth 

defined as ‘mean (raw) reads per cell’; ‘mean transcripts per cell’ or ‘mean UMIs per cell’ are reported 

with an ‘*’; ‘Genes’: mean number of genes per cell; ‘Glom.’: isolation of glomerular cells (‘-‘ = no 

glomerular cells, ‘P’ = podocytes, ‘E’ = glomerular endothelial cells, ‘M’ = mesangial cells). ‘?’ is used 

when data could not be found in published paper. ‘P°’ refers to the absolute and relative number of 

podocytes isolated in scRNA-seq studies. 

 

Abbreviations: eQTL: expression quantitative trait loci; SLE: systemic lupus erythematosus; DKD: 

diabetic kidney disease. 
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Table S5: scRNA-seq or snRNA-seq studies on unsorted mouse renal tissue 
Author Protocol Age Disease? T° Cells Depth Genes Glom. Remarks 

Adam et 
al.1, 2017 

Drop-seq N Healthy (n=12) (+), C 
(+), W  

20,424 ? > 1,000 P First use of CAP on renal 
tissue (4853 cells, remaining 
cells with warm dissociation) 
P°: not mentioned 

Park et al.7, 
2018 

10x 
Chromium 

A 
(?) 

Healthy (n=7) (+), W 43,745 38,588 940 P, M P°: 78 cells (0.18%) 

Wu et al.8, 
2018 

Drop-seq 
 

A 
 

Healthy (n=1) 
 

(-),W 
Met. 
 

3,531 
 

±5,500 
 

±1,000 
 

- 
 

*: data from validation study 
with sn10x platform 
P°: 227 cells (2.4%)9 (mean of 
sNuc-Drop-Seq, DroNC-seq 
and sNuc-10x) 

sNuc-Drop-
Seq 
DroNC-seq 
sNuc-10x* 

A Healthy (n=3) 
UUOS (n=1)* 

(-), C 
Snap. 

7,860; 
6,147* 

±7,000 ±850-
1,100; 
763* 

P, E, 
M 

Cao et al.11, 
2018 

Sci-CAR* A Healthy (n=2) (-),C 
Snap. 

13,893 140,000
;1,011** 

±500 P *: =sci-RNA-seq+sci-ATAC-
seq 
**: mUMIs per cell 
P°: not mentioned 

Schaum et 
al.12, 2018 

SMART-
seq2 
10x 
Chromium 

A Healthy (n=6)* 
Healthy (n=3)** 

(+),W 519*; 
2,781** 
 

10^5-
10^6*; 
4,000**,
*** 

±1,250*
; 
±1,800*
* 

M Study on mouse atlas (Tabula 
Muris) 
*: SMART-seq2 
**: droplet-based 
***: mUMIs per cell 

Ransick et 
al.15, 2019 

10x 
Chromium 

A Healthy (n=4) (+), C 31,265 70,446 1,395 P Three kidney regions were 
dissected before dissociation 
P°: 24 cells (0.08%)9 

Denisenko 
et al.18, 
2020 

10x 
Chromium 
 

A 
 

Healthy (n=18)* 
 

(+), W/C 
(-), W/C 
Met.,Cry
o. 
 

77,656 
 

52,000 
 

981 
 

P, M 
 

Comparison of different 
dissociation and storage 
techniques 
P°: 3 cells (0.03%) in W 
P°: 330 cells (2.78%) in C 
P°: 0.7% 
*: total amount of mice 
(scRNA-seq/snRNA-seq/bulk) 

10x 
Chromium 

A Healthy (n=18)* 
 

(-),C 
Snap. 

98,303 52,000 1,819 P, M 

Conway et 
al.20, 2020 

10x 
Chromium 
SMART-
seq2 

A Sham (n=3*,1**) 
UUO-2 (n=3*,1**) 
UUO-7 (n=3*,1**) 
R-UUO 
(n=3*,1**) 

(+), W  16,967* 
; 362** 

87,500*
; 
41,000 
**; 
±4,600*
,*** 

1,218*; 
3,156** 

- 
**** 

*: 10x 
**: SMART-seq2 
***: mUMIs per cell 
****: very few podocytes, too 
few for cluster 

Kirita et 
al.21, 
2020 

10x 
Chromium 

A IRI (n=15) 
Sham (n=3) 

(-),C 
Snap. 

126,578 ? 150-
8,000 

P, M P°: not mentioned 

Zhao et 
al.22,  
2020 

10x 
Chromium 

A IRI ± XJB-5-131 
(n=5)* 
Sham (n=5)** 

(+), W 7,581*; 
6,069** 
 

27,920*
;39,310
** 

2,369 - *: ischemia/reperfusion mice 
**: sham mice 

Hyndman 
et al.25, 
2020 

10x 
Chromium 

A Healthy (n=2) 
HDAC-KO 
mouse (n=2) 

(-), C 
Snap. 

25,075 23,000 1,804 P Study focusing on Hdac1/2 
KO mice 
P°: 311 cells (1.2%) 

Rudman-
Melnick et 
al.26, 2020 

Drop-seq A Healthy (n=?) 
IRI (n=21) 
+ mice for 
validation study 

(+), W 54,730 ? >500 P P°: not mentioned 

Dangi et 
al.29, 2020 

10x 
Chromium 

A Healthy (n=2) 
Tx, rejecting 
(n=2)  
Tx, tolerized 
(n=2) 

(+), W 30,053 ? ? - Study using a murine kidney 
transplant model. 
Allografts retrieved at 15d 
post-transplant. 

Marshall et 
al.30, 2020 

HyPR-seq A Healthy (n=2)* 
DKD (n=2)** 

(+), W 14,288*; 
14,837*
* 

203*** Probing 
of 32 
genes 

P, M New targeted scRNA-seq 
technique using specific DNA 
probes (HyPR-seq) 
*: BTBR wt/wt mice 
**: BTBR ob/ob mice 
***: mUMIs per cell 
P°: 132 cells (0.9%)*; 12 cells 
(0.08%)** 

Omori et 
al.31, 2020 

10x 
Chromium 

A p16-Cre
ERT2

-
tdTomato mouse 
(n=?) 

(+), W 2,403 > 800* > 200 - New mouse model on cell 
senescence; Td-tomato 
labelling of p16-high cells as a 
marker for cell senescence 
*: UMIs per cell 
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Ni et al.32, 
2021 

10x 
Chromium 

A Healthy (n=?) (+), W ? ? 200-
3,000 

- Study focusing on phosphate 
metabolism and FGF23-
mediated pathways 

Sidhom et 
al.33, 2021 

10x 
Chromium 
 

A Pdss2kd/kd mice 
(n=3)* 
Healthy (n=3)** 

(-), C 
Snap. 

20,441*; 
16,119*
* 
 
 

±1,000 ±1,500 P *: Mice with homozygous 
mutation in Pdss2-gene (CoQ-
pathyway) 
**: controls 
P°: 61 cells (0.3%)*, 41 cells 
(0.25%)** 

Hinze et 
al.34, 2021 

Drop-seq A Healthy (n=2) (-), C 
Met. 

5,675*; 
6,327** 
 

772*** 456 P Grhl2CD2-/- mice are a model 
for lower corticomedullary 
osmolality gradient  
*: ‘whole kidney’ 
**: dissected kidney regions 
before dissociation 
***: mean transcripts per cell 
P°: not mentioned 
P°: not mentioned 

10x 
Chromium 

A Healthy (n=2) 
Grhl2CD2-/- (n=1 
mouse, 2 
kidneys) 

(-), C 
Snap. 

? ? 500-
5,000 

P 

Dhillon et 
al.35, 2021 

10x 
Chromium 

A Healthy (n=6)* 
FAN mice (n=2)** 

(+), W 37,361*; 
27,730*
* 

? 200-
3,000 

P, E *: Healthy controls 
**: CKD/fibrosis mouse model 
P°: 97 cells (0.15%) 

Janosevic 
et al.36, 
2021 

10x 
Chromium 

A Endotoxin 
treated mice 
(n=7 mice, 14 
kidneys) 

(+), W 63,287 ±50,000 200-
3,000 

- Study of murine endotoxemia 
model. Analysis on 7 
timepoints after LPS-injection 
(0h, 1h, 4h, 16h, 27h, 36h, 
48h), 1 mouse per timepoint. 

 

Legend: scRNA-seq experiments are shown in blue, snRNA-seq experiments are shown in red; ‘Age’: 

age of mice (N = newborn, A =adult); ‘Disease’: healthy or pathological kidney tissue (with n = number 

of mice used); ‘T°’: fresh vs. frozen tissue and warm vs. cold dissociation ((+) = fresh tissue, (-) = frozen 

tissue, W = warm dissociation, C = cold dissociation, ‘Met’=methanol-fixation, 

‘Cryo’=cryopreservation, ‘Snap’=snap-frozen tissue); ‘Cells’: total number of cells isolated and 

analyzed after quality control; ‘Depth’: sequencing depth defined as ‘mean reads per cell’; ‘Genes’: 

mean number of genes per cell; ‘Glom.’: isolation of glomerular cells (‘-‘ = no glomerular cells isolated, 

‘P’ = podocytes, ‘E’ = glomerular endothelial cells, ‘M’ = mesangial cells, green color = podocytes 

identified, red color = no podocytes identified); ‘P°’ refers to the absolute and relative number of 

podocytes isolated in scRNA-seq studies. 

 

Abbreviations: CAP: cold active protease; UUOS: unilateral ureteral obstruction surgery; UUO-2: two 

days after unilateral ureteral obstruction surgery; UUO-7: seven days after unilateral ureteral 

obstruction surgery; R-UUO: reversible unilateral ureteral obstruction (surgery); sham: sham surgery; 

IRI: ischemia reperfusion injury; XJB-5-131: a synthetic anti-oxidant; HDAC-KO mouse: Hdac1/2 

knockout mouse; Tx: mice receiving kidney transplant; DKD: diabetic kidney disease; Grhl2CD2-/-: 

mouse lacking Grhl2 transcription factor in collecting ducts; FAN: Folic acid nephropathy.  
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Supplementary figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1: Literature search strategy 
I = literature reference55  

Search strategy 
 
Aim: 

- The following search strategy was used to compile the available scRNA-seq and snRNA-seq studies on human and 
mouse kidney tissue, as outlined in Tables S1-S2. 

Sources: 
- An electronic search on the database of PubMed was performed: 

o last literature search was done on 2th of March 2021; studies were screened from 2009 (= first publication of a 
scRNA-seq technique by Tang et al.I) up until 2th of March 2021; included studies ranged from August 2017 
up until January 2021. 

- Additional searches: 
o Handsearching of references lists of primary studies and reviews. 

 
Study eligibility criteria: 

- Publication language: studies in English were included 
- Only peer reviewed studies were included, pre-prints were excluded 
- Study characteristics: 

o Inclusion criteria: 
§ Primary studies reporting on single-cell transcriptomics (scRNA-seq and/or snRNA-seq) experiments 
§ Experiments should be performed on human or mouse renal tissue 

 
o Exclusion criteria: 

§ Review articles/editorials without primary data on experiments 
§ Articles exclusively using previously published single-cell transcriptomics databases 
§ Studies on kidney organoids and stem cells (incl. hESC and iPSC) 
§ Studies exclusively on urinary cells 
§ Studies exclusively on developing fetal renal tissue (human or animal) 
§ Studies on commercially available cultured kidney cells 
§ Studies exclusively on renal tumors 
§ Studies on other animals (e.g. zebrafish, hamster) 
§ Reviews without scRNA-seq or snRNA-seq experiments were excluded 

 
Data collection process: 

- DD reviewed the literature, screened the studies and included the eligible studies.  
 
Search terms/strategy: 

- DD used a combined scRNA-seq and snRNA-seq ‘query’. 
- Combined Pubmed search query: 

 
("Single-Cell Analysis"[Mesh] OR "scRNA-seq"[tiab] OR "single cell RNA seq*"[tiab] OR "single cell RNA"[tiab] OR 
"single cell mRNA"[tiab] OR "scRNA"[tiab] OR "snRNA-seq"[tiab] OR "single nucleus RNA seq*"[tiab] OR "single 
nucleus RNA"[tiab] OR "single nuclei RNA"[tiab] OR "snRNA"[tiab] OR "single cell transcript*"[tiab]) AND 
("Kidney"[Mesh] OR "Nephrology"[Mesh] OR kidney*[tiab] OR renal*[tiab] OR neph*[tiab]) 
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Figure S2: PRISMA 2009 flow diagram of the literature search strategy56 
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- Review article: 3 
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transcriptomics on renal tissue: 4  
- Single-cell transcriptomics dataset 
of another primary study: 25 

Studies included in 
synthesis 
(n = 54) 
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