Supplemental Table of Contents:

Supplemental Figure 1: Histopathological analysis of 20 strains of male and female F1 transgenic.

Supplemental Figure 2: Blood Urea Nitrogen of the transgenic female and male mice strains correlates with histopathology.

Supplemental Figure 3: NGAL measured in the urine of the transgenic female and male mice strains correlates with histopathology.

Supplemental Figure 4: Manhattan plots for the loci influencing the glomerulosclerosis phenotypes of the Tg-F1 mice.

Supplemental Figure 5: Manhattan plots for the loci influencing the casts phenotypes of the Tg-F1 mice.

Supplemental Figure 6: Manhattan plots for the loci influencing the tubular atrophy and interstitial fibrosis phenotypes of the Tg-F1 mice.

Supplemental Figure 7: Manhattan plots for the loci influencing the interstitial inflammation phenotypes of the Tg-F1 mice.

Supplemental Figure 8: Differential expression of the genes located in suggestive loci.

Supplemental Figure 9: Mouse kidney tissue mRNA expression by snRNA-seq of the genes located in the identifies locus on Chr 13.

Supplemental Figure 10: Immunostaining of kidney tissue of the genes identified in the QTL on chromosome 13.

Supplemental Figure 11: Single cell sequencing of TgFVB kidney.

Supplemental Figure 12: Quantitative RT-PCR analysis of genes identified within the Chr. 13 locus.

Supplemental Table 1: Numbers of Tg-F1-mice for each strain

Supplemental Table 2: Primers for the RT-PCR.

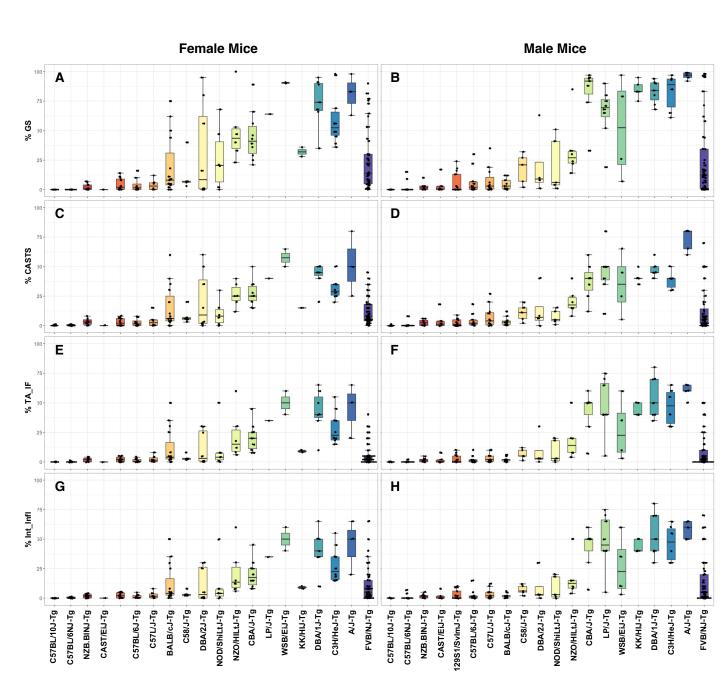
Supplemental Table 3. Statistical analysis of the glomerulosclerosis score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Supplemental Table 4. Statistical analysis of the glomerulosclerosis score between the different F1 hybrids compared to Tg-FVB/NJ mice.

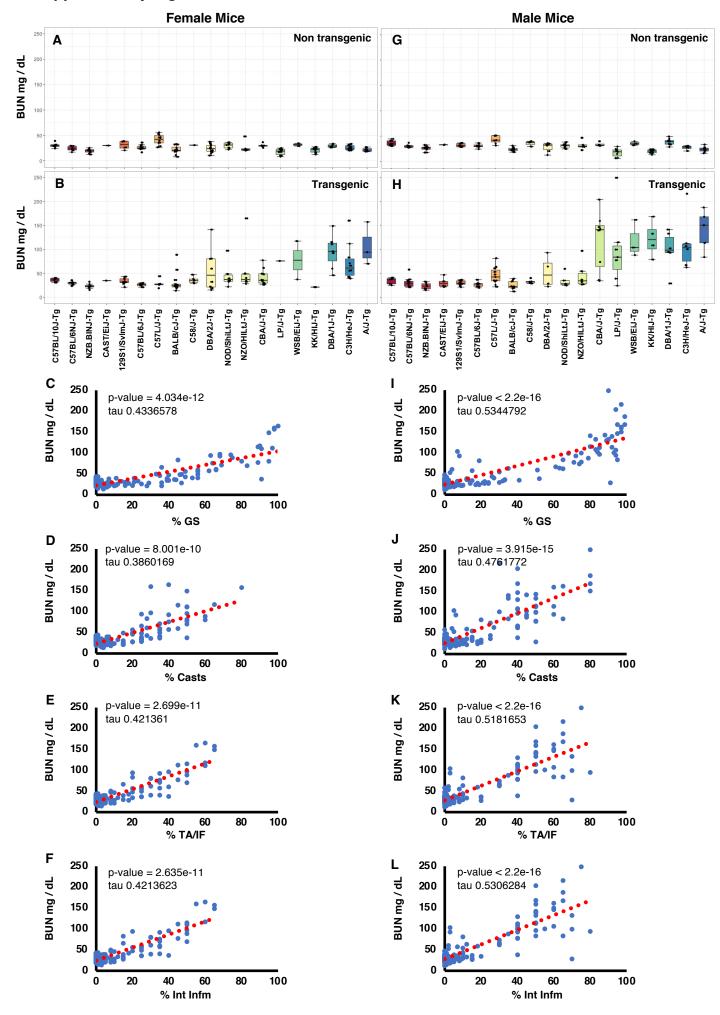
Supplemental Table 5. Statistical analysis of the casts score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Supplemental Table 6. Statistical analysis of the Casts score between the different F1 hybrids compared to Tg-FVB/NJ mice.

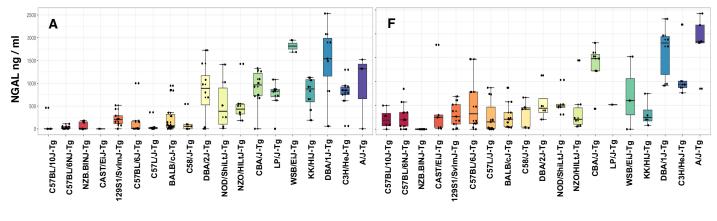
Supplemental Table 7. Statistical analysis of the Tubular Atrophy and Interstitial Fibrosis score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

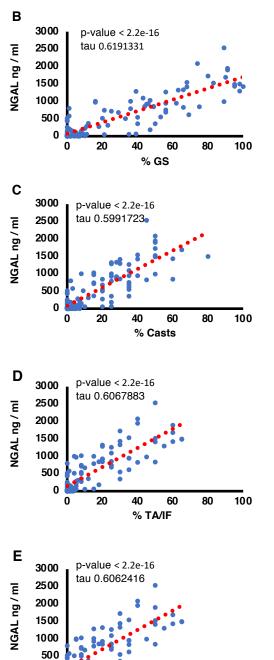

Supplemental Table 8. Statistical analysis of the Tubular Atrophy and Interstitial Fibrosis score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Supplemental Table 9. Statistical analysis of the Interstitial Inflammation score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

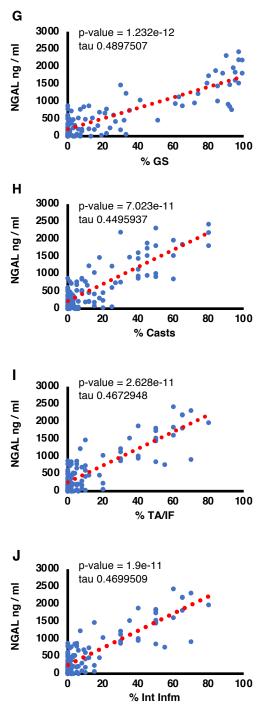

Supplemental Table 10. Statistical analysis of the Interstitial Inflammation score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Supplemental Table 11: Estimated heritability for the kidney pathology scores and BUN Supplemental Table 12: Suggestive signals (Chromosome Wise Significant) of the glomerulosclerosis scores from the HIV-1 transgenic mice.

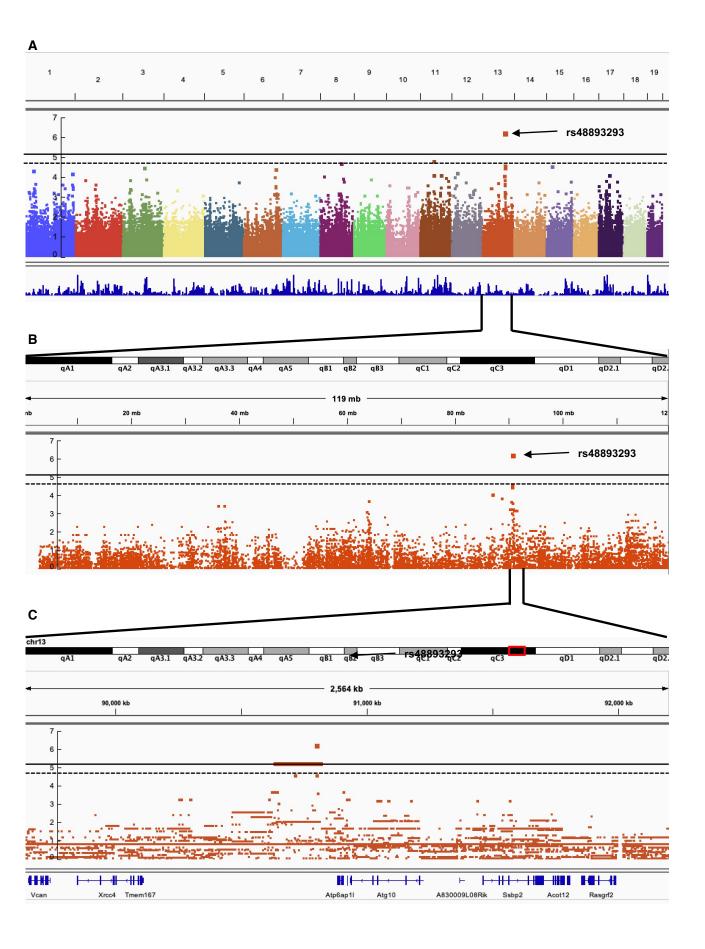

Supplemental Table 13: Selection of priority genes in the locus identified on Chr.13.



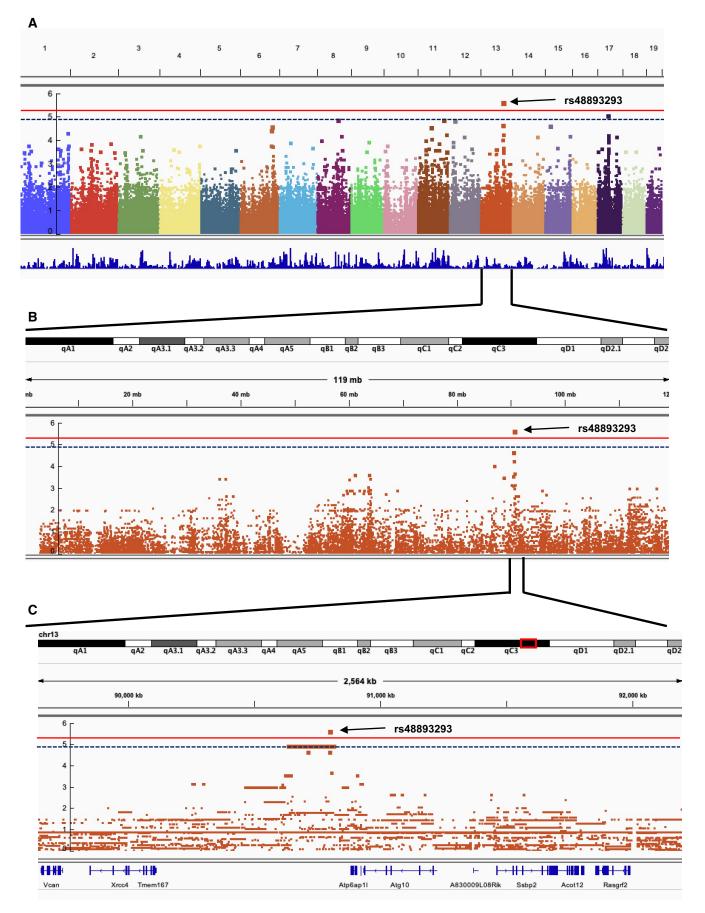
Supplemental Figure 1 (for Figure 1): Histopathological analysis of 20 strains of male and female F1 transgenic. (A) Percentage of GS in the kidneys Tg-F1 female mice. (B) Percentage of GS in the kidneys Tg-F1 male mice. (C) Percentage of casts in the kidneys of Tg-F1 female mice. (D) Percentage of casts in the kidneys of Tg-F1 male mice. (E) Percentage cortical area with tubular atrophy/interstitial fibrosis in the kidneys Tg-F1 female mice. (F) Percentage cortical area with tubular atrophy/interstitial fibrosis in the kidneys Tg-F1 male mice. (G) Percentage cortical area with interstitial inflammation in the kidneys Tg-F1 female mice. (H) Percentage of cortical area with interstitial inflammation in the kidneys of Tg-F1 male mice.



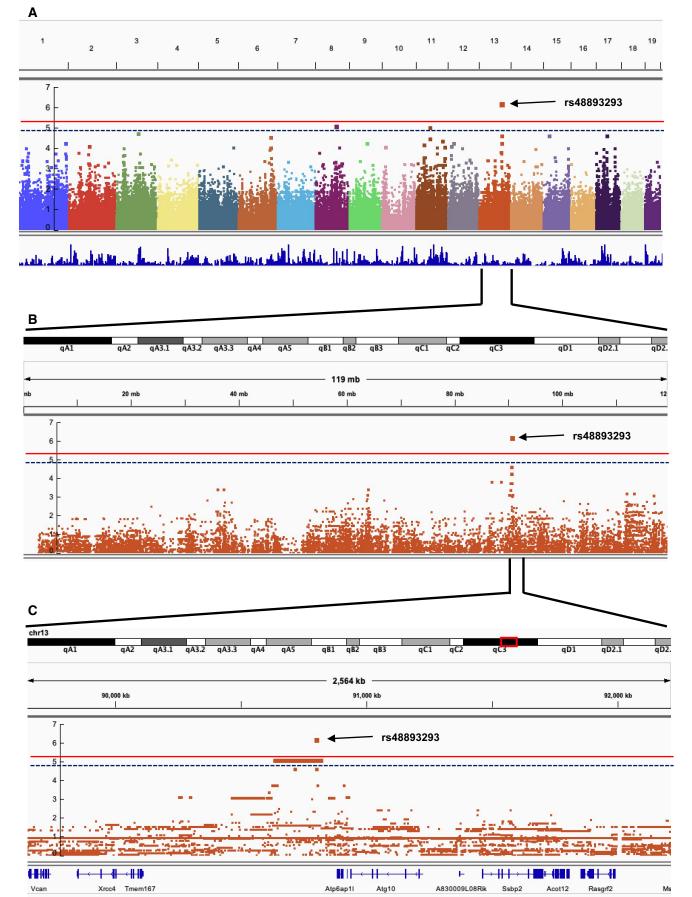
Supplemental Figure 2 (for Figure 1): Blood Urea Nitrogen of the transgenic female and male mice strains correlates with histopathology. (A) Baseline BUN in female F1 non-transgenic mice. (B) BUN in female F1-transgenic mice. (C) Increased BUN correlates with the percentage of GS in female mice, P value < 0.001, tau = 0.43, Kendell correlation. (D) Increased BUN correlates with the percentage of casts in female mice, P value < 0.001, tau = 0.38, Kendell correlation. (E) Increased BUN correlates with the percentage of tubular atrophy/interstitial fibrosis in female mice, P value < 0.001, tau = 0.42, Kendell correlation. (F) Increased BUN correlates with the percentage of interstitial inflammation in female mice, P value < 0.001, tau = 0.42, Kendell correlation. (G) Baseline BUN in male F1 non-transgenic mice. (H) BUN in male F1-transgenic mice. (I) Increased BUN correlates with the percentage of GS in male mice, P value < 0.001, tau = 0.53, Kendell correlation. (J) Increased BUN correlates with the percentage of casts in male mice, P value < 0.001, tau = 0.47, Kendell correlation. (K) Increased BUN correlates with the percentage of tubular atrophy/interstitial fibrosis in male mice, P value < 0.001, tau = 0.51, Kendell correlation. (L) Increased BUN correlates with the percentage of interstitial inflammation in male mice, P value < 0.001, tau = 0.53, Kendell correlation



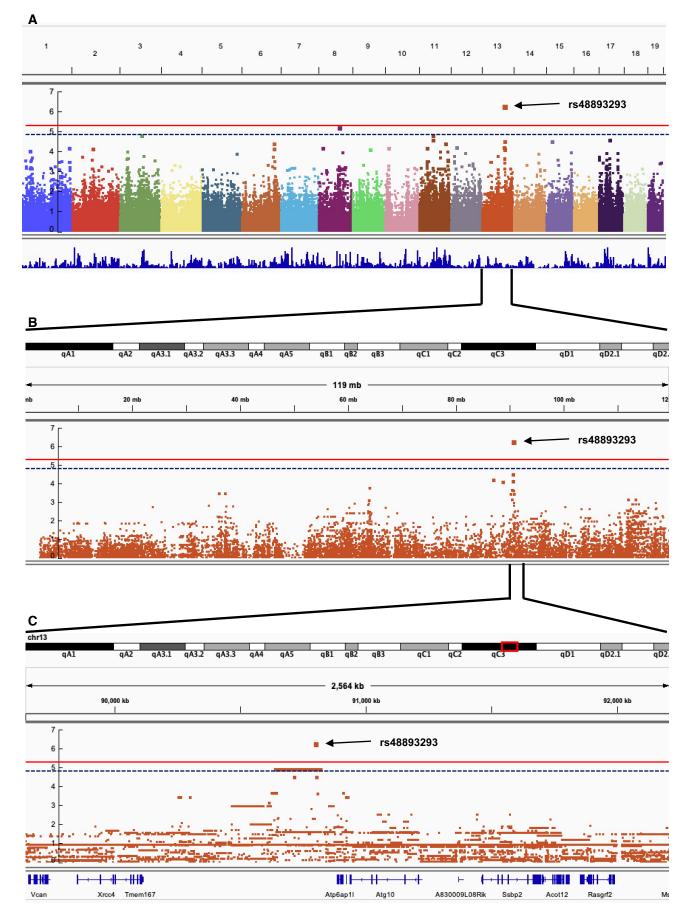
% Int Infm

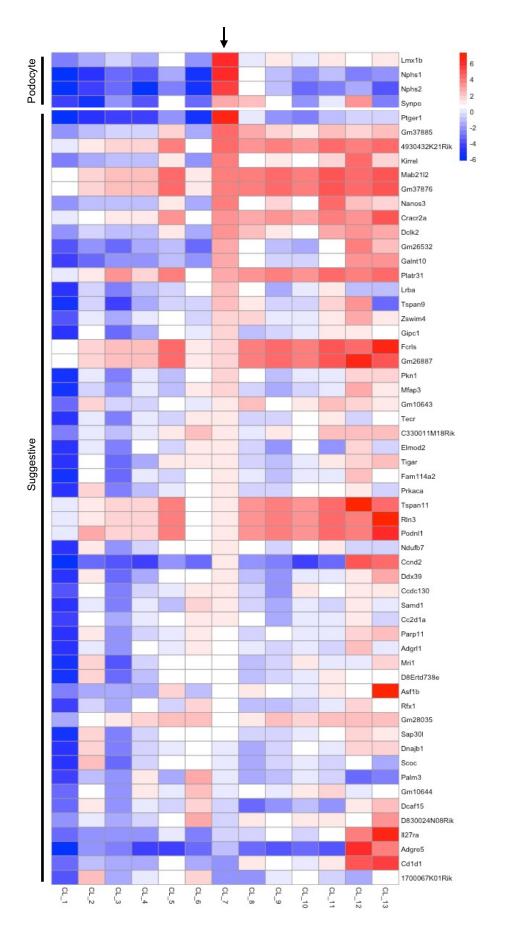


Supplemental Figure 3 (for Figure 1): NGAL measured in the urine of the transgenic female and male mice strains correlates with histopathology. (A) NGAL in female F1-transgenic mice. (B) Increased NGAL correlates with the percentage of GS in female Tg-mice, P value < 0.001, tau = 0.61, Kendell correlation. (C) Increased NGAL correlates with the percentage of casts in female Tg-mice, P value < 0.001, tau = 0.59, Kendell correlation. (D) Increased NGAL correlates with the percentage of tubular atrophy/interstitial fibrosis in female Tg-mice, P value < 0.001, tau = 0.602, Kendell correlation. (E) Increased NGAL correlates with the percentage of interstitial inflammation in female Tg-mice, P value < 0.001, tau = 0.606, Kendell correlation. (F) NGAL in male F1-transgenic mice. (G) Increased NGAL correlates with the percentage of GS in male Tg-mice, P value < 0.001, tau = 0.48, Kendell correlation. (H) Increased NGAL correlates with the percentage of casts in male Tg-mice, P value < 0.001, tau = 0.44, Kendell correlation. (I) Increased NGAL correlates with the percentage of tubular atrophy/interstitial fibrosis in male Tg-mice, P value < 0.001, tau = 0.46, Kendell correlation. (J) Increased NGAL correlates with the percentage of interstitial inflammation in male Tg-mice, P value < 0.001, tau = 0.46, Kendell correlation. Kendell correlation was used because the data were not equally distributed.

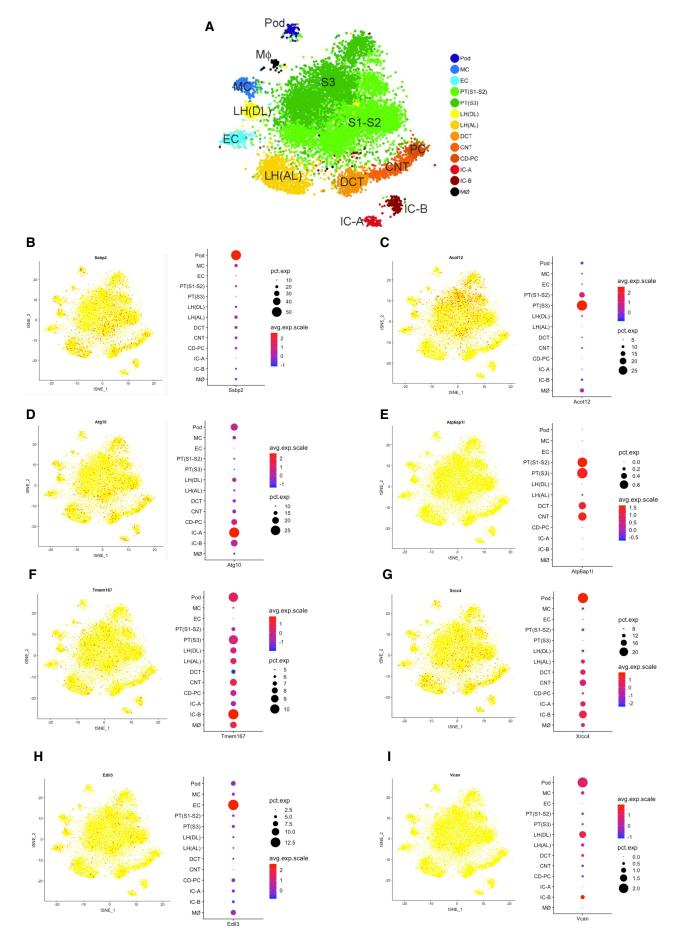


Supplemental Figure 4: Manhattan plots for the loci influencing the


glomerulosclerosis phenotypes of the Tg-F1 mice. (A) Manhattan plot of the percentage glomerulosclerosis demonstrating a genome-wide significant SNP on Chr13. (B) Manhattan plot of Chr13 influencing the glomerulosclerosis. (C) The specific loci on Chr13 influencing glomerulosclerosis. The solid line represents genome-wide significance, and the dotted line represents suggestive. The x-axis shows the SNP loci ordered by distance along the chromosomes, chromosome 13, and focused on the specific loci of chromosome 13. The y-axis represents the -log(P-values). The SNP locus is indicated by an arrow.

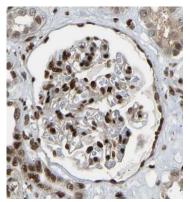

Supplemental Figure 5: Manhattan plots for the loci influencing the casts phenotypes of the Tg-F1 mice. (A) Manhattan plot of the percentage casts demonstrating a genome-wide significant SNP on Chr13. (B) Manhattan plot of Chr13 influencing casts. (C) The specific loci on Chr13 influencing casts. The solid line represents genome-wide significance, and the dotted line represents suggestive. The xaxis shows the SNP loci ordered by distance along the chromosomes, chromosome 13, and focused on the specific loci of chromosome 13. The y-axis represents the -log(Pvalues). The SNP locus is indicated by an arrow.

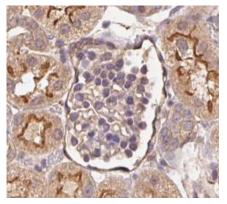
Supplemental Figure 6: Manhattan plots for the loci influencing the tubular atrophy and interstitial fibrosis phenotypes of the Tg-F1 mice. (A) Manhattan plot of the percentage TA/IF demonstrating a genome-wide significant SNP on Chr13. (B) Manhattan plot of Chr13 influencing tubular atrophy/interstitial fibrosis. (C) The specific loci on Chr13 influencing tubular atrophy/interstitial fibrosis. The solid line represents genome-wide significance, and the dotted line represents suggestive. The x-axis shows the SNP loci ordered by distance along the chromosomes, chromosome 13, and focused on the specific loci of chromosome 13. The y-axis represents the -log(P-values). The SNP locus is indicated by an arrow.



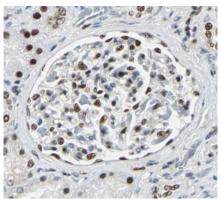
Supplemental Figure 7: Manhattan plots for the loci influencing the interstitial inflammation phenotypes of the Tg-F1 mice. (A) Manhattan plot of the percentage interstitial inflammation demonstrating a genome-wide significant SNP on Chr13. (B) Manhattan plot of Chr13 influencing interstitial inflammation. (C) The specific loci on Chr13 influencing interstitial inflammation. The solid line represents genome-wide significance, and the dotted line represents suggestive. The x-axis shows the SNP loci ordered by distance along the chromosomes, chromosome 13, and focused on the specific loci of chromosome 13. The y-axis represents the -log(P-values). The SNP locus is indicated by an arrow.

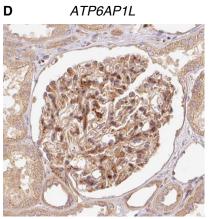
Supplemental Figure 8: Differential expression of the genes located in


suggestive loci. Log2 fold change of differentially expressed genes identified in the suggestive loci using scRNA-Seq analysis, CL_7 contains podocyte specific genes including *Nphs1, Nphs2, Synpo, and Lmx1b.* Within the loci there are several genes that are significantly upregulated (Kirrel, Mab21I2, Cracr2a, Platr31, Nanos3 and Galnt10) in the gene cluster 7, containing the podocyte specific genes. CL-1 unknown, high mitochondrial content, CL_2 Proximal tubule, CL-3 Epithelial, CL_4 unknown, CL_5 Unknown, CL_6 Proximal tubule, CL_7 podocytes and Loop of Henle, CL_8 Collecting duct cells, CL_9 unknown, CL_10 Proximal tubule, CL_11 Loop of Henle, CL_12 Endothelial cells, CL_13 Macrophages and immune cells.

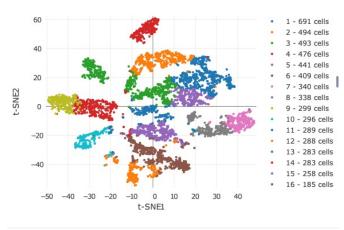

Supplemental Figure 9: Mouse kidney tissue mRNA expression by snRNA-seq of the genes located in the identified locus on Chr. 13.

(A) t_SNE plot of the cell population identified by the snRNA-seq. (B) *Ssbp2* gene expression in the kidney cell populations and *Ssbp2* is predominantly expressed in the podocytes. (C) *Acot12* gene expression in the kidney cell populations. (D) *Atg10* gene expression in the kidney cell populations. (E) *Atp6ap11* gene expression in the kidney cell populations. (G) *Xrcc4* gene expression in the kidney cell populations. (H) *Edil3* gene expression in the kidney cell populations. (I) *Vcan* gene expression in the kidney cell populations. The snRNA-seq data was generated, analyzed, and visualized by the Humphreys Laboratory and downloaded from the KIT (Kidney interactive Transcriptomics) atlas at <u>http://humphreyslab.com/SingleCell</u> using the Healthy Mouse Dataset (Wu *et al* 2019, (S1)).


A SSBP2


B ATG10

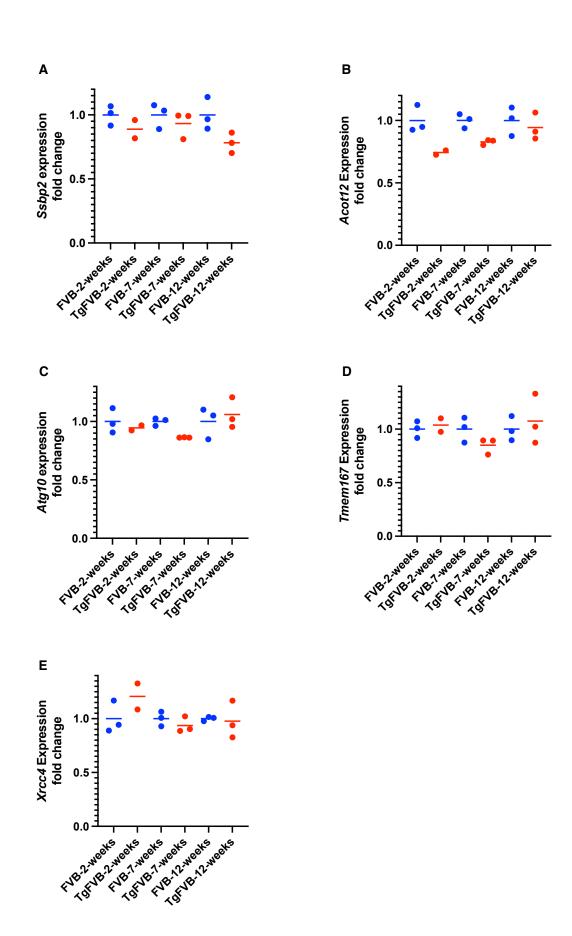
XRCC4 С


ATP6AP1L

Supplemental Figure 10: Immunostaining of kidney tissue of the genes identified in the QTL on chromosome 13.

(A) SSBP2 staining in the kidney. (B) ATG10 staining in the kidney. (C) XRCC4 staining in the kidney. (D) ATP6AP1L staining in the human kidney. Images from Protein Atlas Database (69, 70).

t-SNE projection of Cells Colored by Automated Clustering



HIVAN (TgFVB) kidneys

- 1: Proximal Tubule
- 2: Proximal Tubule
- 3: Epithelial
- 4: Unknown
- 5: Loop of Henle
- 6: Loop of Henle
- 7: NK cells
- 8: T-cells
- 9: Unknown
- 10: Endothelial cells
- 11: B-cells
 - 12: Collecting Duct cells
 - 13: Macrophages and fibroblasts
 - 14: Neutrophils
 - 15: Unknown
 - 16: Distal convoluted tubule.

Supplemental Figure 11: Single cell sequencing of TgFVB kidney.

Single cell sequencing of an HIV-1 transgenic mouse kidney derived from a TgFVB mouse demonstrates 16 distinct cell clusters. There are no clusters expressing podocyte specific genes.

Supplemental Figure 12: Quantitative RT-PCR analysis of genes identified within the Chr. 13 locus.

(A) *Ssbp2* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (B) *Acot12* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (C) *Atg10* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (D) *Tmem167* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (E) *Xrcc4* gene expression in FVB (blue dots) and TgFVB (red dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (E) *Xrcc4* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age. (E) *Xrcc4* gene expression in FVB (blue dots) and TgFVB (red dots) mice at 2, 7 and 12 weeks of age.

Supplemental Table 1: Numbers of Tg-F1-mice for each strain

Tg-F1 mouse	Number
129S1/SvImJ	24
A/J	8
BALB/cJ	25
C3H/HeJ	17
C57BL/10J	11
C57BL/6J	18
C57BL/6NJ	20
C57BL/J	17
C58/J	9
CAST/EiJ	7
CBA/J	18
DBA/1J	14
DBA/2J	12
KK/HiJ	13
LP/J	9
NOD/ShiLtJ	11
NZB/BINJ	17
NZO/HILtJ	12
WSB/EiJ	6
FVB/NJ	97

Supplemental Table 2: Primers for the RT-PCR.

Gene	Forward Primer	Reverse Primer
Beta-actin	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
Ssbp2	CAGGCCCGGGAGAAGTTAG	AGGTTTCCCGTCTCTCTGGA
Atg10	TCTGAAGTGACGAGACCTGC	GGAGCAGCCTCGGCTTATAG
Vcan	TGTCTGGAAAAGTGGTCCTACC	GACACTCGCCCCTTGTAGTC
Xrcc4	TCTCGGCATTTCTCCCTTGAG	CAGGTGCTCGTTTTTGGCTT
Tmem167	AGTCTGTTGACTGTAATCTTGCTG	GGCGACATAAGGACTCTTGC
Acot12	CAGTCCAGCCCACATAGCTT	GGCAGCACAACTGACCTTAG

Supplemental Table 3. Statistical analysis of the glomerulosclerosis score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
C57BL/10J-Tg vs. C57BL/6NJ-Tg	-10.67	0.7746	0.7746
C57BL/10J-Tg vs. NZB.BINJ-Tg	-53.08	0.1866	0.1669
C57BL/10J-Tg vs. CAST/EiJ-Tg	-40.32	0.4231	0.4008
C57BL/10J-Tg vs. 129S1/SvImJ-Tg	-64.07	0.0906	0.0763
C57BL/10J-Tg vs. C57BL/6J-Tg	-68.96	0.0906	0.0695
C57BL/10J-Tg vs. C57L/J-Tg	-70.89	0.0906	0.0763
C57BL/10J-Tg vs. BALB/cJ-Tg	-91.27	0.0222	0.0152
C57BL/10J-Tg vs. C58/J-Tg	-136.3	0.0027	0.0017
C57BL/10J-Tg vs. DBA/2J-Tg	-130.5	0.0027	0.0016
C57BL/10J-Tg vs. NOD/ShiLtJ-Tg	-140.5	0.0017	0.0009
C57BL/10J-Tg vs. NZO/HILtJ-Tg	-208.2	<0.0001	<0.0001
C57BL/10J-Tg vs. CBA/J-Tg	-225.4	<0.0001	<0.0001
C57BL/10J-Tg vs. LP/J-Tg	-237	<0.0001	<0.0001
C57BL/10J-Tg vs. WSB/EiJ-Tg	-233.8	<0.0001	<0.0001
C57BL/10J-Tg vs. KK/HIJ-Tg	-247.1	<0.0001	<0.0001
C57BL/10J-Tg vs. DBA/1J-Tg	-258.5	<0.0001	<0.0001
C57BL/10J-Tg vs. C3H/HeJ-Tg	-259.4	<0.0001	<0.0001
C57BL/10J-Tg vs. A/J-Tg	-282.9	<0.0001	<0.0001
C57BL/10J-Tg vs. FVB/NJ-Tg	-141.4	<0.0001	<0.0001

Supplemental Table 4. Statistical analysis of the glomerulosclerosis score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P vlaue	P Value
FVB/NJ-Tg vs. C57BL/10J-Tg	141.4	<0.0001	<0.0001
FVB/NJ-Tg vs. C57BL/6NJ-Tg	130.7	<0.0001	<0.0001
FVB/NJ-Tg vs. NZB.BINJ-Tg	88.29	0.0019	0.0007
FVB/NJ-Tg vs. CAST/EiJ-Tg	101.1	0.0147	0.0093
FVB/NJ-Tg vs. 129S1/SvImJ-Tg	77.31	0.0019	0.0006
FVB/NJ-Tg vs. C57BL/6J-Tg	72.42	0.0094	0.0045
FVB/NJ-Tg vs. C57L/J-Tg	70.49	0.019	0.013
FVB/NJ-Tg vs. BALB/cJ-Tg	50.11	0.0525	0.0442
FVB/NJ-Tg vs. C58/J-Tg	5.107	0.9256	0.8769
FVB/NJ-Tg vs. DBA/2J-Tg	10.85	0.8058	0.721
FVB/NJ-Tg vs. NOD/ShiLtJ-Tg	0.8294	0.979	0.979
FVB/NJ-Tg vs. NZO/HILtJ-Tg	-66.78	0.0353	0.0279
FVB/NJ-Tg vs. CBA/J-Tg	-84.05	0.0023	0.001
FVB/NJ-Tg vs. LP/J-Tg	-95.67	0.0108	0.0057
FVB/NJ-Tg vs. WSB/EiJ-Tg	-92.44	0.0353	0.0268
FVB/NJ-Tg vs. KK/HIJ-Tg	-105.7	0.0112	0.0065
FVB/NJ-Tg vs. DBA/1J-Tg	-117.2	0.0002	<0.0001
FVB/NJ-Tg vs. C3H/HeJ-Tg	-118	0.0007	0.0002
FVB/NJ-Tg vs. A/J-Tg	-141.6	0.0005	0.0001

Supplemental Table 5. Statistical analysis of the casts score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
C57BL/10J-Tg vs . C57BL/6NJ-Tg	-6.445	0.8627	0.8627
C57BL/10J-Tg vs. NZB.BINJ-Tg	-64.96	0.1079	0.0908
C57BL/10J-Tg vs. CAST/EiJ-Tg	-45.26	0.3649	0.3457
C57BL/10J-Tg vs. 129S1/SvlmJ-Tg	-54.32	0.1485	0.1329
C57BL/10J-Tg vs. C57BL/6J-Tg	-67.85	0.0939	0.0741
C57BL/10J-Tg vs . C57L/J-Tg	-82.8	0.0522	0.0384
C57BL/10J-Tg vs. BALB/cJ-Tg	-101.9	0.0098	0.0067
C57BL/10J-Tg vs . C58/J-Tg	-140.1	0.0021	0.0012
C57BL/10J-Tg vs. DBA/2J-Tg	-140.2	0.0014	0.0007
C57BL/10J-Tg vs. NOD/ShiLtJ-Tg	-121.7	0.0064	0.004
C57BL/10J-Tg vs. NZO/HILtJ-Tg	-207	<0.0001	<0.0001
C57BL/10J-Tg vs . CBA/J-Tg	-219.7	<0.0001	<0.0001
C57BL/10J-Tg vs. LP/J-Tg	-257.4	<0.0001	<0.0001
C57BL/10J-Tg vs. WSB/EiJ-Tg	-242.7	<0.0001	<0.0001
C57BL/10J-Tg vs. KK/HIJ-Tg	-234.2	<0.0001	<0.0001
C57BL/10J-Tg vs. DBA/1J-Tg	-264.9	<0.0001	<0.0001
C57BL/10J-Tg vs. C3H/HeJ-Tg	-244	<0.0001	<0.0001
C57BL/10J-Tg vs . A/J-Tg	-284.9	<0.0001	<0.0001
C57BL/10J-Tg vs . FVB/NJ-Tg	-131.4	<0.0001	<0.0001

Supplemental Table 6. Statistical analysis of the casts score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
FVB/NJ-Tg vs. C57BL/10J-Tg	131.4	0.0001	<0.0001
FVB/NJ-Tg vs. C57BL/6NJ-Tg	125	<0.0001	<0.0001
FVB/NJ-Tg vs. NZB.BINJ-Tg	66.49	0.0187	0.0109
FVB/NJ-Tg vs. CAST/EiJ-Tg	86.19	0.036	0.0265
FVB/NJ-Tg vs. 129S1/SvlmJ-Tg	77.13	0.0016	0.0007
FVB/NJ-Tg vs. C57BL/6J-Tg	63.6	0.0187	0.0126
FVB/NJ-Tg vs. C57L/J-Tg	48.65	0.1095	0.0865
FVB/NJ-Tg vs. BALB/cJ-Tg	29.51	0.2804	0.2361
FVB/NJ-Tg vs. C58/J-Tg	-8.698	0.7919	0.7919
FVB/NJ-Tg vs . DBA/2J-Tg	-8.723	0.7919	0.774
FVB/NJ-Tg vs. NOD/ShiLtJ-Tg	9.766	0.7919	0.7572
FVB/NJ-Tg vs. NZO/HILtJ-Tg	-75.6	0.0187	0.0128
FVB/NJ-Tg vs . CBA/J-Tg	-88.24	0.0014	0.0005
FVB/NJ-Tg vs . LP/J-Tg	-126	0.001	0.0003
FVB/NJ-Tg vs . WSB/EiJ-Tg	-111.3	0.0155	0.0077
FVB/NJ-Tg vs. KK/HIJ-Tg	-102.7	0.0155	0.0082
FVB/NJ-Tg vs. DBA/1J-Tg	-133.4	<0.0001	<0.0001
FVB/NJ-Tg vs. C3H/HeJ-Tg	-112.5	0.0012	0.0004
FVB/NJ-Tg vs. A/J-Tg	-153.5	0.0001	<0.0001

Supplemental Table 7. Statistical analysis of the tubular atrophy and interstitial fibrosis score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
C57BL/10J-Tg vs. C57BL/6NJ-Tg	-2.989	0.9355	0.9355
C57BL/10J-Tg vs. NZB.BINJ-Tg	-61.95	0.123	0.1036
C57BL/10J-Tg vs. CAST/EiJ-Tg	-33.44	0.5088	0.482
C57BL/10J-Tg vs. 129S1/SvlmJ-Tg	-65.36	0.0861	0.068
C57BL/10J-Tg vs. C57BL/6J-Tg	-51.95	0.1873	0.1676
C57BL/10J-Tg vs. C57L/J-Tg	-74.36	0.0822	0.0606
C57BL/10J-Tg vs. BALB/cJ-Tg	-98.34	0.0122	0.0083
C57BL/10J-Tg vs. C58/J-Tg	-129.4	0.0049	0.0026
C57BL/10J-Tg vs. DBA/2J-Tg	-113.5	0.009	0.0057
C57BL/10J-Tg vs. NOD/ShiLtJ-Tg	-119.1	0.0078	0.0045
C57BL/10J-Tg vs. NZO/HILtJ-Tg	-197.6	<0.0001	<0.0001
C57BL/10J-Tg vs. CBA/J-Tg	-211.8	<0.0001	<0.0001
C57BL/10J-Tg vs. LP/J-Tg	-245.9	<0.0001	<0.0001
C57BL/10J-Tg vs. WSB/EiJ-Tg	-220.4	<0.0001	<0.0001
C57BL/10J-Tg vs. KK/HIJ-Tg	-230.1	<0.0001	<0.0001
C57BL/10J-Tg vs. DBA/1J-Tg	-254.9	<0.0001	<0.0001
C57BL/10J-Tg vs. C3H/HeJ-Tg	-243.8	<0.0001	<0.0001
C57BL/10J-Tg vs. A/J-Tg	-265.6	<0.0001	<0.0001
C57BL/10J-Tg vs. FVB/NJ-Tg	-103.7	0.0019	0.0009

Supplemental Table 8. Statistical analysis of the tubular atrophy and interstitial fibrosis score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
FVB/NJ-Tg vs. C57BL/10J-Tg	103.7	0.0024	0.0009
FVB/NJ-Tg vs. C57BL/6NJ-Tg	100.7	0.0001	<0.0001
FVB/NJ-Tg vs. NZB.BINJ-Tg	41.75	0.1445	0.1064
FVB/NJ-Tg vs. CAST/EiJ-Tg	70.27	0.1076	0.0679
FVB/NJ-Tg vs. 129S1/SvImJ-Tg	38.34	0.1276	0.0873
FVB/NJ-Tg vs. C57BL/6J-Tg	51.76	0.0697	0.0403
FVB/NJ-Tg vs. C57L/J-Tg	29.34	0.3759	0.2968
FVB/NJ-Tg vs. BALB/cJ-Tg	5.367	0.8278	0.8278
FVB/NJ-Tg vs. C58/J-Tg	-25.71	0.5122	0.4313
FVB/NJ-Tg vs. DBA/2J-Tg	-9.785	0.7865	0.7451
FVB/NJ-Tg vs. NOD/ShiLtJ-Tg	-15.43	0.6951	0.6219
FVB/NJ-Tg vs. NZO/HILtJ-Tg	-93.87	0.0038	0.0018
FVB/NJ-Tg vs. CBA/J-Tg	-108.1	<0.0001	<0.0001
FVB/NJ-Tg vs. LP/J-Tg	-142.2	0.0001	<0.0001
FVB/NJ-Tg vs. WSB/EiJ-Tg	-116.7	0.0091	0.0048
FVB/NJ-Tg vs. KK/HIJ-Tg	-126.4	0.0024	0.001
FVB/NJ-Tg vs. DBA/1J-Tg	-151.2	<0.0001	<0.0001
FVB/NJ-Tg vs. C3H/HeJ-Tg	-140.1	<0.0001	<0.0001
FVB/NJ-Tg vs. A/J-Tg	-161.8	<0.0001	<0.0001

Supplemental Table 9. Statistical analysis of the interstitial inflammation score between the different F1 hybrids compared to Tg-C57BL6/10J mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
C57BL/10J-Tg vs. C57BL/6NJ-Tg	-18.88	0.6106	0.6106
C57BL/10J-Tg vs. NZB.BINJ-Tg	-58.5	0.1495	0.1259
C57BL/10J-Tg vs. CAST/EiJ-Tg	-32.05	0.53	0.5022
C57BL/10J-Tg vs. 129S1/SvlmJ-Tg	-65.24	0.0922	0.0697
C57BL/10J-Tg vs. C57BL/6J-Tg	-51.52	0.1933	0.1729
C57BL/10J-Tg vs. C57L/J-Tg	-71.41	0.0922	0.0728
C57BL/10J-Tg vs. BALB/cJ-Tg	-93.2	0.0187	0.0128
C57BL/10J-Tg vs. C58/J-Tg	-127	0.0062	0.0033
C57BL/10J-Tg vs. DBA/2J-Tg	-106.4	0.0157	0.0099
C57BL/10J-Tg vs. NOD/ShiLtJ-Tg	-116.6	0.0097	0.0056
C57BL/10J-Tg vs. NZO/HILtJ-Tg	-193.6	<0.0001	<0.0001
C57BL/10J-Tg vs. CBA/J-Tg	-210.5	<0.0001	<0.0001
C57BL/10J-Tg vs. LP/J-Tg	-250.2	<0.0001	<0.0001
C57BL/10J-Tg vs. WSB/EiJ-Tg	-221	<0.0001	<0.0001
C57BL/10J-Tg vs. KK/HIJ-Tg	-230.1	<0.0001	<0.0001
C57BL/10J-Tg vs. DBA/1J-Tg	-255.8	<0.0001	<0.0001
C57BL/10J-Tg vs. C3H/HeJ-Tg	-245.9	<0.0001	<0.0001
C57BL/10J-Tg vs. A/J-Tg	-267.6	<0.0001	<0.0001
C57BL/10J-Tg vs. FVB/NJ-Tg	-127.1	0.0001	<0.0001

Supplemental Table 10. Statistical analysis of the interstitial inflammation score between the different F1 hybrids compared to Tg-FVB/NJ mice.

Original FDR method of Benjamini and Hochberg	Mean rank diff.	Adjusted P value	P Value
FVB/NJ-Tg vs. C57BL/10J-Tg	127.1	0.0003	<0.0001
FVB/NJ-Tg vs. C57BL/6NJ-Tg	108.2	<0.0001	<0.0001
FVB/NJ-Tg vs. NZB.BINJ-Tg	68.63	0.0142	0.0082
FVB/NJ-Tg vs. CAST/EiJ-Tg	95.08	0.022	0.0139
FVB/NJ-Tg vs. 129S1/SvImJ-Tg	61.89	0.0127	0.006
FVB/NJ-Tg vs. C57BL/6J-Tg	75.61	0.0068	0.0029
FVB/NJ-Tg vs. C57L/J-Tg	55.72	0.0614	0.0485
FVB/NJ-Tg vs . BALB/cJ-Tg	33.93	0.203	0.1709
FVB/NJ-Tg vs. C58/J-Tg	0.1716	0.9958	0.9958
FVB/NJ-Tg vs . DBA/2J-Tg	20.76	0.55	0.4921
FVB/NJ-Tg vs. NOD/ShiLtJ-Tg	10.49	0.7795	0.7384
FVB/NJ-Tg vs . NZO/HILtJ-Tg	-66.45	0.0379	0.0279
FVB/NJ-Tg vs. CBA/J-Tg	-83.42	0.0027	0.001
FVB/NJ-Tg vs. LP/J-Tg	-123.1	0.0011	0.0004
FVB/NJ-Tg vs. WSB/EiJ-Tg	-93.86	0.0349	0.0239
FVB/NJ-Tg vs . KK/HIJ-Tg	-103	0.0142	0.0077
FVB/NJ-Tg vs. DBA/1J-Tg	-128.6	<0.0001	<0.0001
FVB/NJ-Tg vs . C3H/HeJ-Tg	-118.8	0.0006	0.0002
FVB/NJ-Tg vs. A/J-Tg	-140.5	0.0005	0.0001

Supplemental Table 11: Estimated heritability for the kidney pathology scores and BUN

Trait	h
BUN	0.49
GS	0.87
Casts	0.78
TA/IF	0.83
Int/Infl	0.82

 \mathbf{h} = heritability values range from 0 to 1.

Supplemental Table 12: Suggestive signals (Chromosome Wide Significant) of the glomerulosclerosis scores from the HIV-1 transgenic mice. Genes expressed in the podocyte are in bold text.

Chr	Peak Pos (Mb)	Peak SNP	Confidence Interval (Mb)	LOD	Genes within confidence intervals
3	87.28	rs212172476	87.286-87.287	3.71	Cd1d1, Cd1d2, Dclk2 , Fcrls, Kirrel , Lrba, Mab21l2
6	128.05	rs52540263	128.052-128.053	3.63	Ccnd2, Cracr2a , Fgf23, Parp11, Platr31 , Prmt8, Tigar, Tpi-rs11, Tspan11, Tspan9
8	84.28	rs579631690	84.281-84.282	3.91	Adgre5, Adgrl1, Asf1b, Cc2d1a, Ccdc130, Clgn, Dcaf15, Ddx39, Dnajb1, Elmod2, Gipc1, Il27ra, Mgat4d, Misp3, Mri1, Nanos3 , Ndufb7, Olfr370, Palm3, Pkn1, Podnl1, Prkaca, Ptger1, Rfx1, Rln3, Samd1, Scoc, Tecr, Ucp1, Zswim4
11	57.89	rs52098593	57.89-57.9	4.0	Fam114a2, Galnt10 , Gria1, Hand1, Mfap3, n- R5s69, Sap30l
15	24.8	15:24803781-C-G	24.803-24.804	3.76	none

Supplemental Table 13: Selection of priority genes in the locus identified on Chr.13. The priority genes were chosen based on the protein expression in the glomerulus and the single cell gene expression in podocytes. Genes highlighted in red are the priority genes.

Gene	Predicted gene	Protein atlas expression	Single Cell Seq expression in podocytes	Mouse Models	Known interactions with kidney disease genes	GWAS catalog associations (p<10-8)
Gm34585	Yes	N/A	N/A	N/A	N/A	N/A
Edil3	No	High in tubules	No	No phenotypic data described	No	Major depressive disorder, Protein quantitative trait loci (liver), CSF Hyaluronan and proteoglycan link protein 1
Gm34699	Yes	N/A	N/A	N/A	N/A	N/A
Vcan	No	Not detected	No	Defects in the heart. Embryonic lethal at day 10.5	No	White matter microstructure, appendicular lean mass, body fat distribution, carotid artery intima media thickness, brain volume measurement
Xrcc4	No	Glomerulus	Yes	Embryonic lethal at day 17.5	No	Heel bone mineral density, White matter microstructure, Squamous cell lung carcinoma
Tmem167	No	No protein tissue data	Yes	Decreased circulating triglyceride and total protein level	No	Aspartate aminotransferase levels in non- alcoholic fatty liver disease, Male-pattern baldness, Cortical surface area
Gm35111	Yes	N/A	N/A	N/A	N/A	N/A
Atp6ap11 Atg10	No	Tubules and glomerulus	No	No phenotypic data described	No	Carotid intima media thickness, Breast cancer, Serum alkaline phosphatase levels, General cognitive ability, DNA methylation variation (age effect), Self- reported math ability (MTAG), red cell distribution width Airway imaging
Ū				data described		phenotypes, Breast cancer, Self-reported math ability,
						Adventurousness

A80009L08Rik	Yes	N/A	N/A	N/A	N/A	N/A
Ssbp2	Νο	Glomerulus and tubules	Yes	lymphoma and carcinoma. Kidney FSGS phenotype.	LMX1B	Body mass index, Predicted visceral adipose tissue, Bipolar disorder, Adolescent idiopathic scoliosis, Adult body size, General cognitive ability, platelet count, Toxicity response to radiotherapy in prostate cancer, educational achievement, Cortical surface area
4833422C13Rik	Yes	N/A	N/A	N/A	N/A	N/A
Acot12	No	No protein tissue data	Yes, very few cells	No phenotypic data described	No	None

Supplemental Reference:

S1. Wu H, Kirita Y, Donnelly EL, Humphreys BD: Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. J Am Soc Nephrol, 30: 23-32, 2019 10.1681/ASN.2018090912