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Detailed methods 

Single cell RNA sequencing 

Preparation of single-cell suspension. Mouse kidneys were perfused with 2ml DPBS to 

remove circulating PBMCs and RBCs. Then kidneys were weighed and transferred into 

GentleMACSTM-C tubes (Miltenyi Biotec Inc., CA) containing 6ml DPBS, 200μl 

Enzyme-D, 100μl Enzyme-R, and 25μl Enzyme A and DNAse (Multi Tissue Dissociation 

Kit-1, Miltenyi Biotec) and then run on a GentleMACS Octo dissociator (Miltenyi Biotec) 

for about 20 minutes. Digestion was stopped by adding MACS buffer with 1% FBS. 

Cells were then filtered by passing through a 100µm cell strainer, then were centrifuged 

at 200G for 10 minutes. The supernatant was discarded, and cells made into a single 

cell suspension and flow-sorted on BD Aria-III to remove RBCs, debris, and dead cells 

(Fig. 2A). 

Single-cell RNA sequencing using 10x Genomics platform. Flow sorted cells were 

counted and their viability measured using a Vi-Cell XR Cell Viability Analyzer 

(Beckman-Coulter). The viability of all the samples was >90%. The Barcoded Gel Beads 

were thawed from -80Cº and the cDNA master mix prepared according to the 

manufacturer’s instructions for the Chromium Single Cell 3’ library kit, version 2 (10x 

Genomics). 

RNA sequencing and generation of data matrix.  

Libraries were sequenced at an average coverage of 15,000 reads/cell following 

Illumina’s standard protocol using the Illumina cBot and Paired-end cluster kit version 3. 

The flow cells were sequenced as 26X8X0X98 cycle paired end reads on an Illumina 

HiSeq 2500 in rapid mode using TruSeq SBS sequencing kit version 3 and HCS 2.2.58 
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data collection software. Base-calling was performed using Illumina’s RTA version 

1.18.64. Fastq files generation from raw sequencing data (BCL files), alignment to the 

mouse genome reference sequences (build mm10), digital gene expression matrix 

generation, and conversion to a CSV format were all performed using the 10X 

Genomics cellranger commands, and data were analyzed using SeqGeq 

(BDBiosciences). 
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Supplementary figures 
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Figure S1. Senescence staining and plasma cystatin C level in 6-week RAS. (A) 

The percent of SA-β-gal positive area (blue) was increased in the stenotic kidneys, but 

decreased after AP injection. LaminB1 positive cells (red) out of total cells per field were 

higher in RAS than in sham, but AP tended to reduce them (p=0.08). blue=DAPI.  (B) 

Plasma cystatin C levels were increased in stenotic kidneys compared to Sham_veh, 

whereas the decrease after AP injection has not reached statistically significant levels 

*P<0.05 vs. Sham_Veh , †P<0.05 vs. RAS_Veh. 
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Figure S2. Quality Control (QC) of the single-cell RNA (scRNA) sequencing data.  

(A), Number of genes per cell, UMIs, mitochondrial percent, S Phase Probability and 

G2 and M phase probability in individual samples of Sham and RAS. (B) QC measures 

to normalize the scRNA sequencing data in SeqGeq, showing the optimally dispersed 

gene (ODG) gate used for clustering. Highly expressing mitochondrial genes were 

removed and the rest used for clustering. Also shown is the number of cells in the 8 

sham and RAS samples. (C), Distribution of mitochondrial genes in all 26 clusters. 

(D) Heatmap showing the mean expression of differentially expressed genes across all 

the clusters. Clusters with similar lineage as identified by Pseudotime Abstract KNetL 

maps are highlighted in same colors, Proximal tubules (PT) (light orange), stromal cell 

clusters. All proximal tubule clusters primarily express Slc34a1, Lrp2, and Proximal S1 

tubule (Cluster8) differentially expressed Slc5a2 and Slc4a4. Four populations of 

stromal cells were observed. Cluster6 Mgp+ stromal cells differentially expressed Mgp, 

Cfh, Igfbp7. Clusters 24 and 26 Dcn+ stromal cells express Pi16, Ugdh, Clec3b, Igfbp6. 

Profibrotic genes Col1a1, Col1a2 were expressed by all three stromal cell clusters. 

Macrophages were identified using typical markers such as C1qa, C1qb, Ms4a7 etc.  
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Figure S3. Sub-clustering and PAK analysis in Sham and RAS. (A) Sub-clustering 

to identify Distal Collecting Tubule (DCT) and Thick Ascending Limb Loop of Henle 

(TAL): Cluster 1 was re-clustered to separate DCT and TAL. DCT differentially express 

Slc12a3, while TAL expresses Umod and Slc12a1. Because TAL- and DCT-specific 

genes did not feature among the highly dispersed genes, we did not initially observe 

independent TAL and DCT clusters. However, upon re-clustering cluster 01, these two 

populations separated clearly, Both DCT and TAL were reduced in RAS compared to 

Sham. (C) Pseudotime Abstract KNetL maps (PAK maps) generated using iCellR. Each 

node represents a cluster and the length and thickness of the links (edges) represent 

distances between each cluster. The shorter and thicker the link, the more closely 

related (similar) are the cell communities. For example, Clusters 24, 26 and 6 (stromal 

cells). Similarly, Clusters 3 (Intercalated Cells), 1 (TAL and DCT) and 11 (Senescence 

Cell Cluster) may be linked.  Clusters 7, 19, 17 and 23 are dendritic cells and CD11chi 

macrophages. (B) KNetL Maps for Sham and RAS Populations: Note the increase of 

myeloid cell populations (blue), Senescence Cell Cluster (pink), and Stromal Cell 

Cluster (grey) in RAS compared to Sham. Highlighted are Endothelial cells (orange) and 

Thick Ascending Limb Loop of Henle Cluster (green) that are reduced in RAS as 

compared to Sham. (D) KNetL Maps for Individual Samples in Sham (top row) and RAS 

(bottom row) Populations. Note all samples in Sham follow same KNetL fingerprint. In 

RAS, we observe all the populations that are seen in Sham. However, severity of 

ischemia has defined cell types. This is evident when comparing RAS1 and RAS4. 

RAS4 seems to have lost more endothelial cells and has more immune and stromal 
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cells as compared to RAS1 and 3. Clinical severity defined by reduction in kidney size 

matches the cell profiles seen above.  
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Figure S4. Comparison among tSNE, UMAP and KNetL. Briefly, after quality control 

the matrix was normalized based on their library sizes. A statistical test was then 

performed to calculate gene dispersion, base mean and cell coverage to use to build a 

gene model for performing Principal Component Analysis (PCA) genes with high 

coverage (top 500) and high dispersion (dispersion > 1.5) were chosen (1413 genes) to 

perform PCA and batch alignment using iCellR R package (v1.5.5) (https://CRAN.R-

https://cran.r-project.org/package=iCellR
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project.org/package=iCellR ). T-distributed Stochastic Neighbor Embedding (t-SNE) and 

Uniform Manifold Approximation and Projection (UMAP) were performed on the top 10 

PCs and K-nearest-neighbor-based Network graph drawing Layout (KNetL) was 

performed based on the top 20 PCs.  

Because KNetl has, a significantly higher resolution compared to tSNE and UMAP it is 

best to use twice more PC dimensions (20 PCs) to avoid plotting many sub-populations 

(20 PCs often work best for most samples). Additionally, a zoom option in the KNetL 

map allows adjusting the level of detail (more or fewer sub-populations in cell 

communities), in here we used a zoom of 600. The network layout used in KNetL map is 

a force-based layout (Fruchterman and Reingold, 1991) (28) and the zoom option is for 

changing the force in the system. Force-directed graph drawing algorithms assign 

attractive (analogous to spring force) and repulsive forces (usually described as 

analogous to the forces in atomic particles) to separate all pairs of nodes. (Fruchterman 

and Reingold, 1991) (28). In here, the nodes of the network layout are extracted and 

UMAP has been performed to create the final plot, a KNetL map. PhenoGraph (Levine 

et al., Cell, 2015) clustering was then performed on the KNetL map results. Then the 

marker genes were found for each cluster and visualized on heatmaps, bar plots and 

box. The marker genes were then used to determine the cell types. Proportion 

(percentage) of the cell communities in each condition were calculated and Pseudotime 

Abstract KNetL maps (PAK map) were generated using iCellR. The Tirosh scoring 

method (Tirosh, et. al. 2016 https://science.sciencemag.org/content/352/6282/189 ) was 

used to calculate G0, G1S, G2M, M, G1M and S phase score. The gene lists for G0, 

G1S, G2M, M, G1M and S phase were chosen from previously published article (Xue, 

https://cran.r-project.org/package=iCellR
https://science.sciencemag.org/content/352/6282/189
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et.al 2020 https://www.nature.com/articles/s41586-019-1884-x ) 

  

https://www.nature.com/articles/s41586-019-1884-x
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Figure S5. Mapping Senescent cell clusters in Sham and RAS. (A) Overlay of 

Cdkn2a, Cdkn1a, and Serpine1 (as well as Vcam1) on Sham and RAS to identify 

senescent cell clusters. Native clusters in Sham and RAS are presented as contours for 

better identification. RAS has ~4-fold higher Cdkn2a+ (184 vs 46) and Serpine+ (160 vs 

34) cells, and 2-fold higher Vcam1+ cells than Sham. Clusters 11 and 26 expressed 

Cdkn1a, Serpine1, and Cdkn2a. (B) Gates set to include Cdkn2a, Cdkn1a and Serpine1 

cells. (C) Heatmap shows mean expression of Serpine1, Cdkn1a, Cdkn2a and genes 

regulating epithelial to mesenchymal transition in individual clusters (Y-axis). Note 

Clusters 11 and 26 both express all three genes, but Vcam1 was differentially 

expressed in cluster 11. Therefore, we chose to further investigate cluster 11. (D) 

Pathway analysis (using Enrichr) of Ankrd1+ Stromal cells showing about 600 

differentially expressed genes. The pathway analysis predicts that Ankrd1+ stromal cells 

may be in early phases of epithelial to mesenchymal transition (GO:0010717). (E) 

Mki67+ cells in Sham and RAS. Note, Cluster 11 (orange arrows) shows very few 

Mki67+ cells.  
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Figure S6. Macrophages expressing senescent genes significantly increase in 

RAS. (A) We probed kidney-resident macrophages, CD11chi and CD11clo macrophage 

clusters, and proinflammatory macrophages to see which macrophages underwent 

senescence. (B) Re-clustering all macrophages identified a population of ischemia-

associated KRM (IA-KRM) unique to RAS-kidneys. We also observed CD11chi and 

CD11clo macrophages and a small population of efferocytic macrophages. (C) 

Macrophages do not upregulate the expression of senescent genes in RAS-kidneys. (D) 

However, macrophage numbers increase in RAS. Number of macrophages expressing 

senescent genes also increase in RAS as compared to Sham. Most senescent genes 

cluster in CD11clo macrophages that are predominantly pro-inflammatory. This suggest 

that infiltrating monocyte-derived macrophages may express senescent genes as 

compared to the kidney-resident macrophages (E) To further probe if macrophages 

undergo senescence, we used the p16INKATTAC mice to observe that majority of 

FCRIV+CD64+ macrophages rather than expressing p16-GFP have engulfed the GFP+ 

particles suggesting that macrophages efferocytose senescent cells.  
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Figure S7. UMAP plots representing genes preferentially expressed in Ankrd1+ 
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Stromal Cell Cluster. (A) Re-clustering cluster 11 separated 5 clusters. (B) Connecting 

tubules express Aqp2, Scnn1g Calb1 and Tmem52b (row 2). Ankrd1+ stromal cells 

express epithelial genes such as Spp1, Cryab (row 1) and mesenchymal genes such as 

Vim, Map1b, Lgals1, Tsc22d1, (row 1). Ankrd1+ Stromal cells differentially upregulated 

transcription factor such as Zeb2, Tgfb2 and genes such as Wwtr1, Foxc1, Pdpn and 

Loxl2 suggesting that these cells are undergoing epithelial-to-mesenchymal (EMT) 

transition (last row). (C) Heatmap showing differentially expressed tubular markers (y-

axis) in all the clusters (x-axis). Note cluster 11 differentially express many tubular 

markers such as Aqp2, Slc4a1, Scnn1g etc. (D) Single-cell qPCR workflow: 

Experimental design for isolating viable epithelial cells (epi), endothelial cells, 

macrophages (MF) and T-cells from Sham and RAS kidneys. Kidneys were digested 

and flow sorted. ~192 single cells (~48 per population) underwent QPCR for 96 genes. 

Representative cell image of macrophage and epithelial cell shown as captured on 

Apotome at 10X and 40X.  
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Figure S8. DQ alleviates stenotic kidney cellular senescence in RAS. (A) Renal 

gene expression of senescence and SASP factors (relative to GAPDH). (B) Plasma 
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levels of Activin-A and creatinine. *P<0.05 vs. RAS, †P<0.05 vs. RAS_DQ. (C) Systolic 

blood pressures at 0, 2, and 4 weeks. *P<0.05 vs. intragroup baseline. (D) Double-

staining with p21 and TUNEL on STK sections of DQ-treated mice.  
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Figure S9. Renal gene expression of senescence and SASP factors in sham, 2-

week RAS, and 6-week RAS, quantified by RT-PCR relative to GAPDH. 
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Figure S10. Senescence in STK is initially protective but ultimately drives 

persistent injury. (A) Renal gene expression of senescence and SASP factors 

quantified by RT-PCR relative to GAPDH levels decreased after AP delivery starting at 

D7, but not at D0. (B)-(D) Plasma cystatin C, creatinine levels, and urine 

albumin/creatinine ratio. *P<0.05 vs. Sham, †P<0.05 vs. RAS_D0AP. E, Systolic blood 

pressures at 0, 1, and 2 weeks. *P<0.05 vs. intragroup baseline. †P<0.05 vs. Sham at 

the same time point, §P<0.05 vs. RAS_D0AP at the same time point. 

 
 



 25 

Supplementary table: Characteristics of mice 

  Body weight (g) Kidney weight (mg) 

Model Group Basal  Final  Right/stenotic Left/contralateral  

INK-ATTAC transgenic mice 6 

weeks after sham or RAS surgeries, 

with or without AP20187(AP) 

treatment started 2 weeks later 

Sham_Veh  25.9±1.7 26.7±3.2 221.8±51.4 213.7±40.6 

Sham_AP 31.3±3.5* 31.2±3.9* 231.8±37.0 217.8±35.2 

RAS_Veh 29.4±3.5* 27.7±2.8† 68.9±13.1*†$ 264.9±68.8 

RAS_AP 25.3±3.9†§ 23.3±1.6†§ 80.3±36.1*†$ 199.1±34.0 

C57/BL6 mice treated with DQ 

starting two weeks after RAS 

surgery 

Sham  31.2±1.3 30.9±1.6 225.0±29.9 214.0±14.5 

RAS 31.1±2.3 28.0±1.4* 72.2±32.3* 229.0±24.7 

RAS_DQ  33.1±2.7 28.2±1.6* 172.9±28.3*† 212.6±25.2 

INK-ATTAC transgenic mice 2 

weeks after sham or RAS, with AP 

or vehicle started either immediately 

(RAS_D0V, RAS-D0AP) or 7 days 

(RAS-D7AP) after RAS 

Sham  26.7±0.7 26.9±2.0 228.0±26.3 235.2±26.6 

RAS_D0V 28.6±3.0 27.4±4.3 132±77.7* 237.0±35.6 

RAS_D0AP  30.3±2.5* 27.1±1.5 104.6±39.1* 252.3±34.2 

RAS_D7AP 26.5±1.5§ 26.3±1.7 170.3±28.6*§ 231.8±24.8 

All Data are mean±SD. 

INK-ATTAC transgenic mice 6 weeks after sham or RAS surgeries. *P<0.05 vs. Sham_Veh, †P<0.05 vs. Sham_AP, 

§P<0.05 vs. RAS_Veh, $ p<0.05 vs. contralateral kidney 

C57/BL6 mice treated with DQ. *P<0.05 vs. Sham, †P<0.05 vs. RAS 

INK-ATTAC transgenic mice with RAS studied for 2 weeks. *P<0.05 vs. Sham, †P<0.05 vs. RAS_D0V, §P<0.05 vs. 
RAS_D0AP 
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Supplementary data file 
Data file S1. Cluster-specific marker genes 
Data file S2. Immgen-based cell call 
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