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Figure S1. Nuclear preparation from adult mouse kidney. Brightfield (left) and propidium 
iodide (PI) stained (right) nuclei after preparation from adult mouse kidney. Note that nuclei 
remain intact. 
 
  

 



 

 
 
Figure S2. Comparison of tubular mRNA contamination across platforms. A. 
Reanalysis of Park et al. dataset showing the degree of contamination of four highly 
expressed tubular genes across all cell types. B – E. The same analysis applied to the 
datasets described in this manuscript. In general, there is somewhat less contamination with 
snRNA-seq, but some degree of tubular gene expression can be detected in all cell clusters 
regardless of dissociation or platform.  
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Figure S3. Correlation of combined single cell and single nucleus RNA-seq clusters with 
microdissected tubule segment RNA-seq, mouse kidney single cell atlas and mouse 
glomerular single cell atlas. A. The horizontal axis lists the 13 annotated clusters from our 
combined dataset. The vertical axis shows the Pearson’s correlation of these single cell types 
to bulk RNA-seq of microdissected tubule segments.1 G, glomerulus; SDL, short descending 
limb; LDLOM, long descending limb, outer medulla; LDLIM, long descending limb, inner 
medulla; tAL, thick ascending limb;, mTAL, medullary thick ascending limb; cTAL, cortical thick 
ascending limb; DCT, distal convoluted tubule, CNT, connecting tubule; CCD, cortical 
collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct. 
B. The horizontal axis lists the 13 annotated clusters from our combined dataset. The vertical 
axis shows the Pearson’s correlation of these single cell types to a recently published adult 
mouse kidney single cell atlas.2 C. The horizontal axis lists the 13 annotated clusters from our 
combined dataset. The vertical axis shows the Pearson’s correlation of these single cell types 
to a recently published adult mouse glomerulus single cell atlas.3 
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Figure S4. Clustering of all four datasets by tSNE. A. scDropSeq identified ten cell 
clusters, but one of these is an artifactual cluster arising from cell dissociation, and one of 
them is a red blood cell cluster. No podocytes or endothelial cells could be detected. B. 
DroNc-Seq identified 12 independent cell clusters, including podocytes, mesangial cells and 
endothelial cells. C. snDropSeq identified ten clusters including podocytes, mesangial cells 
and endothelial cells. D. sn10X identified 12 separate cell clusters including podocytes and 
endothelial cells and both type A and type B intercalated cells. 
 
 
  

 



 
 

 
Figure S5. Violin plot showing cell specific markers in glomerular clusters from the 
combined single cell and single nucleus dataset. 
  

 



 
 
 
 

 
 
 
Figure S6. Immediate early gene expression in the mouse glomerular cell atlas 
generated by scDropSeq. A. 14,382 single glomerulus cell transcriptomes from a recently 
published glomerular atlas3 were reclustered using Seurat, reproducing the published cell 
clusters. B-D. Substantial stress response gene expression could be detected in all six 
clusters. These immediate early genes are known to be induced by proteolytic digestion of 
tissue at 37 °C.4 
 
  

 



 
 
Figure S7. Gene ontology terms for differentially expressed genes between the 
proliferating and dedifferentiated proximal tubule clusters. A. Cell cycle, cell division 
and DNA replication terms characterize the proliferating proximal tubule cluster. B. Terms 
related to cell movement and locomotion characterize the dedifferentiated proximal tubule 
cluster. 
 
 
 
 
  

 



 
Supplementary Methods 
 
Computational data analysis 
1. Preprocessing of Dropseq, sNucDropSeq, DroNcSeq and sn10x data 
We used a newly developed pipeline, zUMIs5, to process the single cell and single 
nucleus sequencing data from mouse kidney. In brief, we first filtered out the low-
quality barcodes or UMIs based on sequence with the internal read filtering algorithm 
built in zUMIs. We then used zUMIs to map the filtered reads to mouse reference 
genome (mm10) using STAR 2.5.3a (two-pass mapping mode). Next, zUMIs quantified 
the reads that were uniquely mapped to exonic, intronic or intergenic region of the 
genome and inferred the true barcodes that mark cells/nuclei by fitting a k-dimensional 
multivariate normal distribution with mclust package. Finally, a UMI count table utilizing 
both exonic and intronic reads were generated for downstream analysis. The whole 
data processing was executed by running the script on a HPC cluster with 96×2.3GHz 
computing cores (http://brc.wustl.edu/?page_id=12). We summarized the mapping 
and count statistics from the output files generated by zUMIs and visualized the data 
in various formats such as bar chart, box plot, dot plot and trend line using ggplot2 R 
package. 
 
2. Unsupervised clustering of the single cell/nucleus RNA-seq datasets and cell type 
annotation 
Seurat was used for quality control, dimensionality reduction and cell clustering for the 
datasets generated from all platforms. In brief, raw UMI count matrix from each 
platform was loaded separately into the Seurat. For normalization, the UMI count 
matrix was scaled by total UMI counts, multiplied by 10,000 and transformed to log 
space. Only genes found to be expressing in >3 cells were retained. Cells with a 
relatively high percentage of UMIs mapped to mitochondrial genes (>=0.5) were 
discarded. Moreover, we only kept cells that had more than 300 genes detected to 
remove the low quality cells or nuclei. Before clustering, variants arising from library 
size and percentage of mitochondrial and ribosomal genes were regressed out by 
specifying the vars.to.regress argument in Seurat function ScaleData. The highly 
variable genes were identified using the function FindVariableGenes. The expression 
level of highly variable genes in the cells was scaled and centered along each gene, 
and was conducted to principal component analysis. We then assessed the number of 
PCs to be included in downstream analysis by (1) plotting the cumulative standard 
deviations accounted for each PC using the function PCElbowPlot in Seurat to identify 
the ‘knee’ point at a PC number after which successive PCs explain diminishing 
degrees of variance, and (2) by exploring primary sources of heterogeneity in the 
datasets using the PCHeatmap function in Seurat. Based on these two methods, we 
selected first top significant PCs for two-dimensional t-distributed stochastic neighbor 
embedding (tSNE), implemented by the Seurat software with the default parameters. 
We used FindCluster in Seurat to identify cell clusters for each protocol. To identify the 
marker genes, differential expression analysis was performed by the function 
FindAllMarkers in Seurat with Wilcoxon Rank Sum test. Differentially expressed genes 
that were expressed at least in 25% cells within the cluster and with a fold change 
more than 0.25 (log scale) were considered marker genes.  
 
We annotated the cell clusters by two approaches. First, we inspected the top 
differential genes from each cluster and labeled the cluster with cell type names based 
on the expression of putative cell type markers (e.g. Nphs1 for podocyte, Emcn for 
endothelial cells, Slc34a1 for proximal tubular cells, etc). Second, we computed 
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pairwise Pearson correlation between each pair of cell clusters identified by our dataset 
and the annotated cell types from the published datasets1-3. Third, we cross-validated 
the cell types by computing the Pearson correlation between the cell clusters identified 
from the single cell and single nucleus datasets used in this study to ensure that the 
cell type annotations were consistent within this study. 
 
3. Integrated analysis of sCellDropseq, sNucDropseq, DroNcseq and sNuc-10x 
datasets 
To compare the cell types derived from different techniques, we performed 
comparative analysis on multiple datasets by utilizing a recently developed 
computational strategy for integrated analysis (implemented in Seurat v2.0)6. We first 
selected the union of the top 3,000 genes with the highest dispersion from all datasets 
for a canonical correlation analysis (CCA) to identify common sources of variation 
across the datasets. Then CCA was performed based on the normalized expression 
value of the highly-dispersed genes. Next, we selected the top dimensions of the CCA 
by examining a saturation in the relationship between the number of principle 
components and the percentage of the variance explained using the 
MetageneBicorPlot function in Seurat. We obtained a new dimensional reduction 
matrix by aligning the CCA subspaces with the top dimensions computed above. With 
the new dimensional reduction matrix, we performed clustering analysis on the cells or 
nuclei from different datasets by setting an optimal clustering parameters. We 
visualized the cells by their original identity or by their cluster identity classified by this 
integrated analysis. Differential gene analysis was performed on the cells or nuclei 
from different datasets but grouped in the same cluster after the alignment analysis. 
Differential genes were visualized using the FeatureHeatmap or DotPlot function in 
Seurat.  
 
4. Comparative analysis of tubular single cell and single nucleus transcriptomes  
 
To compare the tubular single cell and single nucleus transcriptomes, we applied a 
similar approach reported by Bakken TE et al7 to match each nucleus from the 
sNucDropseq dataset to the most similar cell from the single cell Dropseq dataset 
based on the maximum correlated expression of all genes weighted for gene dropouts. 
First, we extracted 1,469 nuclei from the clusters identified as PT (S1, S2 and S3 
segments), LH, DCT and PC based on the unsupervised clustering analysis on the 
sNucDropseq dataset. Our analysis only included the tubular segments as those cell 
populations can be detected by both single nucleus and single cell datasets. We then 
estimated the gene dropout probabilities for the selected single nuclei and all single 
cells from the sCellDropseq dataset (3,531 cells) following the tutorial of the R package 
scde (http://hms-dbmi.github.io/scde/diffexp.html). In brief, expression noise models 
were fit separately to single nuclei and cells using the knn.error.models function with 
default settings. A mode-relative weighting approach was used to generate a dropout 
weight matrix where the probability of dropout event was estimated using 
scde.failure.probability and scde.posteriors functions. Dropout weighted Pearson 
correlations between all pairs of nuclei and cells were calculated using the cov.wt 
function from the stats R package. A cell was selected if it had highest correlation with 
any nucleus, and this matched pair of cell and nucleus was removed from the next 
round of cell selection. This process was repeated until 1,469 best matching cells were 
selected, and the expression correlations were compared to correlations of the best 
matching pairs of nuclei. 
 

http://hms-dbmi.github.io/scde/diffexp.html)


We next employed two strategies to assess the robustness of cell clustering on the 
matched cells and nuclei. First, we performed graph-based clustering separately on 
the single cells and single nuclei (Jaccard- Louvain algorithm) using the Seurat 
package. To assess the clustering outcome with UMI count matrices generated by 
exonic read counts and by exonic + intronic read counts, we used the same parameters 
in both datasets to select highly variable genes for PCA, same number of significant 
PCA and resolution for clustering and same parameter for tSNE dimensional reduction. 
Clusters were annotated with examining the expression of cell type specific markers. 
While this approach provides an intuitive way to visually inspect the clustering outcome 
(e.g. based on the number of clusters produced in each condition, or how well each 
cluster was separated with or without including the intronic reads, etc), this graph-
based approach can hardly be used for quantitative assessment of the clustering. We 
therefore followed the methods established by Bakken TE et al7 to compute the cluster 
cohesion and separation and used these parameters to quantify the clustering. Briefly, 
we used an iterative clustering pipeline scrattch.hicat developed by Allen Institute 
(https://github.com/AllenInstitute/scrattch.hicat) to perform clustering separately on the 
matched single cell and single nucleus datasets. The pipeline consists of five steps: 1) 
selection of HVGs, 2) dimensionality reduction, 3) dimension filtering, 4) hierarchical 
clustering and 5) cluster merging based on differential genes. This process was 
iteratively repeated within each resulting cluster until one of the following criteria was 
met: 1) no more clusters met the differential gene expression and 2) the minimum 
cluster size threshold was met. The robustness of the clustering was assessed by 
repeating the clustering procedure 100 times (i.e. n_iter=100) on 80% of randomly 
subsampled cells. A co-clustering matrix was generated that represented the 
proportion of clustering iterations that each pair of samples were assigned to the same 
cluster. This bootstrapped interactive process was wrapped into the function 
run_consensus_clust from the scrattch.hicat package. We computed the cluster 
cohesion (average within cluster co-clustering) and separation (difference between 
within cluster co-clustering and maximum between cluster co-clustering) for all clusters 
based on the consensus clustering matrix generated by the above clustering pipeline. 
Data was visualized by ggplot2 R package. 
 
To compare the tubular cell transcriptomes profiled by sc- and sn-RNA-seq, we 
estimated the proportion of cells and nuclei expressing each detected gene. We 
followed the similar randomly-splitting approach developed by Bakken TE et al7 to 
estimate the expected variability of gene detection as a result of population sampling. 
Data were summarized with a hexagonal binned scatter plot and a color code 
representing the number of genes using the R package ggplot2. We performed 
differential expression between nuclei and cells using the function WilcoxDETest from 
Seurat R package. Data was visualized as volcano plot using ggplot2. Single cell or 
single nucleus enriched genes were manually selected from the top DE genes list and 
were presented as violin plot using ggplot2 package. GO analysis was performed on 
the single cell-enriched and single nucleus-enriched genes using the ToppGene Suite 
(https://toppgene.cchmc.org). Significant enriched GO terms (defined by Benjamini-
Hochberg corrected P-value <0.05) were summarized by REVIGO8 and visualized by 
treemap R package. 
 
5. Comparative analysis of glomerular single cell and single nucleus transcriptomes 
 
As our single cell Dropseq dataset failed to resolve glomerular cell populations, we 
reanalyzed a recently published dataset from single cell profiling of mouse glomerulus 
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(GSE111107, Karaiskos N et al3). Using the same clustering approach described by 
the authors, we reproduced all the cell types reported in the original paper, including 
podocytes, mesangial cells, endothelial cells, immune cells and two tubular cell types. 
To compare the glomerular cell types identified by our single nucleus RNA-seq 
techniques (sNucDropseq and DroNcSeq) to those reported by the glomerulus single 
cell study, we trained a multiclass random forest classifier 9, 10 on the clusters from our 
single nucleus data and used it to map the single cell data. First, we composed a 
‘training set’ by sampling 60% of the cells from 3 glomerular cell types representing 
podocyte, mesangial cells and endothelial cells. We next trained a random forest using 
1,000 trees on the training set using the R package randomForest. We then used the 
remaining 40% of the cells from each cluster from our single nuclei dataset to validate 
the performance of the trained classifier. We used this model to assign a class label 
(one of the 3 glomerular cell types) to each cell from glomerular cell atlas dataset. 
Finally, we selected the same number of cells based on the number of nuclei in each 
glomerular subtype that have highest number of votes to each class label. We 
performed CCA integrated analysis on the selected glomerular cells and nuclei with 
similar parameters described above. Cell identities were annotated based on the cell 
type-specific marker expression in each cluster. Cells were color coded based on the 
unsupervised clustering or the origin of dataset in the tSNE graph. Differential gene 
analysis was performed on nuclei and cells to identify the enriched genes for each 
technique using Wilcoxon Rank Sum test. Expression of enriched genesets were 
visualized by violin plot and heatmap using ggplot2 and pheatmap R packages, 
respectively. 
 
We used MetaNeighbor11 to assess the replicability of the glomerular cell types 
identified from our single nuclei datasets. We ran MetaNeighbor using an unsupervised 
mode (https://github.com/maggiecrow/MetaNeighbor). We first identified the variable 
genes using the function variableGenes from MetaNeighbor R package. We then used 
the cell type information annotated from the clustering analysis mentioned above to 
label the cells and computed area under the receiver operator characteristic curve 
(AUROC) using the function run_MetaNeighbor_US. AUROC was plotted as heatmap 
using heatmap.2 function in gplots R package. 
 
6. Cell cycle analysis 
We assigned a cell cycle score (from -1 to 1) on each cell according to its gene 
expression of G2/M and S phase markers12 using the CellCycleScoring function in 
Seurat. We assigned each cell with a cell cycle phase based on the following criteria: 
1) If Sscore (S phase score) > 0.15 and Sscore > G2Mscore (G2M phase score), S phase; 
2) G2Mscore > 0.15 and G2Mscore > Sscore, G2/M phase; 3) If Sscore <0.15 and G2Mscore 
< 0.15, G1 phase. The cells at different cell cycle classifications were visualized in the 
tSNE map.  

7. Ligand-receptor interaction analysis  
To study ligand-receptor interactions across the cell types identified from the UUO 
kidney single nucleus dataset, we used a human ligand–receptor list comprising 2,557 
ligand–receptor pairs curated by the Database of Ligand−Receptor Partners (DLRP), 
IUPHAR and Human Plasma Membrane Receptome (HPMR)13, 14. We selected the 
receptors that were only differentially expressed in each cell type from the UUO 
dataset. To determine the ligand-receptor pairs to plot on the heatmap, we required (i) 
the ligands and receptors are uniquely expressed in each cell type (q-val<0.05 and 
logFC>0.5); (ii) Each receptor should have at least one corresponding ligand to pair 
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with. We used heatmap.2 function from gplots package to visualize the ligand- receptor 
pairs in each cell type.  
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