Supplemental Material for

Phloretin Improves Ultrafiltration and Reduces Glucose Absorption during Peritoneal Dialysis in Rats

Karin Bergling¹, Giedre Martus¹, Carl M. Öberg¹

¹ Lund University, Skåne University Hospital, Clinical Sciences Lund, Department of

Nephrology, Lund, Sweden

Supplemental Material File Listing

Intraperitoneal volume and GFR estimation methodology

Table S1 - Complementary results

Figure S1 – Mizagliflozin effect on volume and small solute transport

Corresponding Author

Dr. Karin Bergling, Njurmottagningen SUS Lund, Barngatan 2a, SE-221 85 LUND, Sweden +4673-52 53 313, <u>karin.bergling@med.lu.se</u>

Intraperitoneal volume estimation using radioactive iodine 125-labeled human serum albumin (RISA)

The intraperitoneal volume during the dialysis dwell was determined using dilution of 125 I human serum albumin (RISA) by a modified method described by Zakaria and Rippe.¹ The initial mass (M_I) of RISA in the peritoneal cavity was assessed as instilled mass (M_O) – bound mass (M_B) as follows

$$M_{\rm I} = 0.956 M_{\rm O}$$
 (1)

The mono-exponential elimination of RISA mass from the dialysate was determined from

$$f(k_E, t) = e^{-k_E t}$$
(2)

Thus, if the mass M_t (Bq) is known at some timepoint T, then the mass at *t* minutes after this timepoint is $M_t \cdot e^{-kE \cdot (t-T)}$. Accordingly, the intraperitoneal volume at the first sample can be determined from where t_1 is the time between the first sample and the start of dialysis and $C_{RISA,1}$ is the activity of RISA (Bq/mL) in this sample. To calculate subsequent volumes, corrections to the intraperitoneal mass of RISA need to be made to account for lost RISA mass in samples. The intraperitoneal volume at the n:th sample was calculated as follows

$$V_{n} = \frac{(V_{n-1} - V_{sample,n-1})C_{RISA,n-1}f(k_{E},t_{n}-t_{n-1})}{C_{RISA,n}}$$
(3)

Here $V_{sample,n}$ is the sampling volume of the n:th dialysate sample and t_n is the time at which this sample was collected. The elimination coefficient (k_E) was determined using a root finding algorithm to determine the root of the function $F(k) = V_N(k) - V_N(k)$

 $(V_{out} + V_{sample,N})$ where N is the total number of samples. Lastly, to approximate the volume curve had there been no sampling, calculated volumes were corrected for the cumulative sampling volume as follows:

$$V_n = V_n + \sum_{k=1}^{n-1} V_{\text{sample},k}$$
(4)

This of course neglects the extra amount of UF that would have resulted from the sampled fluid, but since sampling volumes were small, between 45 to 140 μ L, we regard this as a negligible error (underestimating total UF by ~50-100 uL) given other sources of variation in the data. The net ultrafiltration volume was calculated from:

$$UF = V_{out} - V_{in} + \sum_{k=1}^{N} V_{sample,k}$$
(5)

Again, N is the total number of samples. To determine the clearance of albumin from the dialysate to plasma, the first-order dissipation of the total intra-vascular mass (M_{RISA}) of ¹²⁵I-albumin was described by the boundary value problem

$$\frac{dM_{RISA}}{dt} = -TER \cdot \frac{M_{RISA}}{PV} + LM_{I}f(t)/IPV$$
(6a)

$$C(0) = 0 \tag{6b}$$

$$C(t) = PV \cdot C_{P,RISA}(60)$$
(6c)

Here TER (min⁻¹) represents the transcapillary escape rate of intravascular ¹²⁵I concentration (estimated to 10% min⁻¹ corresponding to a normal transcapillary escape rate in rats) and L is mass clearance out from the peritoneal cavity; t the total treatment time from the start of filling.² The boundary value problem (6a-c) was solved using a shooting method, solving the initial value problem (6a-b) using a 4:th order Runge-Kutta algorithm and then finding the root of $F(k_L)=m(T,k_L)/PV-C_{P,RISA}$.

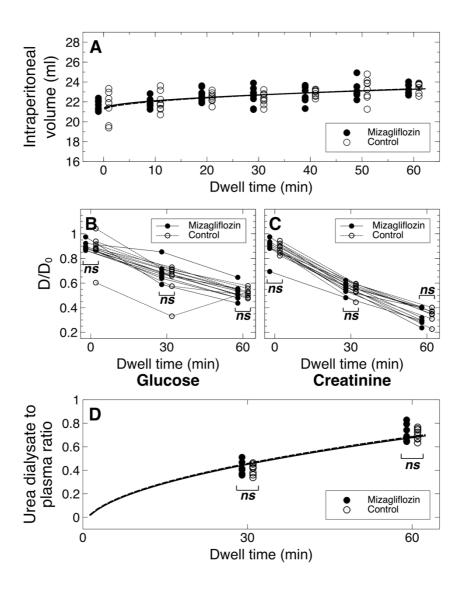

GFR was estimated from the plasma to urine clearance of Cr-EDTA.

 Table S1 - Effects of mizagliflozin and phloretin on plasma concentrations, D/D0

and D/P.

	Mizagliflozin Median (IQR)	Control Median (IQR)	Ρ	95% CI for drug effect	Phloretin Median (IQR)	Control Median (IQR)	Ρ	95% CI for drug effect
Plasma concent	rations							
Glucose, mmol/ L								
Pre-dialysis	14 (13 to 15)	14 (13 to 15)	ns	-2 to 2	12 (11 to 13)	13 (12 to 14)	ns	-3 to 1
Post-dialysis	14 (13 to 15)	13 (13 to 14)	ns	-1 to 2	14 (12 to 14)	13 (13 to 14)		-2 to 1
Creatinine, µmol/L								
Pre-dialysis	21 (20 to 22)	19 (18 to 21)	ns	-1 to 3	22 (18 to 24)	18 (18 to 20)	ns	-2 to 5
Post-dialysis	38 (37 to 44)	33 (32 to 33)	*	1 to 13	32 (30 to 34)	33 (28 to 38)	ns	-8 to 6
Urea, mmol/L								
Pre-dialysis	6 (5 to 6)	6 (6 to 6)	ns	-1 to 1	6 (6 to 7)	6 (6 to 7)	ns	-1 to 1
Post-dialysis	7 (6 to 8)	7 (7 to 7)	ns	-1 to 2	7 (6 to 8)	7 (6 to 7)	ns	-1 to 1
Sodium, mmol/L								
	136 (134 to 137)	```		-1 to 2	````	136 (136 to 136)		-1 to 3
	136 (135 to 138)	136 (135 to 137)	ns	-1 to 2	137 (136 to 138)	137 (136 to 137)	ns	-1 to 2
Chloride, mmol/L								
Pre-dialysis	,	98 (98 to 99)	ns	-2 to 1	98 (97 to 100)	100 (98 to 100)		-3 to 1
Post-dialysis	100 (99 to 101)	100 (100 to 101)	ns	-2 to 2	101 (100 to 102)	102 (100 to 103)	ns	-2 to 3
		• • •			D I I	0 · · ·		
	Mizagliflozin	Control		Р	Phloretin	Control		Р
	Median (IQR)	Median (IQR)		Р	Median (IQR)	Median (IQR)		Ρ
Solute D/D0								
Glucose								
t = 1 min	0.89 (0.88 to 0.9	, (,	ns	0.89 (0.86 to 0.9)			ns
t = 30 min	0.67 (0.65 to 0.7	, (,	ns	0.66 (0.63 to 0.71	, (ns
t = 60 min	0.52 (0.48 to 0.5	5) 0.52 (0.5 to 0).54)	ns	0.55 (0.52 to 0.58	3) 0.49 (0.47 to 0	.5)	**
Creatinine								
t = 1 min	0.9 (0.88 to 0.93	, ,	,		0.93 (0.92 to 0.93	, ,		
t = 30 min	0.56 (0.53 to 0.5	, ,	,		0.57 (0.53 to 0.58	, ,		
t = 60 min	0.31 (0.29 to 0.4) 0.35 (0.33 to	0.37)	ns	0.27 (0.22 to 0.38	3) 0.32 (0.32 to 0.	38)	ns
Urea D/P								
	0.39 (0.36 to 0.4	3) 0.42 (0.37 to	0.44)	ns	0.36 (0.33 to 0.38 0.62 (0.57 to 0.63	, (ns

```
Figure S1
```


Mizagliflozin effect on volume and small solute transport. A. Intraperitoneal volume as a function of dwell time estimated in mizagliflozin treated animals compared to sham. Solid line represents non-linear regression in drug exposed animals while dashed represent control group. **B-C.** D/D0 ratios of glucose and creatinine at 1, 30 and 60 min. **D.** Urea dialysate to plasma (D/P) ratio at 30 and 60 min in mizagliflozin exposed animals and controls. Solid line represents non-linear regression in drug exposed animals while dashed represents non-linear controls. Solid line represents non-linear regression in drug exposed animals while dashed represent controls.

REFERENCES

- Zakaria ER, Rippe B. Intraperitoneal fluid volume changes during peritoneal dialysis in the rat: Indicator dilution vs. Volumetric measurements. Blood Purif 13: 255-70, 1995
- Martus G, Bergling K, Oberg CM. Dual sglt1/sglt2 inhibitor phlorizin reduces glucose transport in experimental peritoneal dialysis. Perit Dial Int 8968608221080170, 2022