Supplemental Materials.

Supplemental Table 1. Primer and Probes for TaqMan

Supplemental Table 2. HLADPB1*04:01 in patient population and local healthy controls.

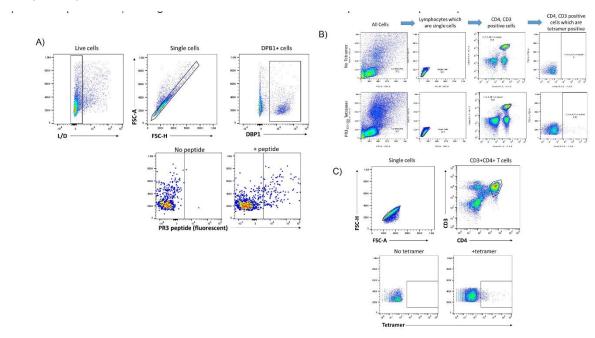
Supplemental Figure 1. Gating schemes for flow cytometry staining. A) gating scheme for detection of peptide bound HLADPB+ cells shown with no peptide control. B) Example gating on a patient with PR3-ANCA homozygous for 04:01 prior to expansion C) Gating scheme for detection of tetramer positive cells post expansion.

Supplemental Figure 2. The amino acid sequence alignment between DPB1*04:01 and DPB1*04:02 shows differences at position 84, 85 and position 65 (A>V is conserved, likely with minimal impact on peptide binding).

Supplemental Figure 3. HLA-DPB1 mRNA and protein expression do not differ between patients and healthy controls with DPB1. A) mRNA expression for DPB1 between disease states of PR3-ANCA patients (all DPB1*04:01 carriers) and healthy controls. No statistical differences between patients with active disease, remitting disease and healthy control carriers or patient non-carriers (Mann-Whitney test with a Bonferroni correlation). HLA-DPB1 gene expression is not dependent on allele copy number (denoted by shape). B) Mean fluorescence intensity (MFI) of DPB1 by flow cytometry on DPB1+ PBMCs to assess protein expression.

Supplemental Figure 4. Phenotype of peptide stimulated T cells. Ex vivo cryopreserved PBMCs from PR3-ANCA patients (active and LTROT) or healthy controls (HC) were incubated with PR3 $_{225-239}$, scrambled peptide or no peptide. Cell supernatant was analyzed for 6a) IL10 levels were reduced in the active patient populations, 6b) IFN $_{\rm V}$ was increased in response to PR3 $_{225-239}$ only in the active PR3-ANCA cohort and 6c) surface expression of CCR6 on HLA-DPB tetramer positive cells was lower in the LTROT cohort.

Supplemental Figure 5. HLA-DRB1*04:01 loaded tetramers were used as a control and did not identify autoreactive T cell population.

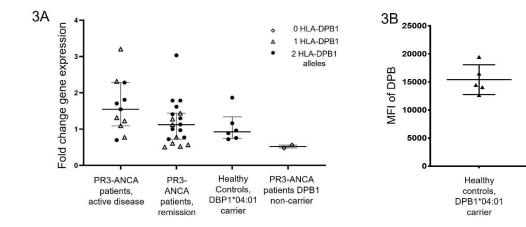

Supplemental Table 1. Primer and Probes for TaqMan

			(-)		
Primers an	d Probe for	TaqMan quantitative real-time PCR			
Gene	Primer	Sequence	Company		
COX5B	Forward	5'-TGG CAT CTG GAG GTG TT-3'	Integrated DNA		
	Reverse	5'-GTC CAG TCC CTT CTT TGC AGC-3'	Technologies, INC		
	Probe	FAM-TGA TGA AGA GCA GGC GAC TGG	Coralville, IA		
		GTT G-MGB			
Gene	TaqMan G	ene Expression Assay	Company		
HLADPB1	Hs485130		ThermoFisher, Waltham,		
COX5B	HS004269	48_m1	MA		

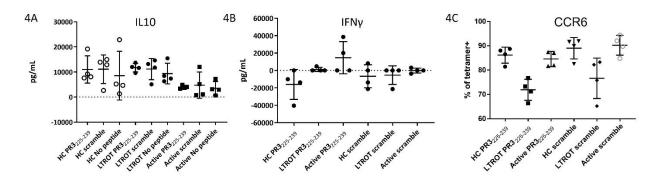
Supplemental Table 2. HLADPB1*04:01 in patient population and local healthy controls.

	Non-carrier (n)	Heterozygous	Homozygous	Total (n)	Carriers	DPB1*04:01	Allele
		carriers (n)	carriers (n)		total (%)	alleles	Frequency
MPO-ANCA cohort	57	80	30	167	66%	140	0.42
PR3-ANCA cohort	27	55	71	153	82%	197	0.64
Total UNC ANCA Cohort	84	135	101	320	74%	337	0.53
Local Healthy Control Cohort	50	41	13	104	52%	67	0.32

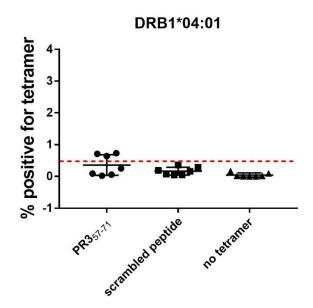
Supplemental Figure 1. Gating schemes for flow cytometry staining. A) gating scheme for detection of peptide bound HLADPB+ cells shown with no peptide control. B) Example gating on a patient with PR3-ANCA homozygous for 04:01 prior to expansion C) Gating scheme for detection of tetramer positive cells post expansion.


Supplemental Figure 2. The amino acid sequence alignment between DPB1*04:01 and DPB1*04:02 shows differences at position 84, 85 and position 65 (A>V is conserved, likely with minimal impact on peptide binding).

```
# Aligned sequences: 2
# 1: DFB1=0401
# 2: DFB1*0402
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
# Length: 258
                      254/258 (98.4%)
  Identity:
  Similarity:
Gaps:
Score: 1336.0
                     255/258 (98.8%)
0/258 (0.0%)
DPB1*0401
                                                                                                          50
                          1 MMVLQVSAAPRTVALTALLMVLLTSVVQGRATPENYLFQGRQECYAFNGT
DPB1*0402
                                                                                                          50
DPB1*0401
                                                                                                        100
                         51 QRFLERYIYNREEFVRFDSDVGEFRAVTELGRPDEEYWNSOKDILEEKRA
DPB1*0402
                                                                                                        100
                        101 VPDRMCRHNYELGGPMTLQRRVQPRVNVSPSKKGPLQHHNLLVCHVTDFS
101 VPDRMCRHNYELGGPMTLQRRVQPRVNVSPSKKGPLQHHNLLVCHVTDFS
DPB1*0402
                                                                                                        150
DPB1*0401
                                                                                                        200
                        151 PGSIQVRWFLNGQEETAGVVSTNLIRNGDWTFQILVMLEMTPQQGDVYTC
DPB1*0402
                                                                                                        200
DPB1*0401
                        201 QVEHTSLDSPVTVEWKAQSDSARSKTLTGAGGFVLGLIICGVGIFMHRRS
                                                                                                        250
 DPB1*0402
 PB1*0401
 DPB1*0402
                                             258
```


Supplemental Figure 3. HLA-DPB1 mRNA and protein expression do not differ between patients and healthy controls with DPB1. A) mRNA expression for DPB1 between disease states of PR3-ANCA patients (all DPB1*04:01 carriers) and healthy controls. No statistical differences between patients with active disease, remitting disease and healthy control carriers or patient non-carriers (Mann-Whitney test with a Bonferroni correlation). HLA-DPB1 gene expression is not dependent on allele copy number (denoted by shape). B) Mean fluorescence intensity (MFI) of DPB1 by flow cytometry on DPB1+ PBMCs to assess protein expression.

PR3-ANCA


patients

Supplemental Figure 4. Phenotype of peptide stimulated T cells. Ex vivo cryopreserved PBMCs from PR3-ANCA patients (active and LTROT) or healthy controls (HC) were incubated with PR3 $_{225-239}$, scrambled peptide or no peptide. Cell supernatant was analyzed for 6a) IL10 levels were reduced in the active patient populations, 6b) IFN $_{\gamma}$ was increased in response to PR3 $_{225-239}$ only in the active PR3-ANCA cohort and 6c) surface expression of CCR6 on HLA-DPB tetramer positive cells was lower in the LTROT cohort.

Supplemental Figure 5. HLA-DRB1*04:01 loaded tetramers were used as a control and did not identify autoreactive T cell population.

