Supplemental Material. Urinary polycyclic aromatic hydrocarbons among children with chronic kidney disease: A case of reverse causation?

Table of Contents

Supplemental Table 1. Distributions of urinary metabolites of OH-PAHs in National Health and Nutrition Examination Survey samples from subjects aged 6-19 years, 2011-12

Supplemental Table 2. Associations between summed PAH metabolites and eGFR by initial eGFR status

Supplemental Table 3. Associations between summed PAH metabolites and NGAL by initial eGFR status

Supplemental Table 4. Associations between summed PAH metabolites and KIM-1 by initial eGFR status

Supplemental Table 5. Associations between summed PAH metabolites and 8-OHdG by initial eGFR status

Supplemental Table 6. Associations between In-transformed chemical exposures and clinical renal function outcomes adjusting for urinary creatinine using covariate-adjusted standardization

Supplemental Table 7. Associations between In-transformed chemical exposures and In-transformed kidney injury and oxidative stress biomarkers adjusting for urinary creatinine using covariate-adjusted standardization

Supplemental Table 8. Associations between In-transformed cumulative average chemical exposures and clinical renal function outcomes

Supplemental Table 9. Associations between In-transformed cumulative average chemical exposures and In-transformed kidney injury and oxidative stress biomarkers

				Percentile							
Analyte	LOD (ng/ml)	% <lod< td=""><td>GM</td><td>25th</td><td>50th</td><td>75th</td><td>95th</td></lod<>	GM	25th	50th	75th	95th				
1-Hydroxynapthalene (1-NAP) (ng/ml)	0.044	0.2	1.07	0.44	1.00	2.17	11.55				
2-Hydroxynapthalene (2-NAP) (ng/ml)	0.042	0.0	3.78	1.71	3.82	8.10	25.18				
∑NAP (nmol/L)			37.12	17.43	37.99	75.09	235.25				
1-Hydroxyphenanthrene (1-PHEN) (ng/ml)	0.01	0.1	0.11	0.06	0.12	0.21	0.44				
2-Hydroxyphenanthrene (2-PHEN) (ng/ml)	0.01	4.2	0.05	0.02	0.05	0.09	0.20				
3-Hydroxyphenanthrene (3-PHEN) (ng/ml)	0.01	2.9	0.06	0.03	0.06	0.12	0.29				
4-Hydroxyphenanthrene (4-PHEN) (ng/ml)	0.01	22.2	0.02	0.01	0.02	0.03	0.08				
2-Hydroxyfluorene (2-FLUO) (ng/ml)	0.01	0.0	0.20	0.10	0.19	0.38	1.07				
3-Hydroxyfluorene (3-FLUO) (ng/ml)	0.01	1.0	0.08	0.04	0.08	0.15	0.50				
9-Hydroxyfluorene (9-FLUO) (ng/ml)	0.01	0.2	0.18	0.09	0.18	0.38	1.00				
<u>Σ</u> 2/3/9-FLUO (ng/ml)			0.49	0.24	0.49	0.94	2.40				

Supplemental Table 1. Distributions of urinary metabolites of OH-PAHs in National Health and Nutrition Examination Survey samples from subjects aged 6-19 years, 2011-12

 Σ NAP is the molar sum of 1-NAP and 2-NAP $\Sigma^2/3/9$ -FLUO is the sum of 2-FLUO, 3-FLUO, and 9-FLUO and is on the volume basis (ng/ml) in order to correspond to the measure in CKiD.

status								
	eGFR ≤ 4	45 (N = 769)	eGFR > 45 (N = 1249)					
	β	95% CI	р	β	95% CI	р		
In-∑NAP	0.095	-0.441, 0.631	0.73	0.511	-0.158, 1.180	0.13		
In-∑PHEN	1.482	0.814, 2.150	<0.01	1.048	0.385, 1.711	<0.01		
In-∑PAH	0.121	-0.417, 0.659	0.66	0.481	-0.174, 1.136	0.15		

Supplemental Table 2. Associations between summed PAH metabolites and eGFR by initial eGFR status

Supplemental Table 3. Associations between summed PAH metabolites and NGAL by initial eGFR status.

	е	GFR ≤ 45 (N = 7	13)	eGFR > 45 (N = 1203)				
	β	95% CI	р	β	95% CI	р		
ln-∑NAP	0.047	-0.100, 0.194	0.529	0.168	0.050, 0.286	0.005		
In-∑PHEN	-0.160	-0.341, 0.021	0.082	-0.028	-0.146, 0.090	0.643		
In-∑PAH	0.045	-0.102, 0.192	0.551	-0.155	0.039, 0.271	0.008		

Supplemental Table 4. Associations between summed PAH metabolites and KIM-1 by initial eGFR status.

	eGFR ≤ 4	15 (N = 713)	eGFR > 45 (N = 1203)										
	β	95% CI	р	β	95% CI	р							
ln-∑NAP	0.134*	-0.055, 0.323	0.167	0.435*	0.292, 0.578	<0.0001							
In-∑PHEN	0.216*	0.010, 0.422	0.041	0.342*	0.191, 0.493	<0.0001							
In-∑PAH	0.141*	-0.050, 0.332	0.147	0.436*	0.293, 0.579	<0.0001							

*Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

Supplemental Table 5. Associations between summed PAH metabolites and 8-OHdG by initial eGFR status

	eG	FR ≤ 45 (N = 76	68)	eGFR > 45 (N=1251)				
	β	95% CI	р	β	95% CI	р		
In-∑NAP	0.254*	0.150, 0.358	<0.0001	0.233*	0.156, 0.310	<0.0001		
In-∑PHEN	0.198	0.129, 0.267	<0.0001	0.272	0.225, 0.319	<0.0001		
In-∑PAH	0.255*	0.151, 0.359	<0.0001	0.232*	0.155, 0.309	<0.0001		

*Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

Supplemental Table 6. Associations between In-transformed chemical exposures and clinical renal function outcomes adjusting for urinary creatinine using covariate-adjusted standardization

	e	eGFR ^a (N=2024))	L	og-UPCR ^a (N=196	SBP Z-score ^b (N=2035)			DBP Z-score ^b (N=2034)			
	β	95% CI	р	β	95% CI	р	β	95% CI	р	β	95% CI	р
ΣΝΑΡ	0.567	0.053, 1.081	0.030	-0.049	-0.096, -0.002	0.041	-0.024	-0.077, 0.029	0.374	-0.018	-0.067, 0.031	0.474
Σ PHEN	1.263*	0.451, 2.075	0.002	-0.138	-0.187, -0.089	<0.0001	-0.036	-0.089, 0.017	0.183	-0.037	-0.086, 0.012	0.139

^a The model controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score, SBP Z-score (all measured at each patient's first visit) and creatinine.

^b The model controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score (all measured at each patient's first visit) and creatinine

*Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

β: estimated effect per SD change

Supplemental Table 7. Associations between In-transformed chemical exposures and In-transformed kidney injury and oxidative stress biomarkers adjusting for urinary creatinine using covariate-adjusted standardization

	log-8-OHdG (N=2029)		log-F ₂ -	og-F ₂ -isoprostane (N=1045)			log-NGAL (N=1925)			log-KIM-1 (N=1925)		
	β	95% CI	р	β	95% CI	р	β	95% CI	р	β	95% CI	р
ΣΝΑΡ	0.287*	0.222, 0.352	<0.0001	0.049	-0.067, 0.165	0.407	0.070	-0.030, 0.170	0.17	0.409*	0.291, 0.527	<0.0001
Σ PHEN	0.318*	0.255, 0.381	<0.0001	0.103	-0.013, 0.219	0.082	-0.169	-0.269, -0.069	0.001	0.313*	0.195, 0.431	<0.0001

All models controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score, SBP Z-score (all measured at each patient's first visit) and creatinine

*Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

 β : estimated effect per SD change

Supplemental Table 8. Associations between In-transformed cumulative average chemical exposures and clinical renal function outcomes

	eGFRª (N=2024)			Lo	Log-UPCR ^a (N=1969)			Z-score ^b (N=203	5)	DBP Z-score ^b (N=2034)		
	β	95% CI	р	β	95% CI	р	β	95% CI	р	β	95% CI	р
ΣΝΑΡ	1.528	0.430, 2.626	0.006	-0.120*	-0.218, -0.022	0.017	-0.005	-0.083, 0.073	0.897	-0.029	-0.100, 0.042	0.417
Σ PHEN	4.576*	3.525, 5.627	<0.001	-0.314*	-0.402, -0.226	<0.001	-0.055	-0.124, 0.014	0.114	-0.053	-0.114, 0.008	0.088

^a The model controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score, SBP Z-score (all measured at each patient's first visit) and creatinine.

^b The model controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score (all measured at each patient's first visit) and creatinine

*Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

β: estimated effect per SD change

Supplemental Table 9. Associations between In-transformed cumulative average chemical exposures and In-transformed kidney injury and oxidative stress biomarkers

	log-8-OHdG (N=2029)		log-F ₂ -	og-F₂-isoprostane (N=1045)			log-NGAL (N=1925)		log-KIM-1 (N=1925)			
_	β	95% CI	р	β	95% CI	р	β	95% CI	р	β	95% CI	р
ΣΝΑΡ	0.26	0.209, 0.311	<0.0001	0.013	-0.124, 0.150	0.853	-0.021	-0.176, 0.134	0.787	0.271*	0.142, 0.400	<0.0001
Σ PHEN	0.31	0.269, 0.351	<0.0001	-0.014	-0.134, 0.106	0.817	-0.401	-0.534, -0.268	<0.0001	0.148*	0.032, 0.264	0.013

All models controlled for age, gender, race/ethnicity, glomerular status, birth weight, low birth weight, premature, ARB, AECI, BMI-Z score, SBP Z-score, and Cr *Asterisk denotes exposure has significant interaction with time and effect of exposure at baseline is presented.

β: estimated effect per SD change