Supplemental Material Table of Contents

Supplementary Figure 1: Consort Diagram
Supplementary Table 1: Sensitivity Analysis Total Body Water

Appendix 1

Supplementary Figure 1: Consort Diagram

Consort diagram of patient selection into the study cohort. GFR indicates glomerular filtration rate; CKD EPI, Chronic Kidney Disease Epidemiology Collaboration; KIM-1, kidney injury molecule 1; NAG, N-acetyl- β-D-glucosaminidase; NGAL, neutrophil gelatinase-associated lipocalin; and ROSE-AHF, Renal Optimization Strategies Evaluation.

Supplementary Table 1.

Sensitivity Analysis Total Body Water		
	Cr $_{\text {Instant vD }}$	Cr $_{72 \mathrm{HR} \text { vD }}$
	50% TBW	
Median Change	$0.16(0.10,0.27)$	$0.04(0.02,0.07)$
WRF	52	0
no WRF	218	270
	60% TBW	
Median Change	$0.13(0.08,0.22)$	$0.04(0.02,0.06)$
WRF	35	0
no WRF	235	270
	70% TBW	
Median Change	$0.11(0.07,0.18)$	$0.04(0.02,0.06)$
WRF	16	0
no WRF	254	270
	$80 \% ~ T B W$	
Median Change	$0.10(0.06,0.16)$	$0.03(0.02,0.06)$
WRF	7	0
no WRF	263	270

Sensitivity analysis with varying estimations of total body water based on body weight. WRF includes 72 -hour changes in calculated creatinine \geq $0.3 \mathrm{mg} / \mathrm{dL}$. No WRF includes 72-hour changes in calculated creatinine $<0.3 \mathrm{mg} / \mathrm{dL}$. TBW $=$ total body water; $\mathrm{WRF}=$ worsening renal function

Appendix 1

Abbreviations

$\mathrm{Cr}=$ Creatinine
$\mathrm{VD}=$ Volume of distribution
CreGen = Creatinine generation
GFR = Glomerular filtration rate calculated with CKD-EPI
kGFR $=$ Kinetic GFR

Calculating estimated volume of distribution \& CreGen

$$
V_{\text {Baseline }}=\text { Weight Baseline } \times 0.5
$$

Calculating changes in estimated total body water, volume of distribution, based on measured intake and urine output

$$
\begin{gathered}
\Delta V_{t}=I V \text { In }_{t}+\text { Oral In }_{t}-\text { UrineOutput }_{t} \\
\text { CreGen }=\text { Cr }_{\text {Baseline }} \times G F R_{\text {Baseline }}
\end{gathered}
$$

Derivation of the equations

To compare the cases below, we calculate the [Cr$]$ that would result from each manipulation.

Instant hemoconcentration ($\mathrm{Cr}_{\text {Instant VD }}$): If only the volume changes, then the creatinine mass stays the same. Therefore, the amount of creatinine before equals the amount of creatinine after, or

$$
\begin{gather*}
{[C r]_{0} \cdot V_{0}=\left[e C r_{\text {Instant VD }}\right]_{t} \cdot V_{t}} \\
{\left[e C r_{\text {Instant } V D}\right]_{t}=[C r]_{0} \cdot \frac{V_{0}}{V_{t}}} \tag{1}
\end{gather*}
$$

Realistic hemoconcentration, stable GFR ($\mathrm{Cr}_{\mathrm{vD}}$): Volume change does not occur instantly, as above, but rather is spread over the time interval between [Cr] measurements. During that time, the kidneys continue to clear creatinine, which attenuates the rise in [Cr$]$ due to hemoconcentration. To simplify the modeling, we assume that the volume changes at a constant rate, obtainable by dividing the net of the input/output volumes by the time interval (24 h), giving $\frac{\Delta V}{\Delta t}$. Then, for a constant $\frac{\Delta V}{\Delta t}$ rate and a renal clearance (GFR) that stays at baseline, the new [Cr] would be:

$$
\begin{equation*}
\left[e C r_{V D}\right]_{t}=[C r]_{0}+\underbrace{\left[1-\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} \cdot t}\right)^{\left(1+\frac{G F R}{\frac{\Delta V}{\Delta t}}\right)}\right]}_{\text {Adjuster }} \cdot \underbrace{\left(\frac{\text { CreGen }}{G F R+\frac{\Delta V}{\Delta t}}-[C r]_{0}\right)}_{\text {Gradient }} \tag{2}
\end{equation*}
$$

In other words, the $[\mathrm{Cr}]$ in the future equals the $[\mathrm{Cr}]$ at the start plus an adjustment fraction times the gradient between the eventual $[\mathrm{Cr}]$ if allowed to reach steady state and the starting [Cr$]$.

For a baseline (i.e., preserved) $G F R$, the realistic hemoconcentration will not increase the [Cr$]$ as much as the instant hemoconcentration, which admittedly is a worst-case scenario.

Equation (2) can replicate the instant hemoconcentration, by letting the time interval go to zero. Turning t into Δt and letting Δt approach zero, we can solve the limit as follows:

$$
\begin{align*}
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0}+\left[1-\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} \cdot \Delta t}\right)^{\left(1+\frac{\frac{4 G F R}{}}{\frac{\Delta V}{\Delta t}}\right)}\right] \cdot\left(\frac{\text { CreGen }}{\text { GFR }+\frac{\Delta V}{\Delta t}}-[C r]_{0}\right)\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0}+\left[1-\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} \cdot \Delta t}\right)\left(\frac{1+\frac{\text { 保 }}{\frac{\Delta V}{\Delta t}}}{\Delta V^{ \pm \infty}}\right)\right] \cdot\left(\frac{\text { CreGen }}{G F R+\frac{\Delta V^{ \pm \infty}}{\Delta t}}-[C r]_{0}\right)\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0}+\left[1-\left(\frac{V_{0}}{V_{0}+\Delta V}\right)^{(1+0)}\right] \cdot\left(0-[C r]_{0}\right)\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[\operatorname{Cr}]_{t}=[C r]_{0}+\left[1-\left(\frac{V_{0}}{V_{t}}\right)\right] \cdot\left(-[C r]_{0}\right)\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0}+\left[-[C r]_{0}+[C r]_{0} \cdot\left(\frac{V_{0}}{V_{t}}\right)\right]\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0}-[C r]_{0}+[C r]_{0} \cdot \frac{V_{0}}{V_{t}}\right\} \\
& \lim _{\Delta t \rightarrow 0}\left\{[C r]_{t}=[C r]_{0} \cdot \frac{V_{0}}{V_{t}}\right\} \tag{3}
\end{align*}
$$

Thus, if the volume could change instantaneously, then Equation (3) replicates Equation (1).

Realistic hemoconcentration, kinetic GFR (CrKinetic): If realistic hemoconcentration accounts for only part of the $[\mathrm{Cr}]$ rise, then the rest must be explained by a change in clearance. But, $k G F R$ cannot be isolated and solved for in Equation (2). Rather, using a root-finding technique, like Newton's method is required to calculate an accurate value for kGFR .
$k G F R_{n+1}$
$=k G F R_{n}+\frac{\left.[C r]_{0}+\left[1-\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} t}\right)^{\left(1+\frac{k G F R_{n}}{\Delta \nu}\right.} \frac{\Delta t}{\Delta t}\right)\right] \cdot\left(\frac{\text { CreGen }}{k G F R_{n}+\frac{\Delta V}{\Delta t}}-[C r]_{0}\right)-[C r]_{t}}{\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} t}\right)^{\left(1+\frac{k G F R_{n}}{\frac{\Delta \Delta}{\Delta t}}\right)} \cdot \frac{1}{\frac{\Delta V}{\Delta t}} \cdot \ln \left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} t}\right) \cdot\left(\frac{\operatorname{CreGen}}{k G F R_{n}+\frac{\Delta V}{\Delta t}}-[C r]_{0}\right)+\left[1-\left(\frac{V_{0}}{V_{0}+\frac{\Delta V}{\Delta t} t}\right)^{\left(1+\frac{k G F V_{n}}{\frac{\Delta t}{\Delta t}}\right)}\right] \cdot \frac{\operatorname{CreGen}}{\left(k G F R_{n}+\frac{\Delta V}{\Delta t}\right)^{2}}}$

If this Newton's $k G F R$ were allowed to drive the [Cr$]$ trajectory all the way to a new steady state, and ignoring hemoconcentration effects, the $[\mathrm{Cr}]$ would eventually be

$$
\begin{equation*}
[e C r]_{\text {Steady State }}=\frac{\text { CreGen }}{k G F R_{\text {Newton }}} \tag{5}
\end{equation*}
$$

For a slightly different answer, the 4-factor MDRD equation (2006) can be rearranged to yield a steady state $[\mathrm{Cr}]$ for the calculated $k G F R$.

$$
\begin{equation*}
[e C r]_{\text {Steady State }}=\left(\frac{k G F R_{\text {Newton } \cdot \text { Age }} 0.203}{175 \cdot \text { race,gender factor }(s)}\right)^{\frac{-1}{1.154}} \tag{6}
\end{equation*}
$$

Example application

Two hypothetical subjects are provided with identical weight, baseline creatinine, and simplified changes in creatinine and urine output to illustrate the application of the various equations. Subject 1 has minimal net output over a 72 -hour period of only 300 mL , but with an observed increase in creatinine from 1.0 to $1.3 \mathrm{mg} / \mathrm{dL}$. Subject 2 has significantly more net output of 3 L , however without changes in observed creatinine.

	Subject 1	Subject 2
Age	50	50
Sex	Male	Male
Race	White	White
Baseline Weight (kg)	75	75
$\Delta \mathrm{V}_{72 \mathrm{Hr}}$ (mL)	-300	-3000
$\mathrm{V}_{\text {Baseline }}(\mathrm{L})$	37.5	37.5
$\mathrm{V}_{\text {72 } \mathrm{Hr}}$ (L)	37.2	34.5
Baseline Creatinine (mg/dL)	1.0	1.0
GFR by CKD-EPI	87.37	87.37
Crobs 24 hours (mg/dl)	1.1	1.0
Crobs 48 hours (mg/dl)	1.2	1.0
$\mathrm{Cr}_{\text {obs }} 72$ hours (mg/dl)	1.3	1.0
eCr Instant VD	1.01	1.09
$\mathrm{eCr}_{\text {72HR VD }}$	1	1.01
$\mathrm{eCr}_{72 \mathrm{HR} \text { Kinetic }}$	1.22	0.96

Subject 1

$$
\begin{gathered}
V_{0}=75 \times 0.5=37.5 \\
V_{72 H R}=37.5-0.3=37.2
\end{gathered}
$$

eCrInstant VD

$$
1.01=1.0 \cdot \frac{37.5}{37.2}
$$

$\mathrm{eCr}_{72 \mathrm{HR}} \mathrm{VD}$

$$
1.0=[1.0]_{0}+\underbrace{\left[1-\left(\frac{37.5}{37.5+\frac{-0.3}{72} \cdot 72}\right)^{\left(1+\frac{87.37}{\frac{-0.3}{72}}\right)}\right]}_{\text {Adjuster }} \cdot \underbrace{\left(\frac{87.37}{87.37+\frac{-0.3}{72}}-1.0\right)}_{\text {Gradient }}
$$

$\mathrm{eCr}_{72 \mathrm{HR} \text { Kinetic }}$

$$
\begin{aligned}
& \begin{array}{l}
k G F R_{n+1} \\
=k G F R_{n}
\end{array} \\
& +\frac{1.0+\left[1-\left(\frac{37.5}{37.5+\frac{-0.3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{0.3}{72}}\right)}\right] \cdot\left(\frac{87.37}{k G F R_{n}+\frac{0.3}{72}}-1.0\right)-1.3}{\left(\frac{37.5}{37.5+\frac{-0.3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{-0.3}{72}}\right)} \cdot \frac{1}{\frac{-0.3}{72}} \cdot \ln \left(\frac{37.5}{37.5+\frac{-0.3}{72} 72}\right) \cdot\left(\frac{87.37}{k G F R_{n}+\frac{-0.3}{72}}-1.0\right)+\left[1-\left(\frac{37.5}{37.5+\frac{-0.3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{-0.3}{72}}\right)}\right] \cdot \frac{87.37}{\left(k G F R_{n}+\frac{-0.3}{72}\right)^{2}}} \\
& k G F R=66.86 \\
& 1.22=\left(\frac{66.86 \cdot 50^{0.203}}{175 \cdot r a c e, g e n d e r}{ }^{\frac{-1}{1.154}}\right.
\end{aligned}
$$

Subject 2

$$
\begin{gathered}
V_{0}=75 \times 0.5=37.5 \\
V_{72 H R}=37.5-3.0=34.5
\end{gathered}
$$

eCrInstant VD

$$
1.09=1.0 \cdot \frac{37.5}{34.5}
$$

$\mathrm{eCr}_{72 \mathrm{HR}} \mathrm{VD}$

$$
1.01=1.0+\underbrace{\left[1-\left(\frac{37.5}{37.5+\frac{-3}{72} \cdot 72}\right)^{\left(1+\frac{87.37}{\frac{-3}{72}}\right)}\right]}_{\text {Adjuster }} \cdot \underbrace{\left(\frac{87.37}{87.37+\frac{-3}{72}}-1.0\right)}_{\text {Gradient }}
$$

$\mathrm{eCre}_{72 \text { HR Kinetic }}$

$$
\begin{aligned}
& \begin{array}{l}
k G F R_{n+1} \\
=k G F R_{n}
\end{array} \\
& +\frac{1.0+\left[1-\left(\frac{37.5}{37.5+\frac{-3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{-3}{72}}\right)}\right] \cdot\left(\frac{87.37}{k G F R_{n}+\frac{-3}{72}}-1.0\right)-1.0}{\left(\frac{37.5}{37.5+\frac{-3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{-3}{72}}\right)} \cdot \frac{1}{\frac{-3}{72}} \cdot \ln \left(\frac{37.5}{37.5+\frac{-3}{72} 72}\right) \cdot\left(\frac{87.37}{k G F R_{n}+\frac{-3}{72}}-1.0\right)+\left[1-\left(\frac{37.5}{37.5+\frac{-3}{72} 72}\right)^{\left(1+\frac{k G F R_{n}}{\frac{-3}{72}}\right)}\right] \cdot \frac{87.37}{\left(k G F R_{n}+\frac{-3}{72}\right)^{2}}} \\
& k G F R=88.06
\end{aligned}
$$

$$
0.96=\left(\frac{88.06 \cdot 50^{0.203}}{175 \cdot \text { race, gender factor }(s)}\right)^{\frac{-1}{1.154}}
$$

