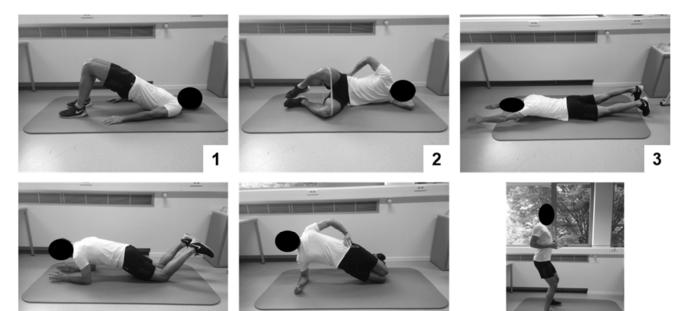
Appendix 1: core strength exercises with their estimated activation intensities

Display of the activations performed on session 1.

Isolated muscle to be tested	Activation test used	
m. transversus abdominus	Abdominal drawing in manoeuver in crook lying ¹	
m. multifidus	Prone posterior pelvic tilting ²	
mm. gluteus medius & maximus	Prone isolated contraction by squeezing of the buttocks ³	


General therapeutic principles used during these activations⁴:

- Oral feedback on movement by the therapist
- breathing pattern optimization
- palpation feedback (assisted by therapist & introspective by participant)
- symmetry and co-contraction evaluation

Note: These activation exercises were also repeated in sit and while standing.

4

Display of the primary muscles trained & starting exercises and progressions performed in the core strength protocol.

5

6

Exercise number	Primary muscle trained	Starting exercise	%MVC activation	Progressions (Activation %MVC) %MVC activation
1	m. gluteus maximus	Glute bridge	17 ⁵	 Quadruped hip extension with knee extended Unilateral glute bridge Unilateral squat & wall squat
2	m. gluteus medius	Resistance band glute clam	47 ⁶	1. Resistance band side lying hip abduction 1. 81 ⁷
3	mm. multifidi & m. erector spinae (lumbar part)	Lying diagonal extension	36 & 46 ⁸	1.Prone extension on bosuball2.Lying superman extension3.Weighted superman extension
4	m. rectus abdominus	Adapted knee plank (with posterior tilt)	>279	1. Adapted whole body plank1. 549,102. Long lever whole body plank2. >1009
5	mm. obliqui	Adapted knee side plank	37	1. Whole body side plank 1. 69^{10}
6	m. erector spinae (thoracic part)	Elastic band shoulder retraction with hip hinge	No data	1. Resistance pulley shoulder retraction with hip hinge1. 60^{11}

Progression of exercises when 60%MVC is reached

Participants were trained to achieve the exercises with a minimal MVC of >60% as soon as possible. Thereafter, exercises were made more difficult intrinsically by:

- 1. Increasing the static hold time from ten to twelve seconds
- 2. increasing the body weight bearing (e.g. full plank position instead of kneeling position)
- 3. using different kinds of elastic resistance bands (e.g. clam exercise)¹²
- 4. performing unilateral positions (e.g. unilateral bridge exercise)¹³
- 5. adding additional weights (e.g. weight supported superman exercise)¹⁴

References

- 1. Kaping K, Äng BO, Rasmussen-Barr E. The abdominal drawing-in manoeuvre for detecting activity in the deep abdominal muscles: is this clinical tool reliable and valid? BMJ Open 2015;5(12):e008711.
- 2. Takaki SMP, Kaneoka KPM, Okubo YPPet al. Analysis of muscle activity during active pelvic tilting in sagittal plane. Phys Ther Res 2016;19(1):50-7.
- 3. Comerford M, Mottram S. Kinetic control: the management of uncontrolled movement. Elsevier Australia; 2012.
- 4. Hodges PW, Cholewicki J, Van Dieën JH. Spinal control: The rehabilitation of back pain. Churchill Livingstone Elsevier; 2013.
- 5. Selkowitz DM, Beneck GJ, Powers CM. Which exercises target the gluteal muscles while minimizing activation of the tensor fascia lata? Electromyographic assessment using fine-wire electrodes. The Journal of orthopaedic and sports physical therapy 2013;43(2):54-64.
- 6. Boren K, Conrey C, Le Coguic Jet al. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther 2011;6(3):206-23.
- 7. Distefano LJ, Blackburn JT, Marshall SWet al. Gluteal muscle activation during common therapeutic exercises. The Journal of orthopaedic and sports physical therapy 2009;39(7):532-40.
- 8. Ekstrom RA, Osborn RW, Hauer PL. Surface electromyographic analysis of the low back muscles during rehabilitation exercises. The Journal of orthopaedic and sports physical therapy 2008;38(12):736-45.
- 9. Schoenfeld BJ, Contreras B, Tiryaki-Sonmez Get al. An electromyographic comparison of a modified version of the plank with a long lever and posterior tilt versus the traditional plank exercise. Sports biomechanics 2014;13(3):296-306.
- 10. Ekstrom RA, Donatelli RA, Carp KC. Electromyographic Analysis of Core Trunk, Hip, and Thigh Muscles During 9 Rehabilitation Exercises. Journal of Orthopaedic & Sports Physical Therapy 2007;37(12):754-62.
- 11. Fenwick CM, Brown SH, McGill SM. Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness. Journal of strength and conditioning research 2009;23(2):350-8.
- 12. Macadam P, Cronin J, Contreras B. An examination of the gluteal muscle activity associated with dynamic hip abduction and hip external rotation exercise: a systematic review. Int J Sports Phys Ther 2015;10(5):573.
- 13. Feldwieser FM, Sheeran L, Meana-Esteban Aet al. Electromyographic analysis of trunk-muscle activity during stable, unstable and unilateral bridging exercises in healthy individuals. European Spine Journal 2012;21(2):171-86.
- 14. Kim M-J, Oh D-W, Park H-J. Integrating arm movement into bridge exercise: Effect on EMG activity of selected trunk muscles. Journal of Electromyography and Kinesiology 2013;23(5):1119-23.