Supplemental digital content

Running into fatigue: The effects of footwear on kinematics, kinetics, and energetics

Maximilian Sanno^{1,2}, Gaspar Epro³, Gert-Peter Brüggemann¹, and Steffen Willwacher^{1,4}

¹ Institute of Biomechanics and Orthopedics, German Sport University Cologne, Germany

² German Research Center of Elite Sport, German Sport University Cologne, Germany

³ Sport and Exercise Science Research Center, School of Applied Sciences, London South Bank

University, United Kingdom

⁴ Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences,

Germany

Address for correspondence:

Maximilian Sanno

Institute of Biomechanics and Orthopedics

German Sport University Cologne

Am Sportpark Müngersdorf 6

50933 Cologne, Germany

Tel.: +49-221-49827630

Fax: +49-221-4971598

Email: max.sanno@web.de

Supplemental Table 1, 'Minimalist Shoe Index' test: Footwear characteristics of both shoes

	Minimalist Shoe Index					
-	shoer	acing	shoeCushion			
	value	score	value	score		
Shoe mass (kg)	0.170	4	0.348	0		
Heel-Stack height (mm)	20	2	35	0		
Forefoot height (mm)	15		28			
Heel to toe drop (mm)	5	3	7	2		
Motion control and stability technologies		3		1		
Longitudinal flexibility		1.5		1		
Torsional flexibility		1.5		0.5		
Minimalist Shoe Index		60		18		

based on the 'Minimalist Shoe Index' of Esculier et al. (20).

Note: The 'Minimalist Shoe Index' is a scale ranging from 1 (no minimalism at all) to 100 (perfectly minimal footwear) and indicates minimalism of the footwear type.

Supplemental Table 2, Spatiotemporal parameters: Spatiotemporal parameters (mean \pm standard deviation) at three different distances of the 10-km treadmill run with near-maximal effort using 'Adizero Pro 4' (Shoe_{Racing}) and 'Glycerin 10' (Shoe_{Cushion}) shoes. Significant differences of pairwise comparisons between both shoes are presented by **P* < 0.05 and ***P* < 0.01.

		Spatiotemporal parameters						
		0 km	2 km	10 km				
contact time (s)	shoe _{Racing} shoe _{Cushion}	$\begin{array}{c} 0.236 \pm 0.031 \\ 0.237 \pm 0.031 \end{array}$	$\begin{array}{c} 0.240 \pm 0.031 \\ 0.239 \pm 0.030 \end{array}$	$\begin{array}{c} 0.239 \pm 0.032 \\ 0.239 \pm 0.029 \end{array}$				
step length (m)	shoe _{Racing} shoe _{Cushion}	$\begin{array}{c} 1.251 \pm 0.209 \\ 1.250 \pm 0.205 \end{array}$	$\begin{array}{c} 1.270 \pm 0.211 \\ 1.267 \pm 0.210 \end{array}$	$\begin{array}{c} 1.275 \pm 0.216 \\ 1.274 \pm 0.221 \end{array}$				
step frequency (Hz)	$shoe_{Racing}$	$\begin{array}{c} 2.768 \pm 0.135 \\ 2.745 \pm 0.136 \end{array} \ast$	2.743 ± 0.156 * 2.719 ± 0.156	$\begin{array}{c} 2.740 \pm 0.163 \\ 2.705 \pm 0.156 \end{array} **$				
flight time (s)	$shoe_{Racing}$	$\begin{array}{c} 0.126 \pm 0.024 \\ 0.128 \pm 0.022 \end{array}$	$\begin{array}{c} 0.126 \pm 0.024 \\ 0.130 \pm 0.023 \end{array} \ast$	$\begin{array}{c} 0.127 \pm 0.028 \\ 0.132 \pm 0.026 \end{array} (\textit{P} = 0.077) \end{array}$				

Note: The significant (P < 0.05) shoe differences of step frequency and flight time from 3 km to 9 km are presented in the Supplemental Table 5, Pairwise comparisons between shoes.

Supplemental Fig. 1, Fitting methods: Flight time as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 2, Fitting methods: Contact time, step length, and step frequency as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 3 Joint work: Positive and negative work (mean \pm standard deviation) at the ankle, knee, and hip joint for both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. The first distance interval (0 – 2 km) was selected to assess potential habituation effects (grey area) and the second distance interval (2 – 10 km) to demonstrate fatiguing processes. Significant differences between 0 km and 2 km as well as 2 km and 10 km are represented by *P < 0.05, **P < 0.01, and ***P < 0.001 for shoe_{Racing} as well as $^P < 0.05$ and $^{^{A} \wedge ^{P}} < 0.001$ for shoe_{Cushion}, respectively. Significant (P < 0.05) shoe differences are represented by *S*.

Supplemental Table 3, Relative joint work: Relative positive and negative work (mean \pm standard deviation) at the ankle, knee, and hip joint in both shoe conditions (**■** shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) at 0 km, 2 km, and 10 km of the 10-km treadmill run with near-maximal effort. Significant differences to 0 km are represented by **P* < 0.05, ***P* < 0.01, and ****P* < 0.001 as well as significant differences to 2 km are represented by ^*P* < 0.05, ^^*P* < 0.01, and ^^*P* < 0.001, respectively.

		Relative joint work [%]						
		0 km	2 km	10 km				
hip _{pos}	shoe _{Racing}	19.4 ± 8.3 18.5 ± 7.0	$21.4 \pm 8.9**$ 20.2 ± 7.7	$22.3 \pm 9.4 **$ $21.5 \pm 8.5 **$				
knee _{pos}	shoe _{Racing}	$\begin{array}{r} 28.3\ \pm\ 6.7\\ 27.8\ \pm\ 6.9\end{array}$	$30.2 \pm 7.2^{**}$ $30.2 \pm 7.9^{***}$	$31.5 \pm 7.4^{***},^{\circ}$ $30.9 \pm 7.7^{***}$				
ankle _{pos}	shoe _{Racing} shoe _{Cushion}	52.3 ± 7.5 53.7 ± 8.1	$\begin{array}{r} 48.3 \ \pm \ 7.9^{***} \\ 49.6 \ \pm \ 9.4^{***} \end{array}$	$\begin{array}{r} 46.2 \ \pm \ 8.4^{***}, \\ 47.5 \ \pm \ 10.2^{***}, \\ \end{array}$				
hipneg	shoe _{Racing} shoe _{Cushion}	7.6 ± 3.5 6.9 ± 3.4	8.3 ± 3.8 7.1 ± 3.3	8.2 ± 3.3 7.7 ± 3.1				
knee _{neg}	shoe _{Racing} shoe _{Cushion}	42.2 ± 6.4 46.0 ± 7.4	42.1 ± 6.7 45.4 ± 8.2	41.4 ± 6.8 44.9 ± 7.8				
ankleneg	shoe _{Racing} shoe _{Cushion}	50.2 ± 7.2 47.1 ± 8.3	49.6 ± 7.2 47.5 ± 8.6	50.4 ± 6.9 47.4 ± 8.4				

Supplemental Table 4, Pairwise comparisons between shoes: Pairwise comparisons (P-values)
between two different shoes (racing flat shoe: 'Adizero Pro 4'; cushioned running shoe: 'Glycerin
10') at 13 distances of 10-km treadmill run with near-maximal effort for spatiotemporal parameters,
maximal (max) joint angles, joint angles at foot touch-down (TD) and toe-off (TO), angle between
the foot and the treadmill surface at touch-down (foot- TS_{TD}), maximal external joint torques, and
positive (pos) and negative (neg) joint work. All significant differences ($P < 0.05$) are represented by
bold printed P-values.

		Pairwise comparisons (shoes)												
		0 km	0.2 km	0.5 km	1 km	2 km	3 km	4 km	5 km	6 km	7 km	8 km	9 km	10 km
. =	contact time	0.566	0.707	0.993	0.874	0.489	0.921	0.436	0.349	0.743	0.604	0.549	0.949	0.807
Spatio- empora	step length	0.778	0.151	0.184	0.395	0.579	0.541	0.518	0.810	0.907	0.731	0.250	0.480	0.916
Spatio- temporal	step frequency	0.020	0.080	0.119	0.023	0.031	0.016	0.016	0.001	< 0.000	< 0.000	0.002	< 0.000	0.007
ţ,	flight time	0.314	0.355	0.124	0.086	0.028	0.032	0.009	0.032	0.004	0.018	0.007	0.015	0.077
	hip flexion _{max}	0.487	0.577	0.370	0.586	0.364	0.813	0.307	0.287	0.241	0.164	0.550	0.587	0.256
	knee $flexion_{max}$	0.762	0.376	0.391	0.580	0.468	0.585	0.498	0.965	0.674	0.882	0.457	0.813	0.607
e	ankle dorsiflexion _{max}	0.008	0.008	0.032	0.028	0.020	0.029	0.045	0.036	0.044	0.031	0.048	0.011	0.040
Angle	knee flexion _{TD}	0.155	0.094	0.074	0.063	0.236	0.583	0.556	0.114	0.058	0.068	0.180	0.072	0.166
A	ankle dorsiflexion $_{TD}$	< 0.000	< 0.000	0.001	0.003	0.191	0.158	0.087	0.109	0.249	0.567	0.317	0.187	0.108
	ankle plantarflexion $_{TO}$	0.002	0.002	0.002	0.001	< 0.000	< 0.000	0.001	0.002	0.003	0.004	0.048	0.016	0.035
	$foot-TS_{TD}$	0.010	0.011	0.051	0.077	0.905	0.921	0.854	0.561	0.633	0.426	0.691	0.559	0.354
Je	hip flexion _{max}	0.873	0.633	0.818	0.793	0.693	0.973	0.565	0.637	0.421	0.579	0.582	0.547	0.340
Ext. Torque	knee $\mathrm{flexion}_{\mathrm{max}}$	0.144	0.266	0.211	0.140	0.176	0.263	0.129	0.112	0.137	0.145	0.165	0.107	0.136
Ĥ	ankle dorsiflexion $_{max}$	0.163	0.034	0.071	0.056	0.139	0.141	0.161	0.101	0.536	0.320	0.506	0.233	0.255
	hip _{pos}	0.420	0.416	0.462	0.159	0.204	0.527	0.199	0.193	0.114	0.151	0.511	0.761	0.654
	knee _{pos}	0.837	0.981	0.898	0.780	0.740	0.807	0.760	0.520	0.633	0.424	0.637	0.690	0.621
ork	ankle _{pos}	0.159	0.251	0.250	0.345	0.332	0.233	0.359	0.463	0.122	0.141	0.064	0.142	0.116
Work	hip_{neg}	0.276	0.092	0.089	0.194	0.120	0.083	0.073	0.331	0.481	0.557	0.683	0.872	0.618
	knee _{neg}	0.062	0.133	0.153	0.129	0.188	0.344	0.259	0.155	0.149	0.260	0.226	0.078	0.130
	ankle _{neg}	0.012	0.002	0.008	0.003	0.019	0.004	0.006	0.010	0.019	0.010	0.007	0.015	0.004

Supplemental Fig. 4, Maximal joint angle: Joint angles (mean \pm standard deviation) at the ankle, knee, and hip in both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. The first distance interval (0 – 2 km) was selected to assess potential habituation effects (grey area) and the second distance interval (2 – 10 km) to demonstrate fatiguing processes. Significant differences between 0 km and 2 km are represented by ***P* < 0.01 and ****P* < 0.001 for shoe_{Racing} as well as ^^^ *P* < 0.001 for shoe_{Cushion}, respectively. Significant (*P* < 0.05) shoe differences are represented by *S*.

Supplemental Table 5, Sum of squared errors: The sum of squared errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model. Three models were used: A linear model (all data: 0 - 10 km), a quadratic model (all data: 0 - 10 km), and a bi-linear model (two parts: 0 - 2 km, and 2 - 10 km). Smallest SSE indicates a tight fit of the model to the data and are presented in bold numbers.

		Sum of squared errors							
		shoe _{Racing} shoe _{Cushion}							
		linear	quadratic	bi-linear	linear	quadratic	bi-linear		
. –	contact time	0.000013	0.000007	0.000008	0.000006	0.000004	0.000005		
Spatio- emporal	step length	0.000189	0.000120	0.000044	0.000295	0.000128	0.000057		
Spa	step frequency	0.000424	0.000267	0.000138	0.000576	0.000271	0.000174		
te	flight time	0.000007	0.000006	0.000007	0.000012	0.000011	0.000008		
	hip flexion _{max}	0.955236	0.707457	0.537798	0.909557	0.816054	0.682976		
	knee flexion _{max}	1.962268	0.965888	0.544911	1.727320	0.523274	0.382027		
e	ankle dorsiflexion _{max}	0.086388	0.079241	0.082480	0.085155	0.076608	0.070106		
Angle	knee flexion $_{TD}$	2.552274	1.315663	1.023197	3.376911	1.159855	0.358898		
A	ankle dorsiflexion $_{TD}$	1.685650	1.666236	1.278779	5.232915	2.869981	0.591962		
	ankle plantarflexion $_{TO}$	0.872121	0.240680	0.135859	0.158402	0.149285	0.141063		
	$foot-TS_{TD}$	3.292791	3.217530	2.274766	9.490161	4.550620	0.869404		
le	hip flexion _{max}	0.008876	0.001759	0.003282	0.007528	0.002583	0.004109		
Ext. Torque	knee flexion _{max}	0.004156	0.000714	0.000643	0.004499	0.000949	0.000919		
T, I	ankle dorsiflexion _{max}	0.002801	0.001685	0.001926	0.002055	0.001987	0.001689		
	hip_{pos}	0.000845	0.000358	0.000240	0.000640	0.000634	0.000491		
	knee _{pos}	0.000754	0.000434	0.000182	0.000885	0.000248	0.000035		
rk	ankle _{pos} 0.000380		0.000279	0.000275	0.000848	0.000448	0.000394		
Work	hip_{neg}	0.000136	0.000107	0.000051	0.000029	0.000027	0.000019		
	knee _{neg}	0.000788	0.000340	0.000328	0.000358	0.000306	0.000249		
	ankle _{neg}	0.000415	0.000411	0.000262	0.000581	0.000290	0.000071		

Supplemental Fig. 5, Fitting methods: Negative joint work at the hip, knee, and ankle as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 6, Fitting methods: Positive joint work at the hip, knee, and ankle as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 7, Fitting methods: Maximum external joint torque at the hip, knee, and ankle as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 8, Fitting methods: Angle between foot and treadmill surface at touch-down (foot-TS_{TD}) as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 9, Fitting methods: Maximum joint angle at the hip, knee, and ankle as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.

Supplemental Fig. 10, Fitting methods: Knee and ankle joint angle at touch-down as well as ankle joint angle at toe-off as mean of both shoe conditions (\blacksquare shoe_{Racing}: racing flat shoe; \circ shoe_{Cushion}: cushioned running shoe) throughout the 10-km treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km) were used.