# Supplemental digital content 

# Running into fatigue: The effects of footwear on kinematics, kinetics, and energetics 

Maximilian Sanno ${ }^{1,2}$, Gaspar Epro ${ }^{3}$, Gert-Peter Brüggemann ${ }^{1}$, and Steffen Willwacher ${ }^{1,4}$<br>${ }^{1}$ Institute of Biomechanics and Orthopedics, German Sport University Cologne, Germany<br>${ }^{2}$ German Research Center of Elite Sport, German Sport University Cologne, Germany<br>${ }^{3}$ Sport and Exercise Science Research Center, School of Applied Sciences, London South Bank University, United Kingdom<br>${ }^{4}$ Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Germany

## Address for correspondence:

Maximilian Sanno
Institute of Biomechanics and Orthopedics
German Sport University Cologne
Am Sportpark Müngersdorf 6
50933 Cologne, Germany
Tel.: +49-221-49827630
Fax: +49-221-4971598
Email: max.sanno@web.de

Supplemental Table 1, 'Minimalist Shoe Index' test: Footwear characteristics of both shoes based on the 'Minimalist Shoe Index' of Esculier et al. (20).

|  | Minimalist Shoe Index |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | shoe $\mathrm{Racing}^{\text {a }}$ |  | shoe Cushion |  |
|  | value | score | value | score |
| Shoe mass (kg) | 0.170 | 4 | 0.348 | 0 |
| Heel-Stack height (mm) | 20 | 2 | 35 | 0 |
| Forefoot height (mm) | 15 |  | 28 |  |
| Heel to toe drop (mm) | 5 | 3 | 7 | 2 |
| Motion control and stability technologies |  | 3 |  | 1 |
| Longitudinal flexibility |  | 1.5 |  | 1 |
| Torsional flexibility |  | 1.5 |  | 0.5 |
| Minimalist Shoe Index |  | 60 |  | 18 |

Note: The 'Minimalist Shoe Index' is a scale ranging from 1 (no minimalism at all) to 100 (perfectly minimal footwear) and indicates minimalism of the footwear type.

Supplemental Table 2, Spatiotemporal parameters: Spatiotemporal parameters (mean $\pm$ standard deviation) at three different distances of the $10-\mathrm{km}$ treadmill run with near-maximal effort using 'Adizero Pro 4' (Shoe Racing) and 'Glycerin 10' (Shoe Cushion) ) shoes. Significant differences of pairwise comparisons between both shoes are presented by $* P<0.05$ and ${ }^{* *} P<0.01$.

|  |  | Spatiotemporal parameters |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 km | 2 km | 10 km |
| contact time (s) | shoeracing | $0.236 \pm 0.031$ | $0.240 \pm 0.031$ | $0.239 \pm 0.032$ |
|  | shoeCushion | $0.237 \pm 0.031$ | $0.239 \pm 0.030$ | $0.239 \pm 0.029$ |
| step length (m) | shoe Racing | $1.251 \pm 0.209$ | $1.270 \pm 0.211$ | $1.275 \pm 0.216$ |
|  | shoecushion | $1.250 \pm 0.205$ | $1.267 \pm 0.210$ | $1.274 \pm 0.221$ |
| step frequency (Hz) | shoe ${ }_{\text {Racing }}$ | $\begin{aligned} & 2.768 \pm \mathbf{0 . 1 3 5} \\ & 2.745 \pm \mathbf{0 . 1 3 6} \end{aligned}$ | $\begin{aligned} & 2.743 \pm \mathbf{0 . 1 5 6} \\ & 2.719 \pm \mathbf{0 . 1 5 6} \end{aligned}$ | $\begin{aligned} & \mathbf{2 . 7 4 0} \pm \mathbf{0 . 1 6 3} * * \\ & 2.705 \pm \mathbf{0 . 1 5 6} \end{aligned}$ |
| flight time (s) | shoeracing | $0.126 \pm 0.024$ | $0.126 \pm 0.024$ * | $0.127 \pm 0.028{ }_{(P=0.077)}$ |
|  | shoecushion | $0.128 \pm 0.022$ | $0.130 \pm 0.023$ | $0.132 \pm 0.026$ |

Note: The significant $(P<0.05)$ shoe differences of step frequency and flight time from 3 km to 9 km are presented in the Supplemental Table 5, Pairwise comparisons between shoes.


Supplemental Fig. 1, Fitting methods: Flight time as mean of both shoe conditions ( $\quad$ shoe Racing :
 maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 2, Fitting methods: Contact time, step length, and step frequency as mean of both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; o shoe Cushion: cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 3 Joint work: Positive and negative work (mean $\pm$ standard deviation) at the
 cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. The first distance interval ( $0-2 \mathrm{~km}$ ) was selected to assess potential habituation effects (grey area) and the second distance interval ( $2-10 \mathrm{~km}$ ) to demonstrate fatiguing processes. Significant differences between 0 km and 2 km as well as 2 km and 10 km are represented by $* P<0.05,{ }^{* *} P<0.01$, and ${ }^{* * *} P<0.001$ for shoe $\mathrm{R}_{\text {Racing }}$ as well as ${ }^{\wedge} P<0.05$ and ${ }^{\wedge \wedge \wedge} P<0.001$ for shoe ${ }_{C u s h i o n}$, respectively. Significant $(P<0.05)$ shoe differences are represented by $S$.

Supplemental Table 3, Relative joint work: Relative positive and negative work (mean $\pm$ standard deviation) at the ankle, knee, and hip joint in both shoe conditions (■ shoe Racing: racing flat shoe; ○ shoe $_{\text {Cushion: }}$ cushioned running shoe) at $0 \mathrm{~km}, 2 \mathrm{~km}$, and 10 km of the $10-\mathrm{km}$ treadmill run with nearmaximal effort. Significant differences to 0 km are represented by ${ }^{*} P<0.05,{ }^{* *} P<0.01$, and ${ }^{* * * P}$ $<0.001$ as well as significant differences to 2 km are represented by ${ }^{\wedge} P<0.05, \wedge \wedge P<0.01$, and ${ }^{\wedge \wedge \wedge} P$ $<0.001$, respectively.

|  |  | Relative joint work [\%] |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 km | 2 km | 10 km |
| $\mathrm{hip}_{\text {pos }}$ | shoeRacing | $19.4 \pm 8.3$ | $21.4 \pm 8.9^{* *}$ | $22.3 \pm 9.4 * *$ |
|  | shoe ${ }_{\text {Cushion }}$ | $18.5 \pm 7.0$ | $20.2 \pm 7.7$ | $21.5 \pm 8.5^{* *}$ |
| knee $_{\text {pos }}$ | shoe ${ }_{\text {Racing }}$ | $28.3 \pm 6.7$ | $30.2 \pm 7.2 * *$ | $31.5 \pm 7.4^{* * *}$, |
|  | shoe Cushion | $27.8 \pm 6.9$ | $30.2 \pm 7.9^{* * *}$ | $30.9 \pm 7.7^{* * *}$ |
| ankle ${ }_{\text {pos }}$ | shoe ${ }_{\text {Racing }}$ | $52.3 \pm 7.5$ | $48.3 \pm 7.9^{* * *}$ | $46.2 \pm 8.4^{* * *, \wedge \wedge \wedge}$ |
|  | shoeCushion | $53.7 \pm 8.1$ | $49.6 \pm 9.4^{* * *}$ | $47.5 \pm 10.2^{* * *, \wedge \wedge \wedge}$ |
| $h^{\text {ip }}$ neg | shoeRacing | $7.6 \pm 3.5$ | $8.3 \pm 3.8$ | $8.2 \pm 3.3$ |
|  | shoe Cushion | $6.9 \pm 3.4$ | $7.1 \pm 3.3$ | $7.7 \pm 3.1$ |
| $\mathrm{kn}^{\text {e }}{ }_{\text {neg }}$ | shoeRacing | $42.2 \pm 6.4$ | $42.1 \pm 6.7$ | $41.4 \pm 6.8$ |
|  | shoecushion | $46.0 \pm 7.4$ | $45.4 \pm 8.2$ | $44.9 \pm 7.8$ |
| $a^{\text {ankle }}$ neg | shoe ${ }_{\text {Racing }}$ | $50.2 \pm 7.2$ | $49.6 \pm 7.2$ | $50.4 \pm 6.9$ |
|  | shoe Cushion | $47.1 \pm 8.3$ | $47.5 \pm 8.6$ | $47.4 \pm 8.4$ |

Supplemental Table 4, Pairwise comparisons between shoes: Pairwise comparisons ( $P$-values) between two different shoes (racing flat shoe: 'Adizero Pro 4'; cushioned running shoe: 'Glycerin $10^{\prime}$ ) at 13 distances of $10-\mathrm{km}$ treadmill run with near-maximal effort for spatiotemporal parameters, maximal (max) joint angles, joint angles at foot touch-down (TD) and toe-off (TO), angle between the foot and the treadmill surface at touch-down (foot-TS $\mathrm{TD}_{\mathrm{TD}}$ ), maximal external joint torques, and positive (pos) and negative (neg) joint work. All significant differences $(P<0.05)$ are represented by bold printed $P$-values.

|  |  | Pairwise comparisons (shoes) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 km | 0.2 km | 0.5 km | 1 km | 2 km | 3 km | 4 km | 5 km | 6 km | 7 km | 8 km | 9 km | 10 km |
|  | contact time | 0.566 | 0.707 | 0.993 | 0.874 | 0.489 | 0.921 | 0.436 | 0.349 | 0.743 | 0.604 | 0.549 | 0.949 | 0.807 |
|  | step length | 0.778 | 0.151 | 0.184 | 0.395 | 0.579 | 0.541 | 0.518 | 0.810 | 0.907 | 0.731 | 0.250 | 0.480 | 0.916 |
|  | step frequency | 0.020 | 0.080 | 0.119 | 0.023 | 0.031 | 0.016 | 0.016 | 0.001 | < 0.000 | < 0.000 | 0.002 | < 0.000 | 0.007 |
|  | flight time | 0.314 | 0.355 | 0.124 | 0.086 | 0.028 | 0.032 | 0.009 | 0.032 | 0.004 | 0.018 | 0.007 | 0.015 | 0.077 |
| $\begin{aligned} & \frac{0}{000} \\ & \stackrel{y}{4} \end{aligned}$ | hip flexion ${ }_{\text {max }}$ | 0.487 | 0.577 | 0.370 | 0.586 | 0.364 | 0.813 | 0.307 | 0.287 | 0.241 | 0.164 | 0.550 | 0.587 | 0.256 |
|  | knee flexion ${ }_{\text {max }}$ | 0.762 | 0.376 | 0.391 | 0.580 | 0.468 | 0.585 | 0.498 | 0.965 | 0.674 | 0.882 | 0.457 | 0.813 | 0.607 |
|  | ankle dorsiflexion ${ }_{\text {max }}$ | 0.008 | 0.008 | 0.032 | 0.028 | 0.020 | 0.029 | 0.045 | 0.036 | 0.044 | 0.031 | 0.048 | 0.011 | 0.040 |
|  | knee flexion ${ }_{\text {TD }}$ | 0.155 | 0.094 | 0.074 | 0.063 | 0.236 | 0.583 | 0.556 | 0.114 | 0.058 | 0.068 | 0.180 | 0.072 | 0.166 |
|  | ankle dorsiflexion ${ }_{\text {TD }}$ | < 0.000 | < 0.000 | 0.001 | 0.003 | 0.191 | 0.158 | 0.087 | 0.109 | 0.249 | 0.567 | 0.317 | 0.187 | 0.108 |
|  | ankle plantarflexion ${ }_{\text {TO }}$ | 0.002 | 0.002 | 0.002 | 0.001 | $<0.000$ | < 0.000 | 0.001 | 0.002 | 0.003 | 0.004 | 0.048 | 0.016 | 0.035 |
|  | foot-TS TD | 0.010 | 0.011 | 0.051 | 0.077 | 0.905 | 0.921 | 0.854 | 0.561 | 0.633 | 0.426 | 0.691 | 0.559 | 0.354 |
|  | hip flexion ${ }_{\text {max }}$ | 0.873 | 0.633 | 0.818 | 0.793 | 0.693 | 0.973 | 0.565 | 0.637 | 0.421 | 0.579 | 0.582 | 0.547 | 0.340 |
|  | knee flexion ${ }_{\text {max }}$ | 0.144 | 0.266 | 0.211 | 0.140 | 0.176 | 0.263 | 0.129 | 0.112 | 0.137 | 0.145 | 0.165 | 0.107 | 0.136 |
|  | ankle dorsiflexion ${ }_{\text {max }}$ | 0.163 | 0.034 | 0.071 | 0.056 | 0.139 | 0.141 | 0.161 | 0.101 | 0.536 | 0.320 | 0.506 | 0.233 | 0.255 |
| $\begin{aligned} & \underline{y} \\ & 0 \\ & 3 \end{aligned}$ | $\mathrm{hip}_{\text {pos }}$ | 0.420 | 0.416 | 0.462 | 0.159 | 0.204 | 0.527 | 0.199 | 0.193 | 0.114 | 0.151 | 0.511 | 0.761 | 0.654 |
|  | knee $_{\text {pos }}$ | 0.837 | 0.981 | 0.898 | 0.780 | 0.740 | 0.807 | 0.760 | 0.520 | 0.633 | 0.424 | 0.637 | 0.690 | 0.621 |
|  | ankle ${ }_{\text {pos }}$ | 0.159 | 0.251 | 0.250 | 0.345 | 0.332 | 0.233 | 0.359 | 0.463 | 0.122 | 0.141 | 0.064 | 0.142 | 0.116 |
|  | $\mathrm{hip}_{\text {neg }}$ | 0.276 | 0.092 | 0.089 | 0.194 | 0.120 | 0.083 | 0.073 | 0.331 | 0.481 | 0.557 | 0.683 | 0.872 | 0.618 |
|  | knee $_{\text {neg }}$ | 0.062 | 0.133 | 0.153 | 0.129 | 0.188 | 0.344 | 0.259 | 0.155 | 0.149 | 0.260 | 0.226 | 0.078 | 0.130 |
|  | ankle $_{\text {neg }}$ | 0.012 | 0.002 | 0.008 | 0.003 | 0.019 | 0.004 | 0.006 | 0.010 | 0.019 | 0.010 | 0.007 | 0.015 | 0.004 |



Supplemental Fig. 4, Maximal joint angle: Joint angles (mean $\pm$ standard deviation) at the ankle, knee, and hip in both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; $\circ$ shoe ${ }_{C u s h i o n}$ : cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. The first distance interval ( $0-2$ km ) was selected to assess potential habituation effects (grey area) and the second distance interval (2-10 km) to demonstrate fatiguing processes. Significant differences between 0 km and 2 km are represented by ${ }^{* *} P<0.01$ and ${ }^{* * *} P<0.001$ for shoe Racing as well as ${ }^{\wedge \wedge \wedge} P<0.001$ for shoe ${ }_{C u s h i o n}$, respectively. Significant $(P<0.05)$ shoe differences are represented by $S$.

Supplemental Table 5, Sum of squared errors: The sum of squared errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model. Three models were used: A linear model (all data: $0-10 \mathrm{~km}$ ), a quadratic model (all data: $0-10 \mathrm{~km}$ ), and a bi-linear model (two parts: $0-2 \mathrm{~km}$, and $2-10 \mathrm{~km}$ ). Smallest SSE indicates a tight fit of the model to the data and are presented in bold numbers.

|  |  | Sum of squared errors |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | shoeracing |  |  | shoeCushion |  |  |
|  |  | linear | quadratic | bi-linear | linear | quadratic | bi-linear |
|  | contact time | 0.000013 | 0.000007 | 0.000008 | 0.000006 | 0.000004 | 0.000005 |
|  | step length | 0.000189 | 0.000120 | 0.000044 | 0.000295 | 0.000128 | 0.000057 |
|  | step frequency | 0.000424 | 0.000267 | 0.000138 | 0.000576 | 0.000271 | 0.000174 |
|  | flight time | 0.000007 | 0.000006 | 0.000007 | 0.000012 | 0.000011 | 0.000008 |
| $\begin{aligned} & \frac{0}{00} \\ & E \\ & E \end{aligned}$ | hip flexion ${ }_{\text {max }}$ | 0.955236 | 0.707457 | 0.537798 | 0.909557 | 0.816054 | 0.682976 |
|  | knee flexion ${ }_{\text {max }}$ | 1.962268 | 0.965888 | 0.544911 | 1.727320 | 0.523274 | 0.382027 |
|  | ankle dorsiflexion ${ }_{\text {max }}$ | 0.086388 | 0.079241 | 0.082480 | 0.085155 | 0.076608 | 0.070106 |
|  | knee flexion ${ }_{\text {TD }}$ | 2.552274 | 1.315663 | 1.023197 | 3.376911 | 1.159855 | 0.358898 |
|  | ankle dorsiflexion ${ }_{\text {TD }}$ | 1.685650 | 1.666236 | 1.278779 | 5.232915 | 2.869981 | 0.591962 |
|  | ankle plantarflexion ${ }_{\text {TO }}$ | 0.872121 | 0.240680 | 0.135859 | 0.158402 | 0.149285 | 0.141063 |
|  | foot-TS ${ }_{\text {TD }}$ | 3.292791 | 3.217530 | 2.274766 | 9.490161 | 4.550620 | 0.869404 |
| 芉 | hip flexion ${ }_{\text {max }}$ | 0.008876 | 0.001759 | 0.003282 | 0.007528 | 0.002583 | 0.004109 |
|  | knee flexion max | $0.004156$ | 0.000714 | 0.000643 | 0.004499 | 0.000949 | 0.000919 |
|  | ankle dorsiflexion ${ }_{\text {max }}$ | 0.002801 | 0.001685 | 0.001926 | 0.002055 | 0.001987 | 0.001689 |
| $\begin{aligned} & x \\ & 3 \\ & 3 \end{aligned}$ | $\mathrm{hip}_{\text {pos }}$ | 0.000845 | 0.000358 | 0.000240 | 0.000640 | 0.000634 | 0.000491 |
|  | knee $_{\text {pos }}$ | 0.000754 | 0.000434 | 0.000182 | 0.000885 | 0.000248 | 0.000035 |
|  | ankle pos | 0.000380 | 0.000279 | 0.000275 | 0.000848 | 0.000448 | 0.000394 |
|  | hip ${ }_{\text {neg }}$ | 0.000136 | 0.000107 | 0.000051 | 0.000029 | 0.000027 | 0.000019 |
|  | knee $_{\text {neg }}$ | 0.000788 | 0.000340 | 0.000328 | 0.000358 | 0.000306 | 0.000249 |
|  | ankle ${ }_{\text {neg }}$ | 0.000415 | 0.000411 | 0.000262 | 0.000581 | 0.000290 | 0.000071 |



Supplemental Fig. 5, Fitting methods: Negative joint work at the hip, knee, and ankle as mean of both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; $\circ$ o shoe Cushion: cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 6, Fitting methods: Positive joint work at the hip, knee, and ankle as mean of both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; $\circ$ o shoe ${ }_{\text {Cushion: }}$ cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 7, Fitting methods: Maximum external joint torque at the hip, knee, and ankle as mean of both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; $\circ$ shoe ${ }_{C u s h i o n: ~}$ cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.



Supplemental Fig. 8, Fitting methods: Angle between foot and treadmill surface at touch-down (foot-TS $\mathrm{TD}_{\mathrm{TD}}$ ) as mean of both shoe conditions ( $\quad$ shoe ${ }_{\text {Racing }}$ : racing flat shoe; $\circ$ shoe $_{\text {Cushion }}$ : cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 9, Fitting methods: Maximum joint angle at the hip, knee, and ankle as mean of both shoe conditions ( $\quad$ shoe Racing: racing flat shoe; $\circ$ o shoe Cushion: cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.


Supplemental Fig. 10, Fitting methods: Knee and ankle joint angle at touch-down as well as ankle joint angle at toe-off as mean of both shoe conditions ( $\quad$ shoe ${ }_{\text {Racing: }}$ racing flat shoe; $\circ$ shoe ${ }_{C u s h i o n}$ : cushioned running shoe) throughout the $10-\mathrm{km}$ treadmill run with near-maximal effort. To quantify a potential habituation and fatigue phase three different fitting methods (Solid line: Linear Fit; dashed line: Quadratic Fit; dotted line: Bi-linear Fit of 0 km to 2 km (grey area), and 2 km to 10 km ) were used.

