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Appendix 1. Methods model extension 

 
Availability of code 

The code, including all R packages used for this study, is available via: 

github.com/mjvalkema/esophageal-cancer-radiomics. 

 

 
Data preparation for model extension 

 
The previously developed models were revised based on the combined datasets. This allowed 

consideration of additional and other combinations of predictors in a larger sample size, i.e. “model 

extension” [1]. By combining the datasets, model generalizability to unseen data, e.g. from other 

institutes, is expected to be improved, which is important for eventual transferability of a radiomic 

prediction model to clinical practice. The development of radiomic models based on multicentre 

data however is expected to result in a somewhat decreased performance. In addition, radiomic 

feature values are known to be dependent on different scanner manufacturers, scanner types, 

acquisition protocols, post-reconstruction methods and tumour delineation methods [2, 3]. 

Normalization methods are often applied to limit fluctuations in feature values. Normalization of 

features generally contributes to better performance of prediction models [2]. 

 
 

Scanner-specific standardisation 
 

Instead of applying normalization on the entire dataset of multiple institutions, a methodology has 

been proposed to standardise features (mean 0 and standard deviation 1) separately for each 

institute in the dataset (i.e. institution-specific standardisation) [2]. In contrast to normalization 

through rescaling, this methodology preserves outlier values. Since in the current dataset multiple 

scanner types were used per institute (Supplemental Table 2), features were standardised for every 

scanner model separately (i.e. scanner-specific standardisation). Scanner-specific standardisation was 

done for scanners on which a minimum of eight patients were scanned, based on the numbers of 

scanner types in the current dataset. It was not considered sensible to include the scanners with 

fewer patients than eight (in the present dataset there are scanners on which ≤3 patients were 
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scanned, see Supplemental Table 2). 

 
 

ComBat harmonization 
 

The effect of scanner-specific standardisation was explored in relation to another frequently used 

normalization method called ComBat harmonization. ComBat harmonization sets features of 

different batches in a comparable range while biological information is preserved [4]. The precise 

workflow for ComBat harmonization has been described in a previous study and was shown to 

facilitate multicentre radiomic studies using PET imaging [3]. We explored whether ComBat 

harmonization was able to adjust for centre effects in the present dataset. It was applied using the R 

package “neuroComBat”, with non-parametric settings. For the “batch” parameter in this function, 

the scanner model type was used; for the “mod” parameter, the outcome of interest was used. The 

effect of both normalization methods was visually compared using boxplots for each of the six 

features as incorporated in the six externally validated prediction models. We did not proceed with 

ComBat harmonization because some 43 patients had to be excluded to meet the requirement for 

20-30 patients per batch. 

 
 

Methods model extension 
 

For model extension, all features in the combined dataset were normalised using scanner- specific 

standardisation. This method successfully corrected scanner differences (Supplemental Figure 4, 

Supplemental Figure 5, Supplemental Figure 6), does not require at least 20-30 patients per batch, 

and is intuitive to understand. Model extension was performed using least absolute shrinkage and 

selection operator (LASSO) with bootstrapping (200 bootstrap samples) for internal validation. The 

function “cv.glmnet” in R (nfolds = 10) was used to determine the value of lambda that minimises 

binomial deviance. 
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Further details on model building using LASSO are provided within the manuscript. The LASSO 

workflow was compared to another modelling strategy for high-dimensional radiomic datasets that 

has been published previously [5]. The strategy is briefly explained in the following paragraphs 

(“clearance step” and “feature selection with stratified random subsampling”). 

 
 

Clearance step 
 

The clearance step is not a feature selection step but identifies all features that might have potential 

prognostic capability. First, 18F-FDG PET features without any meaningful information are removed 

from the feature set: the minimum relative variation that a feature should have, defined by the 

standard deviation of the feature divided by the mean value of the feature, was required to be 

>0.05. Furthermore, the maximum fraction of patients for whom a feature can have the same value 

was set to 0.3. 

Following, the feature dataset was randomly stratified into two equal parts (S1 and S2); this was done 

100 times. Outcome distributions were kept similar in every split. 

For a certain split i, all features that had an absolute linear correlation with the clinical outcome 

>0.2 in S1,i were considered. For each split, a scatter plot of these features, showing the correlation 

in S1,i versus the correlation in S2,i was made; the linear correlation coefficient of that plot, Rp, was 

calculated. Since there were 100 splits, this produced 100 values of Rp. The mean of this distribution 

was computed. The ideal value of the mean correlation is 1. If the mean Rp is between 0 and 0.5, it 

suggests that a few features might indeed be predictive, but by casting a wide net, too many useless 

features are being explored. If the mean Rp is a negative number, it indicates that the features that 

have a high correlation with outcome in S1 have a low correlation with outcome in S2. Thus in this 

case, there are no reliable feature correlations with outcome, and the imaging modality is best 

avoided. If the mean Rp is greater than 0.5, then the imaging modality might be a productive one [5]. 

The relative difference in R between S1 and S2 was also calculated, and averaged 
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over the 100 splits, i.e. “mean relative uncertainty”: mean( 1 – R(S2,i) / R(S1,i)). The ideal value is close 

to 0. 

 
 

Feature selection with stratified random subsampling 
 

The dataset was randomly stratified into training and validation sets (2:1 ratio), repeated 100 times 

to derive performance distributions [5]. Outcome proportions were kept similar in the training and 

validation datasets. Only features with median AUCs >0.60 in the 100 training sets were retained. Of 

the remaining features, pairwise feature elimination was performed: if the absolute correlation 

between two features was > 0.7, the one with lower AUC was removed. This produced a reduced 

radiomic feature set to which clinical variables were added [6]. 

 
 

Three simple linear models, a logistic regression, Naïve Bayes (selected radiomic features plus 

clinical variables) and a class-balanced linear support vector machine (SVM) (selected radiomic 

features plus clinical variables), were explored, chosen because of low risk of overfitting [2]. To 

avoid overfitting with the logistic regression model for detection of TRG 2- 3-4, the number of 

radiomic features was limited to the two features with highest AUCs in univariate analysis. To avoid 

problems with unbalanced data in the SVM model, outcomes for TRG 1 versus TRG 2-3-4 were 

balanced with weighting. Performance distributions of the three models were shown over the 100 

training and validation datasets. Since an independent validation set was not available, optimism of 

the three models could not be further investigated. 

For comparison, the dataset with radiomic and clinical variables was also entered in a non- linear 

model. A random forest classifier was trained with balanced data in each bootstrap sample with the 

function RandomForestClassifier as implemented in Sklearn in Python 3.7.4. The following settings 

were applied: maximum depth = 3, maximum number of features = “auto”, number of trees = 100, 

bootstrapping = TRUE, class weight = “balanced subsample”. 
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A random state was chosen to enable replication of the model. Hence, for the random forest classifier, 

independent validation could not be performed since an independent dataset was not available. 

 

Appendix 2. Results model extension 

 
Clearance step 

 
No features in the post-nCRT 18F-FDG PET dataset were removed based on the threshold for 

minimum relative variation or based on having the same value to often. For detection of TRG 2-3-4, 

the mean Rp was 0.88 ± 0.11 (required to be at least >0.5, ideal value 1). The mean relative 

uncertainty was 0.47 ± 0.34 (required to be at least < 1, ideal value 0) (Supplemental Figure 8). 

These metrics were sufficient to proceed with the rest of the machine learning workflow [5]. For 

detection of TRG 3-4, the mean Rp was 0.74 ± 0.34, the mean relative uncertainty was 0.64 ± 0.35. 

 
 

Feature selection step and model development 
 

Features with AUCs >0.60 retained after the feature selection step are shown in Supplemental Table 

8. These radiomic features were combined with the clinical variables cT, clinical lymph node stage 

(cN), age, sex and histology [6]. The variables were explored using three linear models and a random 

forest classifier. The mean performance metrics with 95% confidence intervals over the 100 training 

and validation datasets (2:1 ratio) are shown in Supplemental Table 9. 
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Supplemental Tables 

 
Supplemental Table 1 

STARD 2015 checklist (available from: equator-network.org/reporting-guidelines/stard) 
 

 
Section and topic No. Item  

TITLE OR ABSTRACT    

 1 Identification as a study of diagnostic accuracy using at 
least one measure of accuracy (such as sensitivity, specificity, 
predictive values, or AUC) 

 

ABSTRACT    

 2 Structured summary of study design, methods, results, 
and conclusions (for specific guidance, see STARD for Abstracts) 

 

INTRODUCTION    

 3 Scientific & clinical background, including the intended use 
and clinical role of the index test 

 

 4 Study objectives and hypotheses  
METHODS    

Study design 5 Whether data collection was planned before the index 
test and reference standard were performed (prospective 
study) or after (retrospective study) 

 

Participants 6 Eligibility criteria  
 7 On what basis potentially eligible participants were identified 

(such as symptoms, results from previous 
tests, inclusion in registry) 

 

 8 Where and when potentially eligible participants were 
identified (setting, location and dates) 

 

 9 Whether participants formed a consecutive, random or 
convenience series 

 

Test methods 10a Index test, in sufficient detail to allow replication  
 10b Reference standard, in sufficient detail to allow replication  

 11 Rationale for choosing the reference standard (if alternatives 
exist) 

 

 12a Definition of and rationale for test positivity cut-offs or result 
categories of the index test, distinguishing pre- 
specified from exploratory 

 

 12b Definition of and rationale for test positivity cut-offs or 
result categories of the reference standard, distinguishing 
pre-specified from exploratory 

 

 13a Whether clinical information and reference standard results 
were available to the performers/readers of the 
index test 

 in Supplemental Data 
(Supplemental Table 2) 

 13b Whether clinical information and index test results were 
available to the assessors of the reference standard 

N/A, outcome assessment was 
done before the radiomic workflow 
was conducted 

Analysis 14 Methods for estimating or comparing measures of diagnostic 
accuracy 

 

 15 How indeterminate index test or reference standard 
results were handled 

 

 16 How missing data on the index test and reference standard 
were handled 

N/A, in the validation cohort 
there were no missing data for 
radiomic features or outcome 

 17 Any analyses of variability in diagnostic accuracy, distinguishing 
pre-specified from exploratory 

 

 18 Intended sample size and how it was determined N/A 

RESULTS   
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Participants 19 Flow of participants, using a diagram. Include the figure 
number (preferably figure 1) or page number 

 

 20 Baseline demographic and clinical characteristics of 
participants 

 

 21a Distribution of severity of disease in those with the target 
condition 

 

 21b Distribution of alternative diagnoses in those without the 
target condition 

N/A 

 22 Time interval and any clinical interventions between index 
test and reference standard 

 

Test results 23 Cross tabulation of the index test results (or their 
distribution) by the results of the reference standard 

 

 24 Estimates of diagnostic accuracy and their precision (such as 
95% confidence intervals) 

 

 25 Any adverse events from performing the index test or the 
reference standard 

N/A 

DISCUSSION    

 26 Study limitations, including sources of potential bias, 
statistical uncertainty, and generalizability 

 

 27 Implications for practice, including the intended use and 
clinical role of the index test 

 

OTHER 
INFORMATION 

   

 28 Registration number and name of registry N/A 

 29 Where the full study protocol can be accessed N/A 

 30 Sources of funding and other support; role of funders  
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Supplemental Table 2. Radiomic feature calculation methodology for the external validation cohort, 
reported according to the guidelines of the Image Biomarker Standardisation Initiative (IBSI) 

 

Topic Item Description of the item in the external 
validation cohort 

Result in external validation 
cohort (n = 189) 
Reported as n (%) or median [IQR] 

Patient 

Region of interest Region of interest Gross tumour volume of the primary tumour 

Patient preparation Instructions given to patients 
prior to image acquisition 

At least 6 hours of fasting and 2 litres of pre-hydration, and being in resting 
conditions before scanning 

 Administration of drugs to 
the patient prior to image 
acquisition 

- 

 Describe use of specific 
equipment for patient 
comfort during scanning 

- 

Radioactive tracer Which radioactive tracer 18F-FDG  

 Administration method Intravenous administration 

 Injected activity at 
administration 

2.3 MBq/kg 201 MBq [178, 253] 

 Uptake time prior to image 
acquisition 

60 ± 5 minutes 60 minutes [58, 64] 

 How competing substance 
levels were controlled 

Fasting before scanning; 
blood glucose level was measured before 

scanning; SUVmax was 
corrected for blood glucose 

5.7 mmol/L [5.2, 6.3] 

Contrast agent Which contrast agent was 
administered 

- 

Comorbidities Do patients have 
comorbidities that affect 
imaging 

- 

Acquisition 

Acquisition 
protocol 

Was a standard imaging 
protocol used 

European Association of Nuclear Medicine guidelines version 1.0 [7] 

Scanner type Vendors SIEMENS ® 130 (69) 

  GE Healthcare Systems ® 20 (11) 

  Philips ® 39 (21) 

 Scanner types SIEMENS Model 1080 12 (6) 

  SIEMENS Biograph 128 mCT 42 (22) 

  SIEMENS Biograph 40 mCT 74 (39) 

  SIEMENS SOMATOM Definition AS mCT 2 (1) 
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  GE Discovery 710 7 (9) 

  GE Discovery MI 3 (2) 

  Philips GEMINI TF TOF 16 30 (16) 

  Philips GEMINI TF TOF 64 1 (1) 

  Philips Guardian Body(C) 8 (4) 

Imaging modality Which imaging modality was 
used in the study 

FDG-PET scans post-treatment (up to 12 
weeks after completion of neoadjuvant 
chemoradiotherapy) 

10.3 weeks after neoadjuvant 
chemoradiotherapy [8.1, 11.2] 

Static/dynamic 
scans 

Static or dynamic scan Static scan, 60 minutes after intravenous injection of 18F-FDG 

 Acquisition time per time 
frame 

2-3 minutes per bed position 

 Describe any temporal 
modelling technique that was 
used 

- 

Scanner calibration How and when the scanner 
was calibrated 

Scanners were calibrated for EARL-1 measurements [7] 

Patient instructions Specific instructions to 
patients during acquisition 

Scanning in arms-up position 

Anatomical motion 
correction 

Method used to minimise the 
effect of anatomical motion 

- 

Scan duration Duration of the complete 
scan 

- 31 minutes [29, 36] 

Time-of-flight State if scanner time-of- 
flight capabilities are used 
during acquisition 

Time-of-flight PET scanners were used 

Reconstruction 

In-plane resolution Distance between pixels - 4.1 mm [4.0, 4.1] 

Image slice 
thickness / image 
slice 
spacing 

Slice thickness 1.5 mm 
mm 
mm 
mm 

17 (9) 
151 (80) 
11 (6) 
9 (5) 

Reconstruction 
method 

Reconstruction methods 
used in the different 
departments 

BLOB-OS-TF 31 (16) 

  LOR-RAMLA 8 (4) 

  OSEM3D 3i24s 113 (60) 

  OSEM3D 4i21s 12 (6) 

  PSF+ TOF 2i21s 3 (2) 

  PSF+ TOF 3i21s 2 (1) 

  QCFX 2 (1) 

  VPFX 4 (2) 

  VPFXS 13 (7) 

  VPHDS 1 (1) 

  More detailed information on the number of iterations, subsets for iterative 
reconstruction, or other forms of correction, other than listed above, is not 
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available. 

Image registration 

Registration 
method 

Method used to register 
multi-modality imaging 

Planning CT scans were rigidly registered to the 18F-FDG PET scans using MIM 
Software version 7.1.3 (MIM Software Inc., Cleveland, OH, USA). The gross 
tumour volumes on planning CT scans were then be propagated onto the 18F-
FDG PET scans using the resultant registration vectors. 

Data conversion 

SUV 
normalization 

Which standardised uptake 
value (SUV) normalization 
method is 
used 

SUV corrected for body weight and corrected for serum glucose 

Post-acquisition processing 

  Detailed information on anti-aliasing, noise suppression, post-reconstruction 
smoothing filter, intensity normalization and other post- acquisition 
processing methods is not available. 

Segmentation 

Segmentation 
method 

How volumes of interest 
(VOI) were segmented 

The gross tumour volume (GTV) available from the planning CT scans was 
used to determine the volume of interest (VOI). Planning CT scans were 
rigidly registered to the low dose CT scans belonging to the post-treatment 
18F-FDG PET scans. The VOIs on planning CT scans were transposed onto the 
low dose CT and 18F-FDG PET scans using the resultant registration vectors. 
VOIs on the post-treatment scans were manually adapted to correct for 
tumour regression after nCRT (performed by M.J.V., in training, with 3 years 
of expertise in analysing 18F-FDG PET scans in the current patient population). 
The resulting VOIs were revised in consensus by two investigators (M.J.V and 
R.J.B., who had 5 years of expertise)). Tumour delineations were done using 
the available pre- and post-treatment imaging, without using TRG outcome 
or any other clinical information. 

Conversion to mask Method to convert polygonal 
or mesh-based 
segmentations to a voxel- 
based mask 

Crossing number algorithm 

Image interpolation 

Interpolation 
method 

Which interpolation 
algorithm was used to 
interpolate the image 

Trilinear spline interpolation 

 Position of the interpolation 
grid, e.g. align by centre 

At the centre of the original grid 

 Dimensions of the 
interpolation grid, e.g. 
rounded to nearest integer 

Image intensities were not rounded 

 Extrapolation beyond the 
original image 

NaN values were returned 

Voxel dimensions Size of the interpolated 
voxels 

2 x 2 x 2 mm. These voxel-dimensions were chosen to obtain a uniform isotropic 
voxel grid similarly to the development cohort. A uniform isotropic voxel grid is 
important since radiomic feature values are dependent on the tumour volume 
and the particular resolution, as well as the number of voxels involved in the 
calculation [8]. For the development cohort it was chosen to upsample original 
voxel dimensions (3.1819 x 3.1819 x 2 mm to 2 x 2 x 2 mm). Upsampling was 
preferred over downsampling: with upsampling information would be preserved 
at the cost of introducing artificial information. Downsampling would cause 
information loss and potential aliasing artifacts. 
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ROI interpolation 

Interpolation 
method 

Which interpolation 
algorithm was used to 
interpolate the region of 
interest mask 

Trilinear spline interpolation 

Partially masked 
voxels 

How partially masked voxels 
after interpolation are 
handled 

Voxels with ≥50% coverage were included in the ROI 

Re-segmentation 

Re-segmentation 
methods 

Methods and settings to re-
segment the ROI intensity 
mask 

- 

Discretization 

Discretization 
method 

Method used to discretise 
image intensities 

Fixed bin size: 0.5 g/mL, with lowest intensity at 0 g/mL 

Image transformation 

Image filter Methods and settings used 
to filter images, e.g. 
Laplacian-of-Gaussian 

- 

Image biomarker computation 

Biomarker set Which set of image 
biomarkers is computed and 
refer to their definitions 

The same set of features as reported previously [9]. 
In the development cohort, features were rescaled using min-max 
normalization. In order to apply the same method of rescaling in the external 
validation cohort, features of these patients were rescaled using the 
minimum and maximum value of the particular feature in the development 
cohort. 

IBSI compliance If the software used to 
extract the set of image 
biomarkers is compliant with 
the IBSI benchmarks 

Yes, this was investigated previously [10]. 

Robustness How robustness of the image 
biomarkers was assessed, 
e.g. test-retest analysis 

Not performed in the external validation cohort. In the development cohort, 
features were tested for robustness by calculating an intraclass correlation 
coefficient (ICC) for slightly dilated delineations. The ICCs have been reported 
previously [9]. 

Software Which software and version 
was used to 
compute image biomarkers 

In-house developed software in Matlab 2014b (Mathworks, Natick, MA, USA) 

Image biomarker computation – texture parameters 

Texture matrix 
aggregation 

How texture-matrix based 
biomarkers were computed 
from underlying 
texture matrices 

Matrices were merged over 3D directions before features were calculated 

Distance weighting How CM, RLM, NGTDM 
and NGLDM weight 
distances, e.g. no 
weighting 

No weighting 

CM symmetry Whether symmetric or 
asymmetric co-occurrence 
matrices were computed 

Symmetric 

CM distance The (Chebyshev) distance at 1 
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which co-occurrence of 
intensities is determined, 
e.g. 1 

SZM linkage 
distance 

Distance and distance norm 
for which voxels with the 
same intensity are 
considered to belong to the 
same zone for the purpose of 
construction an 
SZM, e.g. Chebyshev distance 
of 1 

26-connectedness (linkage of a voxel to 26 neighbouring voxels with the same 
level) Chebyshev distance of 1 

NGTDM distance Neighbourhood distance and 
distance norm for the 
NGTDM, e.g. Chebyshev 
distance of 1 

Chebyshev distance of 1 



 

Supplemental Table 3. Radiomic quality score. Available from: www.radiomics.world/rqs 
 

Image protocol quality - well-documented image protocols (for example, contrast, slice thickness, energy, etc.) and/or usage of public image protocols allow 

reproducibility/replicability 

 

 protocols well documented  

 public protocol used 

 none 

Multiple segmentations - possible actions are: segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at 
different breathing cycles. Analyse feature robustness to segmentation variabilities 

 yes 

 no 

Phantom study on all scanners - detect inter-scanner differences and vendor-dependent features. Analyse feature robustness to these sources of variability 

 yes 

 no 

Imaging at multiple time points - collect images of individuals at additional time points. Analyse feature robustness to temporal variabilities (for example, organ movement, 

organ expansion/shrinkage) 

 yes 

 no 

Feature reduction or adjustment for multiple testing - decreases the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. 

Consider feature robustness when selecting features 

 Either measure is implemented  

 Neither measure is implemented 

Multivariable analysis with non- r a d i o m i c s  features (for example, EGFR mutation) - is expected to provide a more holistic model. Permits correlating/inferencing between 

radiomics and non radiomics features 

 yes 

 no 

Detect and discuss biological correlates - demonstration of phenotypic differences (possibly associated with underlying gene–protein expression patterns) deepens 
understanding of radiomics and biology 

 yes 

 no 

Cut-off analyses - determine risk groups by either the median, a previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic 
results 

 yes 

 no 

Discrimination statistics - report discrimination statistics (for example, C-statistic, ROC curve, AUC) and their statistical significance (for example, p-values, confidence 
intervals). One can also apply resampling method (for example, bootstrapping, cross-validation) 

 

 a discrimination statistic and its statistical significance are reported 

 a resampling method technique is also applied 

 none 

Calibration statistics - report calibration statistics (for example, Calibration-in-the-large/slope, calibration plots) and their statistical significance (for example, P- values, 
confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation) 

 

 a calibration statistic and its statistical significance are reported  

 a resampling method technique is applied 

 none 

Prospective study registered in a trial database - provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker 

 yes 

 no 

Validation - the validation is performed without retraining and without adaptation of the cut-off value, provides crucial information with regard to credible clinical performance 

 

 No validation 

 validation is based on a dataset from the same institute 

http://www.radiomics.world/rqs


 

 

 validation is based on a dataset from another institute 

 validation is based on two datasets from two distinct institutes 

 the study validates a previously published signature 

 validation is based on three or more datasets from distinct institutes 

Comparison to 'gold standard' - assess the extent to which the model agrees with/is superior to the current 'gold standard' method (for example, TNM-staging for survival 
prediction). This comparison shows the added value of radiomics 

 yes 

 no 

Potential clinical utility - report on the current and potential application of the model in a clinical setting (for example, decision curve analysis). 

 yes 

 no 

Cost-effectiveness analysis - report on the cost-effectiveness of the clinical application (for example, QALYs generated) 

 yes 

 no 

Open science and data - make code and data publicly available. Open science facilitates knowledge transfer and reproducibility of the study 

 

 scans are open source 

 region of interest segmentations are open source 

 the code is open sourced 

 radiomics features are calculated on a set of representative ROIs and the calculated features and representative ROIs are open source 

Total score 21 (58.33%) 
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Supplemental Table 4. List of calculated radiomic features 
 
 

Feature family Image Biomarker Standardisation Initiative feature name 

morphologic features volume (mesh) 

 volume (voxel counting) 

 surface area (mesh) 

 surface to volume ratio 

 compactness 1 

 compactness 2 

 spherical disproportion 

 sphericity 

 asphericity 

 centre of mass shift 

 maximum 3D diameter 

 major axis length 

 minor axis length 

 least axis length 

 elongation 

 flatness 

 integrated intensity 

 Morans I index 

 Gearys C measure 

local intensity features local intensity peak 

 global intensity peak 

intensity-based statistical features mean intensity 

 intensity variance 

 intensity skewness 

 intensity kurtosis 

 median intensity 

 minimum intensity 

 10th intensity percentile 

 90th intensity percentile 

 maximum intensity 

 intensity interquartile range 

 intensity range 

 intensity-based mean absolute deviation 

 intensity-based robust mean absolute deviation 

 intensity-based median absolute deviation 

 intensity-based coefficient of variation 

 intensity-based quartile coefficient of dispersion 

 intensity-based energy 

 root mean square intensity 
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grey level co-occurrence based 
features 

joint maximum 

 joint average 

 joint variance 

 joint entropy 

 difference average 

 difference variance 

 difference entropy 

 sum average 

 sum variance 

 sum entropy 

 angular second moment 

 contrast 

 dissimilarity 

 inverse difference 

 normalised inverse difference 

 inverse difference moment 

 normalised inverse difference moment 

 inverse variance 

 correlation 

 autocorrelation 

 cluster tendency 

 cluster shade 

 cluster prominence 

 information correlation 1 

 information correlation 2 

grey level run length based features short runs emphasis 

 long runs emphasis 

 low grey level run emphasis 

 high grey level run emphasis 

 short run low grey level emphasis 

 short run high grey level emphasis 

 long run low grey level emphasis 

 long run high grey level emphasis 

 grey level non uniformity 

 normalised grey level non uniformity 

 run length non-uniformity 

 normalised run length non-uniformity 

 run percentage 

 grey level variance 

 run length variance 

 run entropy 

grey level size zone based features small zone emphasis 

 large zone emphasis 
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 low grey level zone emphasis 

 high grey level zone emphasis 

 small zone low grey level emphasis 

 small zone high grey level emphasis 

 large zone low grey level emphasis 

 large zone high grey level emphasis 

 grey level non-uniformity 

 normalised grey level non-uniformity 

 zone size non-uniformity 

 normalised zone size non-uniformity 

 zone percentage 

 grey level variance 

 zone size variance 

 zone size entropy 

neighbourhood grey tone difference based 
features 

coarseness 

 contrast 

 busyness 

 complexity 

 strength 
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Supplemental Table 5 

Comparison of non-normalised radiomic feature values between the development cohort and 

external validation cohort 

 

 Development cohort (n = 73) 
median [IQR] 

External validation cohort (n = 189) 
median [IQR] 

P 

joint maximum 0.34 [0.25, 0.44] 0.17 [0.10, 0.23] <.001 

median absolute deviation 0.69 [0.52, 0.88] 0.52 [0.41, 0.68] <.001 

joint entropy 3.01 [2.46, 3.45] 4.22 [3.62, 4.85] <.001 

sum entropy 2.70 [2.24, 3.02] 3.30 [2.94, 3.67] <.001 

angular second moment 0.19 [0.14, 0.26] 0.08 [0.05, 0.11] <.001 

inverse variance 0.07 [0.05, 0.09] 0.45 [0.41, 0.48] <.001 

 
 

IQR = interquartile range 
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Supplemental Table 6 

Distribution of clinical tumour (cT) stage versus tumour regression grade (TRG) for the development 

cohort and external validation cohort. Of the nine patients with cT1-2 stage in the development 

cohort, 7 (78%) had TRG 1. Of the 41 patients with cT1-2 stage in the external validation cohort, 12 

had (29%) TRG 1 (P = .02). 

 
 
 

Development cohort TRG 1 TRG 2-3-4 

cT1-2 7 2 

cT3-4a 9 55 

   

External validation cohort TRG 1 TRG 2-3-4 

cT1-2 12 29 

cT3-4a 28 113 
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Supplemental Table 7 

Coefficients of LASSO models based on the combined development and external validation cohorts. 

 

Outcome LASSO model Feature name Coefficient 

TRG 2-3-4 radiomic features + 
clinical variables 

intercept 2.11 

  cT stage 
cT3-4a 
cT1-2 

 

0.22 
1 (ref) 

  histology 
squamous cell carcinoma adenocarcinoma 

 

-0.96 
1 (ref) 

  Gearys C measure 0.019 

  least axis length 0.057 

  quartile coefficient of dispersion 0.16 

 clinical variables intercept 3.16 

  cT stage 
cT3-4a 
cT1-2 

 

0.65 
1 (ref) 

  age -0.019 

  histology 
squamous cell carcinoma adenocarcinoma 

 
-1.40 
1 (ref) 

TRG 3-4 radiomic features + 
clinical variables 

intercept -0.375 

  cT stage 
cT3-4a 
cT1-2 

 

0.262 
1 (ref) 

  histology 
squamous cell carcinoma adenocarcinoma 

 

-0.083 
1 (ref) 

  intensity-based coefficient of variation 0.070 

  flatness 0.128 

  Gearys C measure 0.067 

  least axis length 0.073 

  minimum -0.019 

  run entropy 0.023 

  surface to volume ratio -0.094 

 clinical variables intercept -0.805 

  cT stage 
cT3-4a 
cT1-2 

 

0.590 
1 (ref) 

  sex 
male 
female 

 

0.164 
1 (ref) 

  histology 
squamous cell carcinoma adenocarcinoma 

 

-0.472 
1 (ref) 

 
LASSO = least absolute shrinkage and selection operator; cT = clinical tumour stage 
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Supplemental Table 8 

Names of radiomic features with AUCs of at least 0.60 that were selected after the univariable 

feature selection step was applied to the combined cohorts for model extension (see Appendix 1 for 

details). The median area under the receiver operating characteristic curve (AUC) is shown for the 

100 training datasets. 

 

 
Outcome Feature name Median AUC over 100 training splits 

TRG 2-3-4 surface to volume ratio 0.67 

 run length non-uniformity 0.67 

 coefficient of variation 0.65 

 information correlation 2 0.65 

 angular second moment 0.65 

 flatness 0.62 

 local intensity peak 0.61 

 Gearys C measure 0.61 

TRG 3-4 surface to volume ratio 0.65 

 flatness 0.62 

 run length non-uniformity 0.62 

 intensity variance 0.60 

 intensity skewness 0.60 
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Supplemental Table 9 

Four machine learning models were explored after univariable feature selection (see Appendix 1 for 

details). Three linear machine learning models and one non-linear model were evaluated over 100 

training and validation datasets (2:1 ratio) using selected radiomic features (Supplemental Table 7) 

plus the clinical variables clinical tumour and node stage, sex, age and histology. Performance 

metrics for the 100 training and validation datasets are shown in the table. 

 

 
Outcome Model type  AUC 

mean (95% CI) 

Sensitivity (%) 

mean (95% CI) 

Specificity (%) 

mean (95% CI) 

Accuracy (%) 

mean (95% 

CI) 

TRG 2-3-4 logistic 

regression 

training 0.76 (0.68 – 0.81) 68 (47 – 88) 74 (49 – 95) 69 (57 – 81) 

  validation 0.70 (0.58 – 0.83) 69 (40 – 95) 71 (33 – 94) 69 (51 – 85) 

 SVM training 0.72 (0.67 – 0.77) 77 (68 – 87) 67 (51 – 78) 75 (69 – 81) 

  validation 0.65 (0.57 – 0.74) 74 (59 – 85) 57 (36 – 78) 70 (62 – 79) 

 Naïve 

Bayes 

training 0.77 (0.73 – 0.82) 73 (54 – 86) 75 (57 – 92) 73 (62 – 80) 

  validation 0.73 (0.63 – 0.84) 71 (49 – 92) 74 (50 – 94) 72 (58 – 84) 

 random 

forest* 

training 0.81 83 78 82 

TRG 3-4 logistic 

regression 

training 0.71 (0.65 – 0.76) 73 (51 – 88) 63 (45 – 81) 68 (63 – 72) 

  validation 0.63 (0.50 – 0.73) 73 (40 – 95) 54 (29 – 85) 64 (57 – 72) 

 SVM training 0.65 (0.61 – 0.70) 74 (60 – 84) 57 (42 – 71) 65 (61 – 70) 

  validation 0.58 (0.51 – 0.68) 66 (44 – 82) 50 (29 – 69) 58 (51 – 68) 

 Naïve 

Bayes 

training 0.69 (0.65 – 0.73) 77 (62 – 90) 57 (41 – 72) 67 (63 – 71) 

  validation 0.65 (0.54 – 0.74) 76 (48 – 95) 55 (26 – 85) 66 (58 – 73) 

 random 

forest* 

training 0.75 77 73 75 

 

 
* The random forest was fitted on one dataset consisting of both cohorts, which means that no performance distributions 

are available. 

AUC = area under the receiver operating characteristic curve; IQR = interquartile range; SVM = support vector machine; 

95% CI = 95% confidence interval 
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Supplemental Figures 
 

Supplemental Figure 1. Comparison of radiomic feature values, after rescaling (y-axis), between the 

development cohort and external validation cohort (x-axis). For the external validation cohort 

rescaling was done with the minimum and maximum values of the development cohort. 

devel. = development cohort; ext. val. = external validation cohort 

*** P < .001 
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Supplemental Figure 2. ROC curves for the six externally validated models (A-F). The blue line 

corresponds to the development cohort (n = 73), the orange line to the external validation cohort (n 

= 189), the red line to the external validation cohort when scans from one vendor (SIEMENS, n = 

130) were included, and the green line to the external validation cohort when the external 

validation cohort was limited to only adenocarcinoma patients (n = 147). 

 
ROC = Receiver Operating Characteristic curve; Development = development cohort; Ext. val. = external validation cohort 



26  

 

 

Supplemental Figure 3. Histograms of predicted probabilities for TRG 2-3-4 with models A-F as 

applied onto the external validation cohort. The blue line shows the probability threshold as 

determined to obtain the benchmark of 90% sensitivity [11]. Predicted probabilities near 

1.0 correspond to prediction of TRG 2-3-4, predicted probabilities near 0.0 correspond to prediction 

of TRG 1. In all six models, a threshold chosen between the two groups of observations in the 

histogram (e.g. at 0.8 for model A) completely separates patients based on clinical tumour stage (cT) 

(i.e. in model A all patients with cT1-2 have predicted probabilities <0.8 and all patients with cT3-4a 

have predicted probabilities >0.8). 
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Supplemental Figure 4. Boxplots demonstrating dependency of radiomic feature values (y- axis) on 

scanner types (x-axis) for the six radiomic features that were used in the externally validated 

prediction models (A-F). Boxplots show the median and interquartile range for non- normalised 

radiomic features which were calculated in the combined cohorts (i.e. development cohort and 

external validation cohort combined). 
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Supplemental Figure 5. Boxplots show the median and interquartile range for the six radiomic 

features (y-axis) that were used in the externally validated prediction models (A-F) after scanner-

specific standardisation was performed. Scanner-specific standardisation was applied on the 

combined cohorts (i.e. development cohort and external validation cohort combined). The names of 

the different scanner types are shown on the x-axis. 
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Supplemental Figure 6. Boxplots show the median and interquartile range for the six radiomic 

features (y-axis) that were used in the externally validated prediction models (A-F) after ComBat 

harmonization was performed. ComBat harmonization was applied on the combined cohorts (i.e. 

development cohort and external validation cohort combined). The names of the different scanner 

types are shown on the x-axis. 
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A 
 
 

 

B 
 
 

 

Supplemental Figure 7. Values of log(λ) (x-axis) versus the binomial deviance (y-axis) for (A) the 

extended LASSO model to detect TRG 2-3-4 including radiomic features and clinical variables and (B) 

the LASSO model including clinical variables only. The log(λ) (vertical line) was chosen at a value to 

minimise binomial deviance. The number of variables with a non- zero coefficient that correspond to 

the log(λ) on the x-axis is shown at the top of the plot. 
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Supplemental Figure 8. Histogram of 100 Rp values (obtained from 100 splits) for post-nCRT 18F-FDG 

PET features in the combined datasets (i.e. development cohort and external validation cohort 

combined). Mean Rp values below 0.0 imply generic radiomic analysis is unsuitable. 

 

 

REFERENCES 

1.  Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and 
updating. New York: Springer, 2009. 

2.  Chatterjee A, Vallières M, Dohan A, et al. Creating robust predictive radiomic models for data from 
independent institutions using normalization. IEEE Trans Radiat Plasma Med Sci 2019;3:210-5. 

3.  Orlhac F, Boughdad S, Philippe C, et al. A postreconstruction harmonization method for multicenter 
radiomic studies in PET. J Nucl Med 2018;59:1321-8. 

4.  Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical 
Bayes methods. Biostatistics (Oxford, England) 2007;8:118-27. 

5.  Chatterjee A, Vallières M, Dohan A, et al. An empirical approach for avoiding false discoveries when 
applying high-dimensional radiomics to small datasets. IEEE Trans Radiat Plasma Med Sci 2019;3:201-9. 

6.  Toxopeus EL, Nieboer D, Shapiro J, et al. Nomogram for predicting pathologically complete response 
after neoadjuvant chemoradiotherapy for oesophageal cancer. Radiother Oncol 2015;115:392-8. 

7.  Boellaard R, O'Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for 
tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181-200. 

8.  Yan J, Chu-Shern JL, Loi HY, et al. Impact of image reconstruction settings on texture features in 18F-FDG 
PET. J Nucl Med 2015;56:1667-73. 

9.  Beukinga RJ, Hulshoff JB, Mul VEM, et al. Prediction of response to neoadjuvant chemotherapy and 
radiation therapy with baseline and restaging (18)F-FDG PET imaging biomarkers in patients with 
esophageal cancer. Radiology 2018;287:983-92. 

10.  Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: 
standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 
2020;295:328-38. 

11.  Noordman BJ, Spaander MCW, Valkema R, et al. Detection of residual disease after neoadjuvant 
chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort 
study. Lancet Oncol 2018;19:965-74. 

 


