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1 Modeling framework

Our modeling framework accounts for how Chlamydia trachomatis (CT) and Neisseria gonorrhea
(GC) symptoms differentially affect both recovery and being reported as a diagnosed case . Those
with an asymptomatic infection will be less likely to be tested for infection, and thus less likely
to be a reported case. This framework mathematically describes the natural history of infection,
how cases are reported, what is represented by prevalence estimates, and population sizes. These
equations and descriptions follow.

1.1 CT/GC Natural history

The simplest possible model for this situation elaborates upon the general SIS model. We assume
three possible states of infection: uninfected (U), asymptomatic infected (A), and symptomatic
infected (S). All people must be in one of these three states. We consider four mechanisms: 1) in-
fection, 2) recovery as a result of natural clearance, 3) recovery as a result of background screening,
and 4) recovery as a result of symptomatic treatment seeking. These are described in more detail
below.

1.1.1 Infection

Uninfected people acquire infection at rate λ, also known as the force of infection. Here, we
make a simplifying assumption, that the force of infection is constant, which is consistent with
our assumption of steady state dynamics overall described in more detail below. A proportion
of newly infected people (β) develop symptomatic infection, and a complementary proportion
(1 − β) develop asymptomatic infection.

1.1.2 Recovery as a result of natural clearance

Infected people (regardless of symptoms) can recover from infection due to natural clearance. This
occurs at rate ψ, which is the inverse duration of time to natural clearance.

1.1.3 Recovery as a result of symptomatic treatment seeking

Those with symptomatic infection are likely to seek medical care at a rapid rate. Assuming a
perfect test (i.e., 100% sensitivity and specificity), and assuming all who test positive are treated
effectively (no treatment failure) the rate of symptomatic treatment seeking (τ) is equivalent to the
rate of recovery as a result of this process.
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1.1.4 Recovery as a result of background screening

Recovery from background screening can occur in both the symptomatically and asymptomati-
cally infected. Background screening is meant to mimic the screening in the absence of symptoms
that all people within a given subpopulation experience; this is akin to an annual checkup medical
visit. Specific subpopulations will have screening rates specific to them. Within a subpopulation,
the screening rate is homogeneous, and averaged across all who comprise this subpopulation.
Assuming a perfect test (i.e., 100% sensitivity and specificity), and assuming all who test positive
are treated effectively (no treatment failure) the rate of screening the asymptomatically infected
people (σ) is the rate of recovery in this group. Those who are symptomatically infected may also
experience background screening, in addition to their symptom-related treatment seeking, though
it is likely that the rate of background screening is much slower than the other rate. As a result,
the symptomatically infected people also recover at the rate at which they are screened (σ).

1.1.5 CT/GC natural history equations

These mechanisms are described mathematically in the following differential equations:

dU
dt

= −λU + (ψ + σ)A + (ψ + σ + τ)S

dA
dt

= λUβ − (ψ + σ)A

dS
dt

= λU(1 − β)− (−ψ + σ + τ)S

(1)

1.2 Point prevalence equation

Assuming perfect diagnostic testing and the natural history equations above, the point prevalence
of infection (P) includes both the symptomatically and asymptomatically infected in the numera-
tor:

P =
A + S

A + S + U
(2)

1.3 Population size equation

Population size for a given subpopulation is summarized as:

N = A + S + U (3)

1.4 Case reporting equation

Cases are reported as they are diagnosed, either from symptomatic treatment seeking or back-
ground screening. Everyone receives background screening at the same rate, in contrast with
symptomatic treatment seeking, which symptomatically infected receive. The below equation as-
sumes only a proportion of cases (ρ) are reported; it also assumes perfect testing. The number of
cases reported over a year (K) may be summarized as:

K = ρ(σ(A + S) + τS) (4)
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1.5 Description of state space and parameters

Symbol Description

λ Force of infection (rate)
β Proportion of new chlamydial infections that are asymptomatic
ψ Natural chlamydial clearance rate
σ Background screening rate
τ Symptom related treatment seeking rate
ρ Reporting fraction
N Population size
U Number of people who are uninfected and susceptible to infection
S Number of people with symptomatic infection
A Number of people with asymptomatic infection
K Case report number (over a specified period)
P Point prevalence

dU
dt

= −λU + (ψ + σ)A + (ψ + σ + τ)S

dA
dt

= λUβ − (ψ + σ)A

dS
dt

= λU(1 − β)− (−ψ + σ + τ)S

N = A + S + U

P =
A + S

A + S + U
K = ρ(σ(A + S) + τS)

(5)

2 CT equation solving

Chlamydia’s solution utilizes all six equations below to estimate annual incidence. We are able
to solve for five unknowns from this system; this means we can not only solve for the three
state space variables, and the force of infection, but also the proportion of new infections that
are asymptomatic (β).
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dU
dt

= −λU + (ψ + σ)A + (ψ + σ + τ)S

dA
dt

= λUβ − (ψ + σ)A

dS
dt

= λU(1 − β)− (−ψ + σ + τ)S

N = A + S + U

P =
A + S

A + S + U
K = ρ(σ(A + S) + τS)

(6)

We use symbolic algebra in Python to solve these systems of equations for their steady state
values. By solving for the state variable formulations (i.e., U, A, and S) as well as force of infection
formulation (λ), we are able to derive steady state solutions for the annual number of incident
infections (λU).

Solving for steady state values of the natural history equations requires assuming that the
change over time in each state (A, S, and U) is zero; thus, these differential equations are set to
zero, implying no change, while all others remain unchanged.

Below is python code to initialize the size equations described above.

In [21]: from sympy.interactive import printing

printing.init_printing(use_latex=True)

from sympy import Eq, solve_linear_system, Matrix, Symbol

import sympy as sp

import math

############################################

eq1=sp.Function('eq1')

eq2=sp.Function('eq2')

eq3=sp.Function('eq3')

eq4=sp.Function('eq4')

eq5=sp.Function('eq5')

eq6=sp.Function('eq6')

#DEFINE STATE VARIABLES

A,U,S,N, P, K=sp.symbols('A, U, S, N, P, K')

#DEFINE MODEL PARAMETERS

LAMBDA, BETA, SIGMA, TAU, PSI, RHO = sp.symbols('lambda, beta, sigma, tau, psi, rho')

eq1 = Eq((TAU+SIGMA+PSI)*S + (PSI+SIGMA)*A - LAMBDA*U)

eq2 = Eq(-(PSI+SIGMA)*A + LAMBDA*BETA *U )

eq3 = Eq(-(TAU+SIGMA+PSI)*S + LAMBDA*(1 - BETA)*U )

eq4= Eq(A+S+U, N)

eq5= Eq(RHO*((SIGMA+TAU)*S +SIGMA*A) , K)

eq6= Eq((S+A)/(S+A+U), P)

display(eq1, eq2, eq3, eq4, eq5, eq6)

A (ψ + σ) + S (ψ + σ + τ)− Uλ = 0
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A (−ψ − σ) + Uβλ = 0

S (−ψ − σ − τ) + Uλ (−β + 1) = 0

A + S + U = N

ρ (Aσ + S (σ + τ)) = K

A + S
A + S + U

= P

We use the sympy function solve to find the solutions as shown below. These solutions are
then used to estimate incidence (further below).

In [22]: #solve CT equation system (Prev and CaseReports available)

sol_ct = sp.solve(( eq1, eq3, eq4,eq5, eq6), (U,A, S, LAMBDA, BETA))

display(sol_ct)

solution= sol_ct

ct_inc= sp.simplify(solution[0][0]*solution[0][3]) # annual incident infections

display(ct_inc)

#display(sp.latex(ct_inc))

[(
N (−P + 1) , − K

ρτ
+

NPσ

τ
+ NP,

K − NPρσ

ρτ
, − K + NPψρ

Nρ (P − 1)
,

(ψ + σ) (−K + NPρσ + NPρτ)

τ (K + NPψρ)

)]
K
ρ
+ NPψ

Thus the annual number of incident CT infections is given by : K
ρ + NPψ.

3 GC equation solving

Gonorrhea’s solution utilizes the five equations below to estimate annual incidence and point
prevalence. Note, that here prevalence is an output rather than used as an additional input equa-
tion.

For GC, NHANES prevalence data are no longer available but case reports are. As a result, we
can only solve for 4 unknowns (rather than 5 for CT): the three state variables plus the force of
infection (λ).
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dU
dt

= −λU + (ψ + σ)A + (ψ + σ + τ)S

dA
dt

= λUβ − (ψ + σ)A

dS
dt

= λU(1 − β)− (−ψ + σ + τ)S

N = A + S + U
K = ρ(σ(A + S) + τS)

(7)

We use symbolic algebra in Python to solve these systems of equations for their steady state val-
ues. By solving for the state variable formulations (i.e., U, A, and S) as well as force of infection
formulation (λ), we are able to derive steady state solutions for the annual number of incident
infections (λU) and the point prevalence of infection A+S

A+S+U .
Solving for steady state values of the natural history equations requires assuming that the

change over time in each state (A, S, and U) is zero; thus, these differential equations are set to
zero, implying no change, while all others remain unchanged.

Below is python code to initialize the size equations described above.

In [23]: from sympy.interactive import printing

printing.init_printing(use_latex=True)

from sympy import Eq, solve_linear_system, Matrix, Symbol

import sympy as sp

import math

############################################

eq1=sp.Function('eq1')

eq2=sp.Function('eq2')

eq3=sp.Function('eq3')

eq4=sp.Function('eq4')

eq5=sp.Function('eq5')

#DEFINE STATE VARIABLES

A,U,S,N, K=sp.symbols('A, U, S, N, K')

#DEFINE MODEL PARAMETERS

LAMBDA, BETA, SIGMA, TAU, PSI, RHO = sp.symbols('lambda, beta, sigma, tau, psi, rho')

eq1 = Eq((TAU+SIGMA+PSI)*S + (PSI+SIGMA)*A - LAMBDA*U)

eq2 = Eq(-(PSI+SIGMA)*A + LAMBDA*BETA *U )

eq3 = Eq(-(TAU+SIGMA+PSI)*S + LAMBDA*(1 - BETA)*U )

eq4= Eq(A+S+U, N)

eq5= Eq(RHO*((SIGMA+TAU)*S +SIGMA*A) , K)

display(eq1, eq2, eq3, eq4, eq5)

A (ψ + σ) + S (ψ + σ + τ)− Uλ = 0

A (−ψ − σ) + Uβλ = 0
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S (−ψ − σ − τ) + Uλ (−β + 1) = 0

A + S + U = N

ρ (Aσ + S (σ + τ)) = K

We use the sympy function solve to find the solutions as shown below. These solutions are then
used to estimate incidence and prevalence (further below). We are able to formulate prevalence
from the state variables where P = A+S

A+S+U .

In [24]: #solve GC equation system (no Prev / ONLY case reports available)

sol_gc = sp.solve(( eq1, eq3, eq4, eq5), (U,A,S, LAMBDA))

display(sol_gc)

solution= sol_gc

gc_inc = sp.simplify(solution[0][0]*solution[0][3]) # annual incident infections

gc_prev = sp.factor((solution[0][1]+solution[0][2])/ (solution[0][0]+solution[0][1]+solution[0][2])) # PREVALENCE

display(gc_inc)

display(gc_prev)

[(
Kβτ + Kψ + Kσ + Nβψρτ − Nψρσ − Nψρτ − Nρσ2 − Nρστ

ρ (βψτ − ψσ − ψτ − σ2 − στ)
,

− Kβ (ψ + σ + τ)

ρ (βψτ − ψσ − ψτ − σ2 − στ)
,

K (β − 1) (ψ + σ)

ρ (βψτ − ψσ − ψτ − σ2 − στ)
,

− K (ψ + σ) (ψ + σ + τ)

Kβτ + Kψ + Kσ + Nβψρτ − Nψρσ − Nψρτ − Nρσ2 − Nρστ
)]

K (ψ + σ) (ψ + σ + τ)

ρ (−βψτ + ψσ + ψτ + σ2 + στ)

− K (βτ + ψ + σ)

Nρ (βψτ − ψσ − ψτ − σ2 − στ)

Thus, the annual number of incident gonococcal infections is formulated as:
K(ψ+σ)(ψ+σ+τ)

ρ(−βψτ+ψσ+ψτ+σ2+στ)
, and the point prevalence of gonococcal infection is formulated as:

− K(βτ+ψ+σ)
Nρ(βψτ−ψσ−ψτ−σ2−στ)

.
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4 Correlation analysis

We describe how each input parameter affects incidence and prevalence by using Monte Carlo
simulation to randomly generate 10,000 parameter sets. Parameter values in each set are deter-
mined by randomly sampling from a normal distribution with mean equal to the mean value spe-
cific to a given subpopulation, and standard deviation equal to 10% of the mean. This standard
deviation value is not meant to mimic any real situation, but rather to have a similar magnitude
of dispersion for each parameter. We generate a scatterplot of each input parameter value against
incidence (and prevalence for gonorrhea) to visualize this effect. We also summarize the effects of
these analyses in tabular form below.

4.1 Scaterplot of model estimated CT incidence and each input parameter

4.2 Scatterplot of model estimated GC incidence and each input parameter
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4.3 Scatterplot of model estimated GC prevalence and each input parameter

4.4 Table summarizing CT/GC incidence and prevalence parameter correlations

Parameter CT-incidence GC-incidence GC-prevalence

N + 0 -
K + + +
ψ + + -
ρ - - -
P + NA NA
σ NA - -
τ NA - -
β NA + +

Two parameters have similar effects on CT incidence, GC incidence, and GC prevalence. Increases
in case reports leads to an increased estimates in all three measures while increased case reporting
fraction (i.e., a greater percentage of diagnosed cases being reported) leads to decreases in all three
measures.

Increased natural clearance leads to higher estimated incidence (for both CT and GC) but lower
estimated GC prevalence. Faster clearance, means that more incident cases go undiagnosed or
observed in NHANES, thus requiring higher incidence to sustain a given level of case reports or
NHANES prevalence. Increased asymptomatic infection leads to higher estimated GC incidence
and prevalence. The more asymptomatic infection there is, the more infections go undiagnosed,
thus leading to a higher level of incidence and prevalence needed in order to sustain a given level
of case reports. The effect of background screening (σ) is quite small, but negative on both GC
prevalence and incidence.
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