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APPENDIX 

We present detailed data processing procedures, network design, loss functions and training 

details of the proposed model, Meibomian gland morphological feature measuring methods, and 

Meibomian gland detection evaluation details. 

 

Data Processing 

Upper Eyelid Total Area 

To minimize the annotation variability across different annotators, only the visible part of 

Meibomian glands in each image were annotated. As occluded parts of Meibomian glands 

hidden behind the tarsal plate should also be considered, algorithms were designed to extend 

Meibomian gland annotations in upper eyelids. Specifically, a principal curveA30 was fit to each 

(visible) annotated Meibomian gland region to obtain its linear direction. Meibomian gland 

annotations were then extended along the linear principal curve direction until they intersected 

with the upper borders of annotated eyelid regions, which were defined at the Meibomian gland 

orifices. Appendix figure A1 shows some examples of upper eyelid gland completion. 

 

Center Crop 

Meibography imaging projects the three-dimensional eyelid surface to a two-dimensional image, 

with more distortion in the far nasal and temporal image regions. Furthermore, far temporal and 

nasal glands were less distinguishable and were difficult to annotate accurately due to the inter-

observer differences in eyelid eversion techniques that result in Meibomian glands not being 

imaged at all or imaged Meibomian glands appearing blurry. Therefore, based on the eyelid 

region annotations, all glands located within or partially overlapping with the central 50% of the 
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upper eyelid were retained for analysis. The boundaries of the cropped central region are 

outlined in white in Appendix figure A1 for visualization. Processed images with annotations 

and center cropping were verified by a clinical investigator (MCL). 

 

The gland segmentation network took a meibography image as an input and produced two 

intermediate outputs: the entire Meibomian gland region contour (along with pixel-wise feature 

embedding) and the number of glands. The predicted Meibomian gland contour, embedding, and 

gland number were further used by the network to predict Meibomian gland region instance 

segmentation. 

 

Network Design Details 

Instance Segmentation 

Meibomian gland instance segmentations were generated differently in the training and 

evaluation phases, since ground-truth segmentation (Meibomian gland region contours) were not 

available in the evaluation phase. In the training phase, ground-truth segmentation (with pixel-

wise feature embedding) for individual gland regions was available. Loss functions were 

employed to penalize the difference between network predictions and corresponding ground 

truths during training, so that networks could learn from the annotations to segment Meibomian 

glands accurately. Further details of the design and implementation of different loss terms can be 

found in a previous paper. A21 
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In the evaluation phase, intermediate outputs including pixel-wise embedding and gland number 

were extracted. K-means clustering was then performed on the embeddings to form different 

gland clusters. Different clusters corresponded to individual gland instance segmentations.  

 

Ghost Gland Identification 

A deep learning model was designed to identify ghost glands (Figure 3 of the paper). The neural 

network had three inputs: a whole meibography image, a specific gland region contour, and a 

corresponding cropped gland image. Inputs consisted of a global view of the meibography image 

and a local view of individual glands; thus, two subnetworks were used to learn to identify ghost 

glands. The global network learned a representation from the entire meibography image and the 

individual gland region contour, while the local network learned a representation from the 

individual gland image. The two representations were combined to predict ghost glands. A cross-

entropy loss was utilized to penalize wrong predictions. Specifically, the numbers of ghost and 

non-ghost glands were highly imbalanced (Figure 7 of the paper). The imbalanced data 

distribution can result in the model having high bias and a focus on learning from the majority. 

The imbalance in the data distribution leads to inequality in category-wise performance as the 

model ignores properties of the minority (i.e., ghost glands). To avoid imbalanced category-wise 

performance, A31, A32 class-aware balanced samplingA33 was employed to ensure that each training 

data batch had the same number of ghost and non-ghost glands and similar classification 

performance across two categories, so that the model learned from different categories equally. 
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Loss Functions for Training the Segmentation Model 

To train the Meibomian gland segmentation model, four loss terms were used: 1) A cross-

entropy loss was used to generate an entire Meibomian gland region contour similar to the 

ground truth; 2) A regression loss was employed to minimize the difference between the 

predicted gland number and the actual gland number; 3) A contrastive loss was utilized to reduce 

intra-gland pixel embedding distances and enlarge inter-gland pixel embedding distances; 4) A 

regularization loss was incorporated to penalize clusters too far away from the origin to keep the 

activations bounded. The four loss terms cooperatively produced reasonable Meibomian gland 

instance segmentations. Further details of the design and implementation of different loss terms 

can be found in a previous paper. A21 

 

Model Training Details 

Meibomian gland instance segmentation 

Each meibography image and corresponding Meibomian gland region segmentations were 

resized to 262 × 262 pixels. During training, 256 × 256 pixels were randomly cropped out of a 

given meibography image along with the corresponding annotations in every training epoch for 

data augmentation. A center crop of 256 × 256 pixels was made to a given meibography image 

and corresponding annotations during the evaluation process for both validation and evaluation 

datasets. 

 

Different network architectures (ReSeg networksA34 and stacked recurrent hourglass 

networksA35), weights of different loss terms, learning rate, and learning-rate decreasing policy 

were carefully assessed to obtain the best performance of the network on the validation dataset. 
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The best performance of the network over the validation set was the ReSeg network backbone, 

cross-entropy loss weight 1.0, regression loss weight 1.0, contrastive loss weight 1.0, 

regularization loss weight 1e-3, initial learning rate 1.0, 200 epochs in total, with learning rate 

decrease when the validation loss was not decreasing for 20 epochs. The algorithm performance 

of the model on the evaluation dataset was reported. 

 

Ghost Gland Classification 

As mentioned above, each gland in a meibography image was augmented to three images: the 

entire meibography image, the individual gland region contour and individual gland images. The 

first two images were fed to a global network while the last image was fed to a local network. 

Two representations from both networks were concatenated and a linear layer was employed to 

obtain a final vector indicating whether the gland was a ghost gland or not. 

 

Different network architectures (SqueezeNet, A36 resnet18, resnet34, resnet50A37), balanced 

sampling strategies, learning rate, and learning-rate decreasing policy were carefully assessed to 

obtain the best performance of the network on the validation dataset. The best performance of the 

network over the validation set employed the resnet18 backbone, class-aware balanced sampling 

strategy, A33 initial learning rate 1e-3, 90 epochs in total, with learning rate decrease when the 

validation loss was not decreasing for 20 epochs. 
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Local Morphological Features 

Based on individual Meibomian gland segmentations, local morphological features were 

quantitively measured. Morphological features included average gland local contrast, gland 

length, width and tortuosity. 

 

Gland Local Contrast 

Adopting an approach used in previous research, A7 the surrounding region of each Meibomian 

gland in an image was obtained by extending the gland region border by 10 pixels using binary 

dilation. A38 Surrounding regions are highlighted in color in Figure 4 of the paper for better 

visualizations. Gland pixels were also excluded if they overlapped with surrounding pixels. The 

average gland local contrast was defined as the difference in the average intensity of a gland 

region in the image and its surrounding area with negative values set to 0. Figure 4 of the paper 

demonstrates the process of Meibomian gland local contrast calculation with examples. 

 

Gland Length 

Gland length was calculated from the gland region using locally defined principal curves. A39 It is 

important to note that these curves are different from the linear principal curves used for 

Meibomian gland completion where only linear direction was desired. Locally defined principal 

curves utilize density estimation with gaussian mixture models to represent Meibomian gland 

regions, and to appropriately represent the region geometry. For each gland region, 

corresponding principal curves are shown in Figure 5 of the paper. They usually pass through the 

middle of the gland and fit the geometric shape of each Meibomian gland. Gland length was 

defined as the product of millimeters-per-pixel and the number of pixels of each principal curve. 
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Millimeters-per-pixel resolution in this set of images was 0.0235, which was measured with the 

image of a ruler captured by the imaging instrument. 

 

Gland Width 

The average gland width was defined as the gland area (the number of pixels in a Meibomian 

gland region) divided by the gland length. The number of pixels was also multiplied by the 

millimeters-per-pixel conversion factor to obtain gland width in millimeters. 

 

Gland Tortuosity 

Convexity defect was used to represent the overall tortuosity of a gland. As in Figure 6 of the 

paper, a convex hull (outlined in blue) of a Meibomian gland region (outlined in red) was found 

for each Meibomian gland region in the image. The cavity (marked in green) of a gland is 

defined as the area belonging to the convex hull area but not the gland region area. The 

convexity defect is thus defined as the ratio of the cavity area to the convex hull area. A larger 

convexity defect indicates a more tortuous gland. Convexity defect is referred to as the more 

commonly used clinical term “tortuosity” for convenience in this study. 

 

Gland Detection: Evaluation Metrics and Results 

Evaluation Metrics 

Detection performance is a key indicator of gland instance segmentation performance. Precision 

and recall were used as a standard metric for gland detection in this study. Specifically, an 

attempted match was made between each predicted gland region and a ground truth gland region. 

A match between the prediction and the ground truth was established for the highest mean 
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intersection over union (IU), provided that the mean intersection over union surpassed a 

threshold of 50%. Unmatched predicted glands were considered to be false positives while 

unmatched ground truth glands were considered to be false negatives, thereby permitting 

calculation of precision and recall. More details about evaluation metrics are available in the 

documentation for the Microsoft Common Objects in Context dataset. A40 
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Appendix Figure A1. Processing of Meibomian gland (MG) region annotations: Upper eyelid gland annotation completion and center 
crop. The first and the second row correspond to original MG region annotations and MG regions after extension, respectively (see 
the supplementary for details). Each column corresponds to an individual example eyelid. The boundaries of the cropped regions 
are marked in white. Only imaged MGs falling into the cropped region were retained although all MG region annotations are 
shown. (Top row) To avoid annotation variability, only the visible part of each MG was originally annotated. A principal curve 
was fit to the (visible) annotated MG region to obtain its linear direction. Annotated MG regions were then extended along the 
linear principal curve direction to the upper border of the annotated eyelid region, which was defined at the MG orifice. (Bottom 
row) Far nasal and temporal gland annotations were not considered in this study due to their ambiguity. Based on the eyelid region 
annotations, imaged glands falling in the center region (outlined in white) of width equaling to 50% eyelid width were retained 
while rest were discarded. Glands falling on the boundaries were also retained. 
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