Supplementary material for:

Activation of the dorsal, but not ventral, hippocampus relieves neuropathic pain in rodents

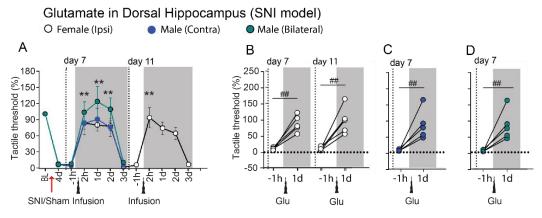
Xuhong Wei ^{1,2}§, Maria Virginia Centeno²§, Wenjie Ren², Anna Maria Borruto², Daniele Procissi³, Ting Xu¹, Rami Jabakhanji.², Zuchao Mao.², Haram Kim.², Yajing Li^{7,8,9}, Yiyuan Yang^{7,8,9}, Philipp Gutruf^{7,8,9} John A Rogers^{7,8,9}, Dalton James Surmeier², Jelena Radulovic⁴, Xianguo Liu¹, Marco Martina^{2,4}, Apkar Vania Apkarian^{2,5,6}

¹Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

- ² Department of Physiology,
- ³ Department of Radiology,

⁴ Department of Neuroscience and Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, The Bronx, NY,

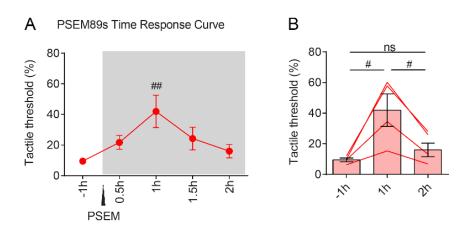
⁵ Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,

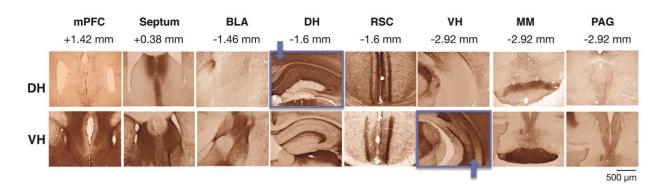

⁶ Department of Anesthesia, at Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60610.

⁷Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208. ⁸Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208.

⁹ Department of Neurological Surgery, FeinbergFeinberg School of Medicine, Northwestern University, Chicago, IL 60610.

§ These authors share equal contribution.


Figure S1


Supp Figure S1. Reversal of SNI induced tactile allodynia (pain-like behavior) was similar between male and female rats, and for ipsilateral, contralateral, or bilateral glutamate injections in the dorsal hippocampus. A. Temporal response profile for relief from tactile allodynia after microinjection of glutamate (21.2 pmol in 1µl volume) into dorsal hippocampus (DH) ipsilateral to the SNI injury in female rats and contralateral and bilateral to SNI injury in males and rats. In the female rats the glutamate injection was repeated at day 11 from SNI surgery. Both magnitude of pain relief and its duration were replicated with the second injection. B, C & D. Individual rat responses to glutamate injection in DH. Tactile thresholds are shown only for -1 hour prior to glutamate injection and at 2 hours post glutamate injection: for glutamate injected B. ipsilateral in female rats at day 7 and day 11 (n=5); C. contralateral in male rats at day 7 (n=5); and D. bilateral in male rats at day 7 (n=5), relative to the SNI injury. Post-hoc statistical significance of responses from baseline are indicated as **p < 0.001 (1-way ANOVA, post-hoc comparison with -1h) and ##p < 0.005 (compared with -1h paired t-test). For detailed statistics, see Table S1.

Methods for Suppl. Figure S1:

For these experiments we used Sprague Dawley rats weighing 200-250 g. The animals were grouphoused and had free access to standard chow and water. These experiments were done in Sun Yat-Sen University, Guangzhou, China. These animals were kept at 21±2°C temperature and 30-60% humidity, under a 12/12 h light/dark cycle. Handling and testing were performed during the light period. To minimize stress, they were handled regularly before surgery and behavioral testing. SNI surgeries were performed as described in the main manuscript.

Supp. Figure S2. Time response curve to PSEM activation. A-B. Tactile thresholds of SNI rats, tested at 5 time-intervals relative to i.p. injection of PSEM^{89s} (30 mg/kg). The PSEM^{89s} unmasks Na+ channels on the membrane surface of DH neurons, previously infected with PSAM-5HT3. Pain relief peaked at 1 hour after injection, lasting for less than 2 hours (n=4). ## p< 0.005 (1-way ANOVA post-hoc comparison with -1 h), # p<0.05 (post hoc comparison with -1 h, and with +2h), ns p> 0.05 (post hoc comparison between -1h and +2h). This time course of observed analgesia closely matches previous reports of the duration of unmasking Na+ channels with PSEM^{89s}, see (Aldrin-Kirk and Bjorklund 2019).

Supp. Figure S3. Projections from dorsal and ventral hippocampus in 2 healthy mice. Anterograde tracing was performed by injecting AAV8-mCherry (UNC, 0.5μ l/site) into the dorsal (anteroposterior -3mm; mediolateral 1 mm; ventrodorsal 2.25mm; blue arrow, box) or ventral (anteroposterior -1.8mm; mediolateral 2.25 mm; ventrodorsal 3mm; blue arrow, box) hippocampus. Immunostaining was performed using anti-mCherry antibodies (1:1,000, Abcam, ab167453) and visualized using diaminobenzidine. DH = terminations seen from dorsal hippocampus injection; VH = terminations from ventral hippocampus injection. mPFC = medial prefrontal cortex; BLA = basolateral amygdala; RSC = retrosplenial cortex; MM = mammillary bodies; PAG = periaqueductal grey.

Methods for Supp. Figure S3:

Two 9-week-old male C57BL/CN mice obtained from a commercial supplier (Harlan) were used for these experiments. Mice were individually housed and allowed ad libitum access to food and water. Immunostaining was performed using anti-mCherry antibodies (1:1,000, Abcam, ab167453) and visualized using diamino benzidine, as described previously (Corcoran KA et al., 2011).

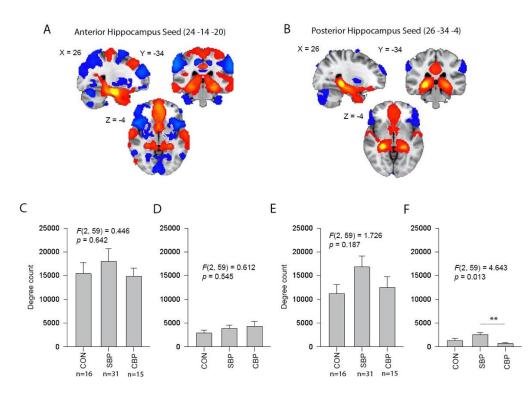
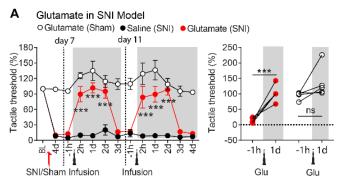


Figure S4: Human hippocampal anterior (AH) and posterior (PH) subdivisions show distinct negative functional connectivity (FC) in back pain patients. A & B Functional connections (FC) (red/yellow are positive; blue negative) for AH and PH seeds respectively (coordinates derived from study Qin, Duan et al. 2016) were used in meta-analysis website (Neurosynth, Yarkoni, Poldrack et al. 2011) and based on n=1000 healthy subjects. Negative FC from AH extends to many more brain regions and shows stronger connectivity than from PH. Degree count for positive (C & E) and negative (D & F) FC for AH and PH seeds in healthy controls (CON), subacute backpain (SBP) and chronic backpain (CBP) subjects. C. There was no statistically significant degree count differences between the three groups (1-way ANOVA, F(2,59) = 0.446, p = 0.642) for positive FC degree counts for the AH seed. D. There was no statistically significant degree count differences between the three groups (F(2,59) = 0.612, p = 0.545) for negative FC degree counts for the AH seed. E. There was no statistically significant degree count of (F(2,59) = 1.726, p = 0.187) for positive FC degree counts for the PH seed. F. Degree count for PH negative FC showed significant differences between groups (F(2,59) = 4.643, p = 0.013).

Methods for Supp. Figure S4:

Participants: The human study included 16 healthy control (CON) subjects (6/10 women/men; age: 36.69±7.08 years old, mean±SD), 15 sex- and age-matched patients with chronic back pain (CBP) (5/10 women/men; age: 42.67±5.34 years), and 31 matched patients with subacute back pain (SBP) (15/16 women/men; age: 40.19±11.02 years), all of whom were previously studied in (Baliki M et al., 2012;Mutso AA et al., 2014). All participants were right-handed, and all patients were diagnosed by a clinician for back pain and had pain intensity greater than 40/100 on the visual analog scale (VAS 0, no pain; 100, "worst pain imaginable"). SBP patients had pain duration of 4–16 weeks, and CBP patients had pain duration of more than 16 weeks. Participants were excluded if they reported any other chronic painful conditions, systemic disease, history of head injury, psychiatric diseases, or more than mild depression [score > 19, according to Beck's Depression Inventory (BDI)].

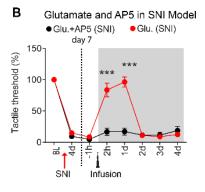
MRI scanning parameters: Subjects were scanned on a 3 Tesla Siemens Skyra scanner at Northwestern University, Chicago, USA. T1-anatomical brain images were acquired with following parameters: voxel size $1 \times 1 \times 1 \text{ mm}^3$; TR/TE = 2500/3.36 ms; flip angle = 9°; in-plane resolution = 256 × 256; slices per volume = 160; field of view = 256 mm. fMRI images were acquired on the same day with the following parameters: TR/TE = 2500/30 ms; flip angle = 90°; voxel size = 3.4375 x 3.4375 x 3 mm³; in-plane resolution = 64×64; number of volumes = 244; number of slices = 36, which covers the whole brain from the cerebellum to the vertex.


fMRI data acquisition, preprocessing and registration: During fMRI scan, subjects used a finger span device to perform a standardized visual task. All subjects underwent an initial training phase before scanning to learn the use of the finger span device and ensure adequate task performance (defined as r > 0.8 for correlation of stimulus time course with subject feedback). During imaging sessions, stimulus onset coincided with fMRI acquisition onset and frame rate was synchronized with fMRI TEs.

A scrubbing-based preprocessing pipeline (Power JD et al., 2014) was applied to all fMRI data, including the following procedures: discard of first 4 volumes, motion correction, slice-time correction, intensity normalization, regression of six motion vectors and cerebrospinal fluid and white matter signals, motion-volume censoring and band-pass filtering (0.008-0.1 Hz). The details of each step were described in (Huang S et al., 2019).

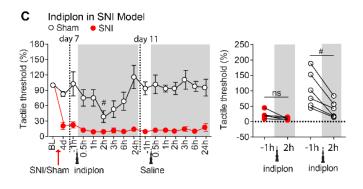
All pre-processed MRI data were registered to MNI152 2mm template by using a two-step FNIRT [<u>https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf</u>]. Each preprocessed fMRI volume was registered with a 7 degrees of freedom affine transformation to its corresponding T1 brain. Transformation parameters were also computed by nonlinearly registering all T1 brains to the MNI152 template. Combining the two transformations by matrix multiplication yielded transformation parameters normalizing fMRI data to standard space.

Functional connectivity between subregions of hippocampus and cortex: To examine and distinguish the extent of functional connectivity (FC) between two subregions (anterior and posterior) of hippocampus and cortex, "degree count" (Sporns O, 2013) was computed. Firstly, the anterior and posterior hippocampus BOLD signals averaged overall voxels of their ROIs were extracted, respectively. Both anterior and posterior ROIs consisted of 27 voxels. The BOLD signal correlations between each ROI and each voxel of cortex region defined in (Qin S et al., 2016) were calculated, generating individual anterior and posterior hippocampus FC correlation maps. The range of


correlation is between -1 and 1 and negative value represents inverse relationship between two BOLD signals. Finally, a ROI region and a voxel were considered functionally connected if their BOLD signals correlated with r > threshold or r < -threshold. Two values (degrees) were assigned to each ROI after counting the number of connections between the ROI and the cortex when the threshold was set, corresponding to the extent of positive and negative functional connectivity. For each subject, there were 4 degree counts, representing positive/negative functional connectivity between anterior/posterior hippocampus and cortex, respectively. In this study, the threshold was set as 0.3, guaranteeing functional connections had a false positive rate less than 0.001 (Mutso AA et al. 2014).

Supp. Table S1-1 (Figure 1A)

		Repea	ated measures /	ANOVA	
Figure	Test / N	Effect	DF	F	Р
	Saline (SNI, N = 6),	Group	2, 195	352.2	< 0.0001
Fig. 1A	Glu (SNI, N = 6),	Test-session	12, 195	16.21	< 0.0001
(Left)	Glu (Sham, N = 6)	Interaction	24, 195	7.387	< 0.0001
	Fig. 1A:	Tukey's post-h	oc multiple con	nparisons test	
и	ithin group compari	son	B	etween group comparis	son
Group	Test	Р	Group	Test	Р
Saline	-1h, 2h (1st infu.)	> 0.9999	Saline (SNI),	-1h (post 1st infu.)	0.8210
(SNI)	-1h, 1d (1st infu.)	> 0.9999	Glutamate	2h (post 1st infu.)	< 0.0001
	-1h, 2d (1st infu.)	0.9939	(SNI)	1d (post 1st infu.)	< 0.0001
	-1h, 2h (2nd infu.)	> 0.9999		2d (post 1st infu.)	< 0.0001
	-1h, 1d (2nd infu.)	> 0.9999		-1 (post 2nd infu.)	0.9670
	-1h, 2d (2nd infu.)	> 0.9999		2h (post 2nd infu.)	< 0.0001
Glutamate	-1h, 2h (1st infu.)	< 0.0001		1d (post 2nd infu.)	< 0.0001
(SNI)	-1h, 1d (1st infu.)	< 0.0001		2d (post 2nd infu.)	< 0.0001
	-1h, 2d (1st infu.)	< 0.0001	Glutamate	-1h (post 1st infu.)	< 0.0001
	-1h, 2h (2nd infu.)	< 0.0001	(SNI),	2h (post 1st infu.)	0.0168
	-1h, 1d (2nd infu.)	< 0.0001	Glutamate	1d (post 1st infu.)	0.0294
	-1h, 2d (2nd infu.)	< 0.0001	(Sham)	2d (post 1st infu.)	0.2981
Glutamate	-1h, 2h (1st infu.)	0.5176		-1h (post 2nd infu.)	< 0.0001
(Sham)	-1h, 1d (1st infu.)	0.1208		2h (post 2nd infu.)	0.0015
	-1h, 2d (1st infu.)	0.9644		1d (post 2nd infu.)	0.0011


	-1h, 2h (2nd infu.)	0.9510	 2d (post 2nd infu.)	
	-1h, 1d (2nd infu.)	0.6951		
	-1h, 2d (2nd infu.)	> 0.9999		
F	Paired t test comparise	on		
Figure	Group / N	Р		
Fig. 1A	SNI, N = 6	0.0007		
(Left)	Sham, N = 6	0.0875		

Supp. Table S1-2 (Figure 1B)

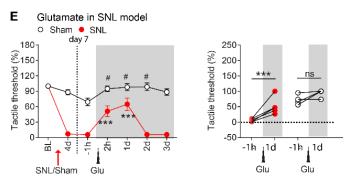
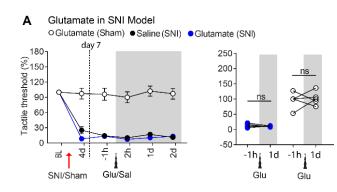
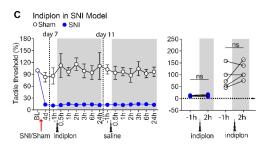

Repeated measures ANOVA							
Figure	Test / N	Effect	DF	F	Р		
Fig. 1B	Glu+AP5 (SNI, N = 9)	Group	1, 128	59.20	< 0.0001		
	Glu (SNI, N = 9)	Test-session	7, 128	98.61	< 0.0001		
		Interaction	7, 128	25.98	< 0.0001		
	Fig. 1B. Tu	kov's post-bos p	aultinla compar	icons tost			

	Fig. 1B: Tukey's post-hoc multiple comparisons test							
Within group comparison			Between group comparison					
Group	Test	Р	Group	Test	Р			
Glutamate+	-1h, 2h	0.6241	Glutamate+AP	-1h (post infu.)	> 0.9999			
AP5 (SNI)	-1h, 1d	0.5999	5 (SNI),	2h (post infu.)	< 0.0001			
	-1h, 2d	0.9701	Glutamate	1d (post infu.)	< 0.0001			
Glutamate	-1h, 2h	< 0.0001	(SNI)	2d (post infu.)	> 0.9999			
(SNI)	-1h, 1d	< 0.0001						
	-1h, 2d	> 0.9999						


Supp. Table S1-3 (Figure 1C)

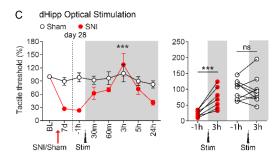
	Repeated measures ANOVA							
Figure	Test / N	Effect	DF	F	Р			
Fig. 1C	infusion (SNI, N = 5),	Group	1, 144	257.1	< 0.0001			
(Left)	infusion (Sham, N =6)	Test-session	15, 144	3.823	< 0.0001			
		Interaction	15, 144	2.394	< 0.0001			
	Fig. 1C: 1	'ukey's post-ho	c multiple co	omparisons test				
	Within group comparis	on		Between group compar	ison			
Group	Test	Р	Group	Test	Р			
Infusion	-1h, 2h (post indiplon)	> 0.9999	Infusion	-1h (post indiplon)	0.0001			
(SNI)	-1h, 3h (post indiplon)	> 0.9999	(SNI),	0.5h (post indiplon)	0.0056			
	-1h, 6h (post indiplon)	> 0.9999	Infusion	1h (post indiplon)	0.0028			
	-1h, 2h (post saline)	> 0.9999	(Sham)	2h (post indiplon)	0.7799			
	-1h, 3h (post saline)	> 0.9999		3h (post indiplon)	0.2256			
	-1h, 6h (post saline)	> 0.9999		6h (post indiplon)	0.0124			
Infusion	-1h, 2h (post indiplon)	0.0128		24h (post indiplon)	< 0.0001			
(Sham)	-1h, 3h (post indiplon)	0.1791		-1h (post saline)	< 0.0001			
	-1h, 6h (post indiplon)	0.7753		0.5h (post saline)	< 0.0001			
	-1h, 2h (post saline)	> 0.9999		1h (post saline)	< 0.0001			
	-1h, 3h (post saline)	0.9996		2h (post saline)	< 0.0001			
	-1h, 6h (post saline)	> 0.9999		3h (post saline)	< 0.0001			
				6h (post saline)	< 0.0001			
				24h (post saline)	0.0002			
	Paired t test com	parison						
Figure	Group / N	Р						
Fig. 1C	SNI, N = 5	0.0975						
(Right)	Sham, N = 6	0.0064						

Supp. Table S1-4 (Figure 1E)

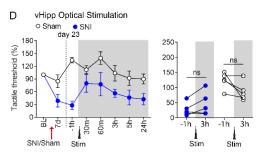

		Repe	ated measures	ANOVA				
Figure	Test / N	Effect	DF	F	Р			
Fig. 1E	Glu (Sham, N = 5),	Group	1, 63	286.0	< 0.0001			
(Left)	Glu (SNL, N = 6)	Test-session	6, 63	26.01	< 0.0001			
		Interaction	6, 63	13.86	< 0.0001			
	Fig. E (Left): Tukey's post-hoc multiple comparisons test							
V	Within group comparison			Between group compar	ison			
Group	Test	Р	Group	Test	Р			
Glutamate	-1h, 2h	0.0463	Glutamate	-1h (post infu.)	< 0.0001			
(Sham)	-1h, 1d	0.0175	(Sham),	2h (post infu.)	< 0.0001			
	-1h, 2d	0.0144	Glutamate	1d (post infu.)	0.0028			
Glutamate	-1h, 2h	< 0.0001	(SNL)	2d (post infu.)	< 0.0001			
(SNL)	-1h, 1d	< 0.0001						
	-1h, 2d	> 0.9999						
Paired t test comparison								
Figure	Group / N	Р						
Fig. 1E	SNI, N = 6	0.0045						
(Right)	Sham, N = 5	0.0559						

Supp. Table S1-5 (Fig. 2A)

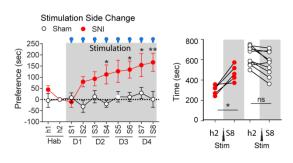
	Repeated measures ANOVA							
Figure	Test / N	Effect	DF	F	Р			
Fig. 2A	Glu (SNI, N = 5),	Group	2, 72	259.0	< 0.0001			
(Left)	Saline (SNI, N = 5),	Test-session	5, 72	47.27	< 0.0001			
	Glu (Sham, N = 5)	Interaction	10, 72	10.72	< 0.0001			
	Fig. 2 (Left): Tukey's post-hoc multiple comparisons test							


V	Within group comparison			Between group comparison		
Group	Test	Р	Group	Test	Р	
Glutamate	-1h, 2h	0.9826	Saline (SNI),	-1h (post infu.)	0.9923	
(SNI)	-1h, 1d	0.9995	Glutamate	2h (post infu.)	0.9334	
	-1h, 2d	> 0.9999	(SNI)	1d (post infu.)	0.7415	
Glutamate	-1h, 2h	0.9815		2d (post infu.)	0.9740	
(Sham)	-1h, 1d	0.9784				
	-1h, 2d	> 0.9999	-			
F	Paired t test compari	son				
Figure	Group / N	Р				
Fig. 2A	SNI, N = 5	0.4496				
(Right)	Sham, N = 5	0.7150				

Supp. Table S1-6 (Figure 2C)

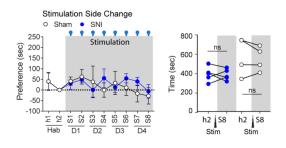

	Repeated measures ANOVA								
Figure	Test / N	Effect	DF	F	Р				
	infusion (SNI, N = 5),	Group	1, 128	317.7	< 0.0001				
Fig. 2C	infusion (Sham, N =	Test-	15, 128	1.820	0.0384				
(Left)	5)	session							
		Interaction	15, 128	1.697	0.0591				
	Fig. 2C (Left): Tukey's p	ost-hoc mul	tiple comparisons test					
	Within group comparis	son		Between group comp	arison				
Group	Test	Р	Group	Test	Р				
Infusio	-1h, 2h (post	> 0.9999	Infusion	-1h (post indiplon)	0.0008				
n (SNI)	indiplon)		(SNI),						
	-1h, 3h (post	> 0.9999	Infusion	0.5h (post indiplon)	< 0.0001				
	indiplon)		(Sham)						
	-1h, 6h (post	> 0.9999		1h (post indiplon)	0.0002				
	indiplon)								
	-1h, 2h (post saline)	> 0.9999		2h (post indiplon)	< 0.0001				
	-1h, 3h (post saline)	> 0.9999		3h (post indiplon)	< 0.0001				
	-1h, 6h (post saline)	> 0.9999		6h (post indiplon)	0.0002				
Infusio	-1h, 2h (post	0.7860		24h (post indiplon)	< 0.0001				
n	indiplon)								
(Sham)	-1h, 3h (post	> 0.9999		-1h (post saline)	< 0.0001				
	indiplon)								
	-1h, 6h (post	> 0.9999		0.5h (post saline)	0.0003				
	indiplon)								

	-1h, 2h (post saline)	> 0.9999	1h (post sali	ne) < 0.0001
	-1h, 3h (post saline)	0.9960	2h (post sali	ne) 0.0010
	-1h, 6h (post saline)	> 0.9999	3h (post sali	ne) < 0.0001
			6h (post sali	ne) 0.0004
			24h (post sal	ine) 0.0001
	Paired t test compar	ison		
Figure	Group / N	Р		
Fig. 2C	SNI, N = 5	0.2953		
(Right)	Sham, N = 5	0.1974		


Supp. Table S1-7 (Figure 3C)

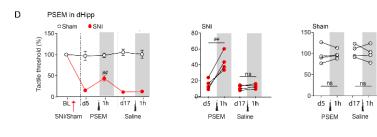
			Repeated n	neasures ANOVA	
Figure	Test / N	Effect	DF	F	Р
Fig. 3C	Sham (N =	Group	1, 112	24.80	< 0.0001
(Left)	9), SNI (N =	Test-session	7, 112	6.238	< 0.0001
	7)	Interaction	7, 112	3.513	0.0019
		Fig. 3C (Left): Tu	key's post-hoc	multiple comparisons test	
Wi	ithin group con	nparison		Between group compariso	n
Group	Test	Р	Group	Test	Р
Sham	-1h, 30min	> 0.9999	Sham, SNI	-1h (post optical stim.)	0.0001
	-1h, 60min	> 0.9999		30min (post optical stim.)	0.5917
	-1h, 3h	> 0.9999		60min (post optical stim.)	0.9255
	-1h, 5h	> 0.9999		3h (post optical stim.)	> 0.9999
	-1h, 24h	> 0.9999		5h (post optical stim.)	> 0.9999
SNI	-1h, 30min	0.8001		24h (post optical stim.)	0.1095
	-1h, 60min	0.2429			
	-1h, 3h	< 0.0001			
	-1h, 5h	0.1785			
	-1h, 24h	> 0.9999			
Pa	ired t test com	parison			
Figure	Group / N	Р			
Fig. 3C	SNI, N = 7	0.0022			
(Right)	Sham, N = 9	0.8741			

Supp. Table S1-8 (Figure 3D)

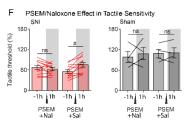

			Reneated n	neasures ANOVA	
Figure	Test / N	Effect	DF	F	Р
Fig. 3D	, Sham (N = 5),	Group	1, 64	43.53	< 0.0001
(Left)	SNI (N = 5)	Test-session	7, 64	2.705	0.0161
		Interaction	7, 64	2.051	0.0620
	Fi	ig. 3D (Left) : T	ukey's post-hoc	multiple comparisons test	
W	ithin group com	parison		Between group comparis	on
Group	Test	Р	Group	Test	Р
Sham	-1h, 30min	> 0.9999	Sham, SNI	-1h (post optical stim.)	< 0.0001
	-1h, 60min	> 0.9999		30min (post optical stim.)	> 0.9999
	-1h, 3h	> 0.9999		60min (post optical stim.)	0.0333
	-1h, 5h	> 0.9999		3h (post optical stim.)	0.2030
	-1h, 24h	0.9988		5h (post optical stim.)	0.2477
SNI	-1h, 30min	0.4190		24h (post optical stim.)	0.2007
	-1h, 60min	0.5500			
	-1h, 3h	> 0.9999			
	-1h, 5h	> 0.9999			
	-1h, 24h	> 0.9999			
Pa	ired t test comp	parison			
Figure	Group / N	Р			
Fig. 3D	SNI, N = 5	0.1217			
(Right)	Sham, N = 5	0.0858			

Supp. Table S1-9 (Figure 4C)

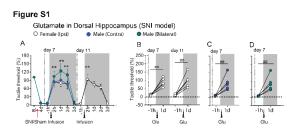
	Repeated measures ANOVA										
Figure	Test / N	Effect	DF	F	Р						
Fig. 4C	Sham (N = 5),	Group	1, 120	43.40	< 0.0001						
(Left)	SNI (N = 9)	Test-session	9, 120	2.558	0.0100						


		Interaction	9, 120	2.031	0.0415	
	Fi	g. 4C (Left): Tuk	ey's post-hoc m	ultiple comparisons test		
V	Vithin group com	parison		Between group comparison		
Group	Test	Р	Group	Test	Р	
Sham	h2, S1	> 0.9999	Sham, SNI	h2	> 0.9999	
	h2, S2	> 0.9999		S1 (post optical stim.)	> 0.9999	
	h2, S3	> 0.9999		S2 (post optical stim.)	0.0998	
	h2, S4	> 0.9999		S3 (post optical stim.)	0.5957	
	h2, S5	> 0.9999		S4 (post optical stim.)	0.0224	
	h2, S6	> 0.9999		S5 (post optical stim.)	0.0786	
	h2, S7	> 0.9999		S6 (post optical stim.)	0.0430	
	h2, S8	> 0.9999		S7 (post optical stim.)	0.0371	
SNI	h2, S1	> 0.9999		S8 (post optical stim.)	0.0015	
	h2, S2	> 0.9999				
	h2, S3	> 0.9999				
	h2, S4	0.9258				
	h2, S5	0.4243				
	h2, S6	0.2737				
	h2, S7	0.0757				
	h2, S8	0.0319				
Paired t test comparison						
Figure	Group / N	Р				
Fig. 4C	SNI, N = 5	0.0415				
(Right)	Sham, N = 9	0.9823				

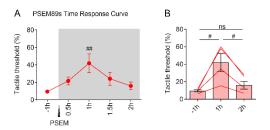
Supp. Table S1-10 (Figure 4E)


	Repeated measures ANOVA										
Figure	Figure Test / N Effect		DF	F	Р						
Fig. 4E	Sham (N = 4),	Group	1, 70	0.3848	0.5370						
(Left)	SNI (N = 5)	Test-session	9, 70	0.7193	0.6896						
	Interaction		9, 70	0.4581	0.5370						
	Fig. 4E (Left): Tukey's post-hoc multiple comparisons test										
Wi	ithin group com	parison		Between group compariso	on						
Group	Test	Р	Group	Test	Р						
Sham	h2, S1	> 0.9999	Sham, SNI	h2	> 0.9999						
	h2, S2	> 0.9999		S1 (post optical stim.)	> 0.9999						
h2, S3		> 0.9999		S2 (post optical stim.)	> 0.9999						
	h2, S4	> 0.9999		S3 (post optical stim.)	> 0.9999						

	h2, S5	> 0.9999		S4 (post optical stim.)	> 0.9999
	h2, S6	> 0.9999		S5 (post optical stim.)	> 0.9999
	h2, S7	> 0.9999		S6 (post optical stim.)	> 0.9999
	h2, S8	> 0.9999		S7 (post optical stim.)	> 0.9999
SNI	h2, S1	> 0.9999		S8 (post optical stim.)	> 0.9999
	h2, S2	> 0.9999			
	h2, S3	> 0.9999			
	h2, S4	> 0.9999			
	h2, S5	> 0.9999			
	h2, S6	> 0.9999			
	h2, S7	> 0.9999			
	h2, S8	> 0.9999			
Ра	ired t test compa	arison			
Figure	Group / N	Р]		
Fig. 4E	SNI, N = 5	0.9797]		
(Right):	Sham, N = 4	0.5209			
	-		•		


Supp.Table S1-11 (Figure 5D)

	Repeated measures ANOVA										
Figure	Test / N	Effect	DF	F	Р						
Fig. 5D	Sham (N = 4),	Group	1, 30	302.7	< 0.0001						
(Left)	SNI (N = 4)	Test-session	4, 30	20.81	< 0.0001						
		Interaction	4, 30	22.30	< 0.0001						
	Fig. 5D (Left): Tukey's post-hoc multiple comparisons test										
	Within group comparison Between group comparison										
Group	Test	Р	Group	Test	Р						
Sham	-1h, 1h (post PSEM)	> 0.9999	Sham, SNI	-1d	> 0.9999						
	-1h, 1h (post saline)	> 0.9999		-1h (post PSEM)	< 0.0001						
SNI	-1h, 1h (post PSEM)	0.0167		1h (post PSEM)	< 0.0001						
	-1h, 1h (post saline)	> 0.0009		-1h (post Saline)	< 0.0001						
				1h (post Saline)	< 0.0001						
	Fig.	5D (Middle, Rig	ht): Paired t t	est comparisons							
Figure	Group / N	Р	Figure	Group / N	Р						
Fig. 5D	PSEM, N = 4	0.0080	Fig. 5D	PSEM, N = 4	0.7914						
(Middle)	Saline, N = 4	0.1884	(Right)	Saline, N = 4	0.5585						


Supp. Table S1-12 (Figure 5F)

	Paired t test comparisons										
Figures	igures Group / N P Figures Group / N P										
Fig. 5F	PSEM+Nal, N = 12	0.3653	Fig. 5F	PSEM+Nal, N = 4	0.6597						
	PSEM+Sal, N = 12	0.0037		PSEM+Sal, N = 4	0.8331						

Supp. Table S1-13 (Supp. Figure S1)

			Fig 1S.A	Repeated measu	res ANOVA				
Figure		Test / N	Effect	DF	F		Р		
Fig. S1. A	Ferr	n. Ipsi (N = 5),	Group	2,104	0.746		0.495		
	Mal	e Contra (N = 5)	Test-session	6,104	88.956	<	0.001		
	Mal	e Bi (N = 5)	Interaction	12,104	0.663		0.780		
	Tukey's multiple comparisons test								
Group		Test comp. with	BL P	Group	Test comp.	with -1h	Р		
Female (Ips	si),	-1h	< 0.001	Female (Ipsi),	2h (post	: Glu)	<0.001		
Male (Contr	a),	2h (post Glu)	0.190	Male (Contra),	1d (pos	t Glu)	<0.001		
Male (Bilate	ral)	1d (post Glu) 0.763	Male	2d (pos	t Glu)	<0.001		
		2d (post Glu) 0.079	(Bilateral)	(Bilateral) 3d (post G		1.000		
		3d (post Glu)	< 0.001						
		Fi	g. 1S B, C & D:	Paired t test com	parisons				
Figure	Figure Group / N P		Figui	re	Group / N	Р			
Fig. 1S.B		-1h, 2h (day7)	0.0019	Fig. 1S.C (Male (Contra)	-1h, 2h (day7)	0.0023		
(Female Ipsi) -1		-1h, 2h (day11)	0.0017	Fig. 1S.D (Male E	Bilateral)	-1h, 2h (day7)	0.0016		

Supp. Table S1-14 (Supp. Figure S2)

	Repeated measures one-way ANOVA										
Figures	Test / N	Effect	DF	F	Р						
Fig. S1A	Time course, N = 4	Test session	4, 12	5.992	0.0069						
		Individuals	2, 12	5.133	0.0163						
Fig. S1B	Time course, N = 4	Test session	2, 6	12.11	0.0078						
		Individuals	3, 6	4.008	0.0698						
	Tukey's post-hoc multiple comparisons test										
Figure	Comparison	Test	DF		Р						
Fig. S1A	Between test	-1h <i>,</i> 0.5h	12		0.4052						
	sessions comparison	-1h, 1h	12		0.0020						
		-1h, 1.5h	12		0.2137						
		-1h, 2h	12		0.8523						
		Tukey's post-hoc	multiple comp	arisons test							
Figure	Comparison	Test	DF		Р						
Fig. S1B	Between test	-1h, 1h	6		0.0074						
	sessions comparison	-1h, 2h	6		0.4328						
		1h, 2h	6		0.0318						

Supp. Table S2. Functional connectivity changes between PSEM^{89S} and saline conditions, based on network analysis after parceling the brain into 96 regions.

Target ROI								
	Source ROI	Increased r	Decreased r	<u>Mean Delta</u> <u>r</u>	<u>Standard</u> <u>Error</u>	P-Value		
	- Anterodorsal L	16 - Cingulate Cortex R		0.12	0.0504	0.0234		
45 -	- Anterodorsal L	21 - Insular Cortex L		0.08	0.0449	0.0297		
45 -	- Anterodorsal L	23 - Medial Prefrontal Cortex L		0.07	0.0502	0.0487		
45 -	- Anterodorsal L	25 - Motor Cortex L		0.09	0.0537	0.0481		
45 -	- Anterodorsal L	35 - Somatosensory Cortex L 38 - Temporal Association Cortex		0.09	0.0556	0.0457		
45 -	- Anterodorsal L	R		0.09	0.0445	0.0154		
45 -	– Anterodorsal L	46 - Hippocampus Anterodorsal R		0.13	0.0596	0.0396		
45 -	– Anterodorsal L	65 - Mesencephalic Region L		0.09	0.0481	0.0386		
45 -	– Anterodorsal L	71 - Periaqueductal Grey L		0.14	0.0405	0.0026*		
45 -	– Anterodorsal L	95 - Zona Incerta L		0.09	0.0341	0.0191		
46 -	- Anterodorsal R	33 - Retrosplenial Cortex L		0.13	0.0359	0.0043*		
46 -	- Anterodorsal R	44 - Globus Pallidus R		0.12	0.0432	0.006*		
46 -	- Anterodorsal R		51 - Subiculum L	-0.12	0.0519	0.0037*		
46 -	- Anterodorsal R	85 - Thalamus Dorsolateral L		0.10	0.0402	0.0262		
46 -	- Anterodorsal R	86 - Thalamus Dorsolateral R		0.12	0.0527	0.0294		
46 -	- Anterodorsal R	87 - Thalamus Midline Dorsal L		0.11	0.0446	0.0145		
46 -	- Anterodorsal R		91 - Ventral Pallidum L	-0.09	0.0449	0.0432		
46 -	- Anterodorsal R	94 - Ventral Tegmental Area R		0.12	0.0395	0.0041*		
49 -	- Posterodorsal L	13 - Auditory Cortex L		0.13	0.0689	0.0235		
49 -	- Posterodorsal L		51 - Subiculum L	-0.10	0.0375	0.0497		
49 -	- Posterodorsal L		79 - Substantia Innominata L	-0.11	0.0471	0.031		
49 -	- Posterodorsal L		90 - Thalamus ventromedial R	-0.11	0.0402	0.0042*		
50 -	- Posterodorsal R		5 - Amygdala L	-0.11	0.0504	0.0275		
50 -	- Posterodorsal R	16 - Cingulate Cortex R		0.10	0.0557	0.0153		
50 -	- Posterodorsal R	22 - Insular Cortex R		0.11	0.0367	0.0074*		
50 -	- Posterodorsal R	23 - Medial Prefrontal Cortex L		0.12	0.0612	0.024		
50 -	- Posterodorsal R	24 - Medial Prefrontal Cortex R		0.12	0.0663	0.0344		
50 -	- Posterodorsal R	29 - Parietal Association Cortex L		0.11	0.0607	0.0269		
50 -	- Posterodorsal R	30 - Parietal Association Cortex R		0.12	0.0616	0.016		
50 -	- Posterodorsal R	36 - Somatosensory Cortex R		0.09	0.0562	0.0475		
50 -	- Posterodorsal R		48 - Hippocampus Posterior R	-0.11	0.0696	0.0376		
50 -	- Posterodorsal R		55 - Hypothalamus Lateral L	-0.07	0.0435	0.0435		
50 -	- Posterodorsal R	60 - Internal Capsule R		0.11	0.0573	0.0227		
50 -	- Posterodorsal R	85 - Thalamus Dorsolateral L		0.13	0.0491	0.0072*		

Brain regions with increased and decreased connectivity to the 4 dorsal hippocampus regions are shown, together with mean change in correlation coefficient, standard error, and permutation-based p values. We corrected for false discovery rate (FDR) using Benjamini-Hochberg procedure. The corrected p-values for a false discovery rate of 0.25 divided by the number of tests performed = 34, resulting in a FDR p-value cut-off = 0.25/34 = 0.0075. Only 8 of the identified connections survive, highlighted and indicated by * next to their p-values. ROI numbers are listed in (Baliki MN et al., 2014).

Increased functional connectivity is observed between DH and: periaqueductal grey, retrosplenial cortex, globus pallidus, ventral tegmental area, insula, and lateral thalamus. In contrast, decreased functional connectivity is observed between DH and subiculum, and between DH and medial thalamus. Given that the PSAM-5HT3 virus was injected bilaterally in the DH, the laterality of observed functional connections is not important.

Supp. Table S3. Brain regions where PSEM^{89s}-dependent changes in functional connectivity with the DH were correlated with changes in tactile allodynia.

Pos	sitive covariance with VF thresholds change						
Ana	atomical structure	Size (Vox)	p value	z value	Coor	dinates (m	າm)
					х	У	Z
L	Primary Somatosensory Cortex (limb)	259	1.65E-21	3.82	0.58	-2.52	2.20
L	Thalamus Dorsolateral	121	4.98E-12	3.76	-1.55	-4.65	-2.00
R	Primary Motor Cortex	88	2.76E-09	3.41	2.33	-1.94	2.60
R	Superior Colliculus / Retrosplenial Cortex	64	4.77E-07	4.17	0.78	-3.49	-7.00
L	Medial Prefrontal Cortex (Infralimbic, IL)	47	2.54E-05	3.63	-0.39	-6.01	3.40
L	Superior Colliculus / Retrosplenial Cortex	43	6.99E-05	3.00	0.00	-3.68	-6.00
R	Posterior Hippocampus / Subiculum	41	1.17E-04	2.98	4.07	-2.91	-6.40
R	Medial Prefrontal Cortex	40	1.53E-04	3.86	1.55	-4.46	3.40
L	Retrosplenial Cortex	38	2.59E-04	3.55	-1.55	-2.52	-6.80
R	Cortex Insular	34	7.72E-04	2.84	3.30	-4.65	2.60

Negative covariance with VF thresholds change

Ana	Anatomical structure		omical structure Size (Vox) p value z value		Coordinates (mm)			
					х	У	Z	
L	Zona Incerta	126	2.02E-12	3.75	-1.55	-7.17	-3.60	
R	Primary Somatosensory Cortex (barrel field, S1BF)	111	3.16E-11	4.07	4.46	-2.71	-3.00	
L	Primary Somatosensory Cortex (barrel field, S1BF)	96	5.60E-10	3.29	-3.68	-2.71	-2.80	
R	Posterior Hippocampus (CA1)	93	1.01E-09	3.67	3.10	-1.94	-4.00	
L	Caudate Putamen	57	2.26E-06	3.53	-2.33	-3.30	0.40	
R	Substantia Nigra / Peripeduncular nucleus	57	2.26E-06	3.13	2.52	-7.56	-5.20	
L	Ventral Pallidum	42	9.05E-05	3.00	-2.52	-7.75	-0.60	
L	Caudate Putamen / Insula	40	1.53E-04	3.48	-5.04	-6.98	-0.80	

Anatomical structures (R=right, L=left hemisphere), cluster sizes, p-values, peak z-values, and peak coordinates are labeled. Cluster and intensity corrected for multiple comparisons for maps identified in the discovery data. Only brain regions where p was <0.0001 are shown. Three brain regions which survived replication are in grey (circled in yellow in **Figure 7A**).

References:

Baliki M, Petre B, Torbey S, Herrmann K, Huang L, Schnitzer T, Fields H, Apkarian A (2012), Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15:1117-1119. Baliki MN, Chang PC, Baria AT, Centeno MV, Apkarian AV (2014), Resting-sate functional reorganization of the rat limbic system following neuropathic injury. Sci Rep 4:6186. Corcoran KA, Donnan MD, Tronson NC, Guzman YF, Gao C, Jovasevic V, Guedea AL, Radulovic J (2011), NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J Neurosci 31:11655-11659.

Huang S, Wakaizumi K, Wu B, Shen B, Wu B, Fan L, Baliki MN, Zhan G, et al. (2019), Whole-brain functional network disruption in chronic pain with disk herniation. Pain 160:2829-2840.

Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM, Schnitzer TJ, Apkarian AV (2014), Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol 111:1065-1076.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014), Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320-341.

Qin S, Duan X, Supekar K, Chen H, Chen T, Menon V (2016), Large-scale intrinsic functional network organization along the long axis of the human medial temporal lobe. Brain Struct Funct 221:3237-3258.

Sporns O (2013), Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162-171.