Author	Model	Dose ⁱ	Outcome
Roof et al, 1992 (96)	MFC, Adult M and F rats	P 4 mg/kg x 2d	↓ edema at 3d post TBI (with P up to 24h) Best with earlier P
Roof et al, 1993 (15)	MFC, Adult F (OVX) rats	E implants vs. P 4 mg/kg x 6d	\downarrow edema E + P, P alone; no change E alone
Roof et al, 1996 (10)	MFC, Adult M and F rats	P 4 mg/kg x 7d	\downarrow edema 6h to 3d; no change at 7d
Roof et al, 1997 (9)	MFC, Adult M rats	Р	\downarrow 8-isoPGF 2 α at 24, 48 and 72h
Galani et al, 2001 (97)	MFC, Adult M rats	P 4 mg/kg x 3d vs. 5d	↓ edema at 6d post TBI, 5d>3d
Wright et al, 2001 (17)	MFC, Adult M rats	P 4 mg/kg x 1d	↓ edema at 48h post TBI
Shear et al, 2002 (98)	MFC, Adult M rats	P 4 mg/kg x 3d vs. 5d	↓ LV, cell loss, 5d>3d ↑ MWM, ↓ sensory neglect with 5d only
Goss et al, 2003 (18)	MFC, Adult M rats	P 8/16/32 mg/kg x 5d	↑ MWM, ↓ thigmotaxis with P8, P16 No effect on LV
Djebaili et al, 2004 (99)	MFC, Adult M rats	P 16 mg/kg vs. AP 4/8/16 mg/kg x 5d	 ↓ C-3 activity at 1d with P16, AP8, AP16 ↓ DNA fragmentation at 1d with AP16 ↓ LV at 19d with P16, AP8, AP16
Grossman et al, 2004 (100)	MFC, Adult M rats	P 4 mg/kg x 5d	 ↓ edema with P ↑ macrophages/activated microglia
He, Restor. Neurol.Neurosci 2004 (101)	MFC, Adult M rats	AP 4 mg/kg vs. Epi AP 4 mg/kg x 5d	\uparrow MWM, \downarrow LV at 7d AP; no change Epi AF
He, Exp.Neurol. 2004 (102)	MFC, Adult M rats	P 8 mg/kg vs. AP 4 mg/kg x 5d	\downarrow IL-1 β , TNF α at 3h with P, AP
Cutler et al, 2005 (19)	MFC, Adult M rats	P 16 mg/kg x 7d +/- taper	↑ anxiety - P taper ↓ apoptotic, inflammatory markers + P tape

Supplemental Table.1 Published preclinical research studies of progesterone use in adult traumatic brain injury

Author	Model	Dose	Outcome
Djebaili et al, 2005 (33)	MFC, Adult M rats	P 16 mg/kg vs. AP 4/8/16 mg/kg x 5d	 ↓ C-3, Bax proteins at 1d with P, AP ↓ DNA fragmentation at 1d with P, AP ↓ size GFAP and astrocytes at 1d with P, AP ↑ MWM at 19d with P, AP8
Jones et al, 2005 (103)	ACI, M mice	P 8 mg/kg IP at 2', 6h, 24h	 ↓ LV at 48h post TBI with P ↑ MWM at 15-20d with P No change in edema or expression of pro- inflammatory cytokine genes with P
O'Connor et al, 2005 (104)	Impact Acceleration Model, Adult M and F (OVX) rats	E 33.3 μg/kg vs. P 1.7 mg/kg SC x 1 at 30'	↓ BBB penetration with E, P ↓ edema at 5h, 72h with E, P
Pettus et al, 2005 (105)	MFC, Adult M rats	P 16 mg/kg x 2d	\downarrow NFK β and complement C3 at 48h with P No effect on GFAP
Yao et al, 2005 (13)	L-FPI, Adult M rats	P 4 mg/kg x 6d	↓ pro-apoptotic Bax/Bad proteins with P ↑ anti-apoptotic Bcl-2/Bcl-xl protein with P
Cutler, Exp.Neurol. 2005 (19)	MFC, Adult M rats	P 16 mg/kg x 6d +/- taper	 ↓ sensory neglect, ↑ locomotor activity + P taper ↓ LV + P taper ↑ GFAP reactivity - P taper
Cutler, Pharmacol. Biochem.Behav. 2006 (39)	MFC, Adult M rats	P 16 mg/kg x 6d + taper vs. implant	\downarrow anxiety, \uparrow locomotor activity with implants
Guo et al, 2006 (25)	MFC, Adult M rats	P 16 mg/kg x 2d	\downarrow edema with P AQP4 unchanged at 24h, \downarrow at 72h in lateral ventricles and peri-contusion, \uparrow at 72h in 3rd ventricle
Robertson et al, 2006 (8)	CCI, F (OVX) rats	Low & High P implant7d prior to TBI	↑ mitochondrial RCR at 1h with low P ↓ HC neuronal loss:

Author	Model	Dose	Outcome
			CA1, CA3 with low P CA3 only with high P
			No change in LV with either low or high P
Cutler et al, 2007 (24)	MFC,	P 8/16/32 mg/kg x 3d	\uparrow locomotor activity at 72h with P16
	Aged adult M rats		\downarrow edema at 48h with P16
			\downarrow inflammatory markers with P8, P16
			\downarrow apoptosis with P16
O'Connor et al, 2007	Impact Acceleration	P 1.67 mg/kg SC q24h x 9d	\uparrow motor/cognitive function with P (M, F)
(7)	Model,		\downarrow C-3 reactivity with P (M only)
	Adult M and F (OVX)		\downarrow dead/dying neurons with P (M only)
	rats		\downarrow axonal injury with P (M, F)
Pan et al, 2007 (23)	TBI model,	Р	\downarrow NFK β , TNF α with P
	Rats		\downarrow edema, \downarrow LV, \uparrow neuro scores with P
VanLandingham et al,	MFC,	P 16 mg/kg vs. AP 8 mg/kg x 3d	\uparrow CD55 at 24-72h with P, AP
2007 (106)	Adult M rats		
Chen,	CCI,	P 16 mg/kg x 5d	\downarrow TLR's, NFK β , IL-1 β , TNF α , IL-6 with P
Ann.Clin.Lab.Sci. 2008	Adult M rats		\downarrow TUNEL cells with P
(4)			
Chen, J.Surg.Res. 2008	CCI,	P 16 mg/kg x 5d	\downarrow gut IL-1 β , TNF α , ICAM-1 with P
(107)	Adult M rats		No change in gut IL-6 with P
			\downarrow gut apoptosis with P
Gilmer et al, 2008	CCI,	P 8 vs. 16 mg/kg (at 15', 6h, q24h x	No effect on edema at 3d
(108)	Adult M rats	3d) vs. P 8 mg/kg + taper	No effect on LV at 7d
VanLandingham et al,	MFC.	P 16 mg/kg vs. AP 8 mg/kg x 3d	↑ procoagulants (thrombin, fibrinogen,
2008 (109)	Adult M rats		coagulation factor XIII) with P
			↑ anticoagulants (t-PA) with AP
Wright et al, 2008	MFC,	MPA 4 vs. 16 mg/kg	↓ edema with both doses MPA
(110)	Adult M rats	6 6	No change behavior with either dose
			0

Author	Model	Dose	Outcome
Kasturi et al, 2009 (111)	MFC, Young and aged F (OVX) rats	P 16 mg/kg x 1d	 ↓ edema in both ages with P ↑ P serum levels in old rats at 6h post TBI
Sayeed et al, 2009 (112)	CCI & MCAO, Adult M rats	P and AP	 ↓ mtPTP currents with AP, but not P ↓ Cyt c release with AP ↓ mitochondrial Cyt c at 24h post CCI, MCAO with AP>P
Shahrokhi et al, 2010 (113)	Marmarou weight drop, Adult F (OVX) rats	P 8 mg/kg vs. E 1 mg/kg IP at 30'	 ↓ brain edema at 24h with P, E ↓ ICP at 4h, 24h with P, E ↑CPP at 24h with P, E ↑ neurologic score with E only (not P)
Anderson et al, 2011 (114)	CCI, Adult M rats	P 10 vs. 20 mg/kg IP at 4h, q12h x 3d	 24h: low P < 20% high P (DNA damage response) 72h: high P > 2 x low P (genes regulating inflammatory response and apoptosis) 7d: low P > high P (positive regulation of cell proliferation, innate immune response, antiapoptosis, and blood vessel remodeling)
Barha et al, 2011 (115)	MFC, Adult M rats	P 16 mg/kg x 7d (+ taper) + BrdU 200 mg/kg IP x1 at 48h	P after TBI normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus
Cekic et al, 2011 (116)	CCI, Aged M rats	P 16 mg/kg in VDH deficient rat vs. VDH normal rat x 3d	\uparrow brain inflammation in VDH deficient rat \downarrow benefits of P treatment in VDH deficient rat Reversible if deficiency is corrected
Grossman et al, 2011 (117) Hua et al, 2011 (118)	MFC, Adult M rats MFC, C57BL/6J mice	P 4 mg/kg x 5d P 16 mg/kg IP at 1h, 6h Brain tissue at 24h	No change in behavior post TBI with P \downarrow LV at 9d with P No down-regulation of \uparrow TLRs or their adaptor proteins with P

Author	Model	Dose	Outcome
Khaksari et al, 2011 (119)	Marmarou weight drop, Adult F (OVX) rats	E 33.3 μg/kg vs. 1 mg/kg IP at 30' P 1.7 vs. 8 mg/kg IP at 30'	↑ edema with E1+P2 > E1 ↓ E2 inhibitory effect on edema with P ↓ E1, E2 inhibitory effect on Evans blue content with E1+P1 and E2+P2 ↓ IL-1β with E1, E2; E2+P2 > E2 ↑ TGF-β with P or E alone ↓ TGF-β with P+E
Wali et al, 2011 (120)	CCI, Aged M rats	P 16 mg/kg x 7d (+ taper)	↑ functional outcomes with P No effect on LV with P
Cekic et al, 2012 (121)	CCI, Adult M rats	P 16 mg/kg x 7d (+ taper)	↓ proNGF at 24h, 7d ↓ proBDNF, ↓ BDNF receptor TrkB ↑ mature NGF at 72h
Hua et al, 2012 (122)	MFC, Adult M rats	P 16 mg/kg x 7d (+ taper) + VDH 1/2.5/5 μg/kg IP at 1h	 ↑ preservation of spatial and reference memory with P + VDH > P alone ↑ GFAP reactions up to 21d with P+ low VDH
Li et al, 2012 (123)	CCI, Aged M rats	P 16 mg/kg x 14d	 ↑ neuro outcomes, ↑circulating EPC ↑ CD34, CD31 + cells and vessel density
Shahrokhi et al, 2012 (124)	TBI, Adult F (OVX) rats	E 33.3 μg/kg vs. 1 mg/kg, P 1.7 vs. 8 mg/kg	\downarrow brain water content with E, P groups
Sarkaki et al, 2013 (125)	Marmarou weight drop, Adult F (OVX) rats	E 33.3 μg/kg vs. 1 mg/kg IP at 30' P 1.7 vs. 8 mg/kg IP at 30'	↑ IL-1β at 6h with E2, P1 ↓ IL-1β at 24h with E1, E2 ↓ IL-6 at 6h with P2; at 24 h with P1, E1 ↓ TNFα at 6h with P2 ↑ TNFα at 24 h with E2 ↑ TGFβ at 6h with E, P ↓ TGFβ with 24h with E1

ACI, aseptic cryogenic cerebral injury; AP, allopregnanolone; AQP4, aquaporin-4; BBB, blood brain barrier; BrdU, bromodeoxyuridine; C-3, caspase-3; CCI, controlled cortical impact; CPP, cerebral perfusion pressure; Cyt c, cytochrome c; E, 17- β estradiol; EPC, endothelial progenitor cells; Epi AP, epiallopregnanolone; F, female; GFAP, glial fibrillary acidic protein; HC, hippocampus; ICAM-1, intercellular adhesion molecule-1; ICP, intracranial pressure; IL-1 β , interleukin-1 beta; IL-6, interleukin-6; IP, intra-peritoneal; 8-isoPGF 2 α , 8-isoprostaglandin F2 α ; L-FPI, lateral fluid percussion brain injury; LV, lesion volume; M, male; MCAO, middle cerebral artery occlusion; MFC, medial front cortex contusion; MPA, medroxyprogesterone; mtPTP, mitochondrial permeability transition pore; MWM, Morris water maze; NFK β , nuclear factor kappa beta; OVX, ovariectomized; P, progesterone; proBDNF, pro brain derived neurotrophic factor; proNGF, pro nerve growth factor; RCR, respiratory control ratio; SC, subcutaneous; TBI, traumatic brain injury; TGF- β , transforming growth factor beta; TLR, toll-like receptors; TNF α , tumor necrosis factor alpha; t-PA, tissue type plasminogen activator; TrkB, tropomyosin receptor kinase B; TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling; VDH, 1,25-dihydroxyvitmin D3.

ⁱ Unless specified, dose regimens of P and AP are those used in Stein's lab (1st injection IP at 1h, subsequent injections SC at 6h, 24h and Q24h for duration of the experiment)