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Technical appendix 2 

I. Calibration of the Optima model to the HIV epidemic  3 
 4 
To investigate the HIV epidemic in Niger the model is calibrated to available epidemiological data. The calibration 5 
process involves finding posterior distributions of the model parameter values such that the model generates 6 
accurate prevalence estimates. Given the challenges inherent in quantifying all known constraints on the epidemic, 7 
we initially calibrated the model manually. We then enter the resulting prior distributions in a Monte Carlo Markov 8 
chain (MCMC) algorithm, which uses both epidemiological and behavioral data to calculate the log-likelihood for a 9 
given set of model parameters. The parameter value distributions obtained by the MCMC represent the posteriors, 10 
which we use for all our epidemiological and economic analyses. 11 
 12 
We used all available demographic, epidemiological, behavioral, and clinical data to calibrate Optima to the HIV 13 
epidemic in Niger (figure A1 and A2). In general, prevalence in Niger is declining rapidly in most population 14 
groups, due to both reductions in incidence and deaths of people currently living with HIV. Exceptions include 15 
MSM, migrants, and prisoners, for whom there are not sufficient data to confidently determine epidemic trends; 16 
however, current indications are that HIV prevalence is relatively stable among these populations. 17 
 18 
Figure A1: Calibration of model to the HIV epidemic in Niger. Black discs represent available data for HIV 19 
prevalence. Lines attached to these discs represent uncertainty bounds, where available. The solid curve is 20 
the best fitting simulation and the light band represents the 95% confidence interval for the model outputs.  21 

22 
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Figure A2: Calibration of model to the HIV epidemic in Niger. Black discs represent available data for the 28 
number of people on first and second line anti-retroviral treatment. Lines attached to these discs represent 29 
uncertainty bounds, where available. The solid curve is the best fitting simulation and the light band represents 30 
the 95% confidence interval for the model outputs.  31 
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II. Cost-outcome relationships and assumptions 34 

Our analysis requires specific cost-outcome relationships for each population and HIV program. In our 35 
analysis, we used logistic/sigmoid functions to describe the relationships between an outcome of a program 36 
(such as a change in coverage, condom use, or number on ART) and the total cost for implementing the 37 
program. We fit these cost-outcome curves to available data as best as possible. Using these relationships, any 38 
change in HIV program funding directly affects risk behaviors and changes the HIV epidemic. 39 

All the cost-outcome relationships for Niger are shown in the figures below with a description of the assumptions 40 
we used to create these relationships for each package.  41 

Targeted FSW intervention package: In the model, we assume the targeted FSW intervention package affects 42 
FSW testing and condom use (the actual service package for FSW in Niger includes HCT, condom provision, and 43 
mobilization activities which sometimes involve peer education). Available testing data for FSW in Niger on 44 
reports “ever tested” rather than testing in the previous year, hence the data values are upper bounds on the annual 45 
testing rate. We assumed the testing data for the higher and more recent spending value is more accurate.   46 

 47 

 48 

 49 

Targeted MSM intervention package: There is no overall spending data available for this package. We 50 
created subjective cost-outcome curves based on a per package delivery cost of USD 78 from Niger’s 51 
government endorsed Resource Needs Model. We assumed this package affects MSM testing. Given the lack 52 
of behavioral data for MSM, we could not create a specific relationship between MSM package spending and 53 
condom use. Therefore, we assumed the same cost-condom-use relationship as for the condom promotion 54 
package below.  55 



 56 

Prevention services targeted at prisoners: We assumed this program affects testing and casual condom use. 57 
Given prisoners are easily accessible we assumed a 100% coverage and testing rate as the theoretical maximum.  58 

 59 

 60 

 61 

Prevention services targeted at uniformed security personnel: We assumed this program affects testing and 62 
casual condom use. We assumed it is relatively easy to provide this program to all uniformed security personnel 63 
and assumed a 100% coverage and testing rate for the theoretical maximum.  64 

 65 

 66 

Prevention services targeted at truckers: We assumed this program affects testing and casual condom use in 67 
truckers based on the available data for Niger.  68 



 69 

 70 

Prevention services targeted at labor migrants: We assumed this program affects testing and casual condom use 71 
in truckers based on the available data for Niger.  72 

 73 

 74 

Prevention services targeted at mine workers: There is no overall spending data available for this package. We 75 
assumed this program affects testing and casual condom use in mine workers. We subjectively created the curves 76 
using the assumed minimum and maximum values. The shape of the curve was informed by the available data for 77 
casual condom use in low-risk males.  78 

  79 

 80 

Prevention services for general population: We assumed this program only affects testing with condom use in 81 
the general population determined by the spending on public and commercial condom distribution and social 82 
marketing of condoms below.  83 



 84 

 85 

Public and commercial sector condom distribution and social marketing of condoms – General population: 86 
We assumed condom distribution programs only affects casual and regular condom use in male populations. The 87 
curve for commercial condom use for the targeted FSW intervention package determines condom use between 88 
FSW and their clients (commercial partnerships). Given the lack of data for most of the male population, we 89 
assume casual and regular condom use has the same value for all male populations, unless already specified in the 90 
outcomes for a targeted package. 91 

  92 

 93 

Antiretroviral treatment (ART) services: Using the data for the number of people on ART, we created a linear 94 
cost-outcome relationship. The slope of this curve represents the unit cost of providing ART.  95 

 96 

 97 

Prevention of mother-to-child transmission of HIV (PMTCT): Using the data on the number of HIV+ pregnant 98 
women who received PMTCT, we generated a unit cost relationship between women receiving PMTCT and cost 99 
(as for ART).   100 



 101 

III. HIV epidemic model 102 
 103 
Optima is based on a dynamic, population-based HIV model; Figure A1B shows the disease progression 104 
implemented in the model. Optima tracks the entire population of people living with HIV (PLHIV) across four 105 
stages of CD4 count (the CD4 count stages are aligned to the progression of WHO treatment guidelines). Key 106 
aspects of the antiretroviral therapy (ART) service delivery cascade are included: from infection to diagnosis, 107 
ART initiation on first-line therapy, treatment failure, second-line therapy, and HIV/AIDS-related or other 108 
death. The primary purpose of HIV testing is to identify those who are HIV-positive. With the new UNAIDS 109 
global targets of 90% of PLHIV identified by 2020, 90% of them on treatment, and 90% of these virally 110 
suppressed, the structure of the disease progression model in Optima is designed to help countries measure 111 
and achieve this goal, and optimize resource allocations accordingly. 112 
 113 
The model uses a linked system of ordinary differential equations to track the movement of PLHIV between 114 
HIV health states; the full set of equations is provided in the supplementary material. The overall population is 115 
partitioned in two ways: by population group and by HIV health state. Individuals are assigned to a given 116 
population group based on their dominant risk. However, to capture important cross-modal types of 117 
transmission, relevant behavioral parameters can be set to nonzero values (e.g., males who inject drugs may 118 
engage in commercial sex; some MSM may have female sexual partners). 119 
 120 
HIV infections occur through the interaction between different populations via regular, casual, or commercial 121 
(including transactional) sexual partnerships, through sharing of injecting equipment, or through mother-to-122 
child transmission. The force of infection is the rate at which uninfected individuals become infected, and it 123 
depends on the number and type of risk events to which individuals are exposed in a given period (either 124 
within their population groups or through interaction with other population groups) and the infection 125 
probability of each event. Mathematically, the force-of-infection has the form: 126 
 127 

ߣ ൌ 1 െ ሺ1 െ  ሻ௡ߚ
 128 
where ߣ is the force-of-infection, ߚ is the transmission probability of each event, and n is the effective number 129 
of at-risk events (i.e., n gives the average number of interaction events with HIV-infected people where HIV 130 
transmission may occur). The value of the transmission probability ߚ varies across CD4 count compartments 131 
(indirectly reflecting the high viral load at early and late stages of infection), differs for different modes of 132 
transmission (intravenous drug injection with a contaminated needle-syringe, heterosexual intercourse, 133 
homosexual intercourse, and mother-to-child), and may be reduced by behavioral interventions (for example, 134 
condom use or male circumcision) or antiretroviral therapy There is one force-of-infection term for each type 135 
of interaction (for example, casual sexual relationships between general males and female sex workers); the 136 
force-of-infection for a given population will be the sum of all interaction types. 137 
 138 
For sexual transmission, the force-of-infection is determined by: 139 
• The HIV prevalence (weighted by viral load) in partner populations; 140 
• The average number of casual, regular, and commercial homosexual and heterosexual acts per person per 141 

year; 142 
• The proportion of these acts in which condoms are used; 143 



• The proportion of men who are circumcised; 144 
• The prevalence of ulcerative STIs (which increase transmission probability);  145 
• The proportion of partners on antiretroviral treatment (ART); and 146 
• The efficacies of condoms, male circumcision, and ART at preventing HIV transmission. 147 
 148 
For injecting-related transmission, the force-of-infection is determined by: 149 
• The HIV prevalence (weighted by viral load) in populations of people who use a syringe and then share 150 

it); 151 
• The number of injections per person per year; 152 
• The proportion of injections that use shared equipment;  153 
• The proportion of injections that use shared equipment that has been cleaned, and the efficacy of this 154 

cleaning; and 155 
• The fraction of people who inject drugs on opioid substitution therapy and its efficacy in reducing 156 

injecting behavior. 157 
 158 
For mother-to-child transmission (MTCT), the number of infections is determined by: 159 
• The birth rate among women living with HIV; 160 
• The proportion of women with HIV who breastfeed; 161 
• The probability of perinatal HIV transmission in the absence of intervention; and 162 
• The proportion of women receiving prevention of mother-to-child transmission (PMTCT), including 163 

ART. 164 
 165 
In addition to the force-of-infection rate, which moves individuals from uninfected to infected states, there are 166 
seven other ways individuals may change health states. First, individuals may die, either due to an average 167 
background death rate for that population (which is greater for older populations or for people who inject 168 
drugs) or due to HIV/AIDS (which depends on CD4 count). Second, in the absence of treatment, individuals 169 
progress from higher to lower CD4 counts. Third, individuals can move from undiagnosed to diagnosed states 170 
based on their HIV testing rate, which depends on CD4 count (for example, people with AIDS symptoms or 171 
primary HIV infection may have a higher testing rate) and population type (for example, female sex workers 172 
may test more frequently than general males). Fourth, diagnosed individuals may commence ART, at a rate 173 
depending on CD4 count. Fifth, individuals may experience treatment failure due to lack of adherence to 174 
therapy or development of drug resistance, and sixth, people may initiate second-line treatment from treatment 175 
failure. Finally, while on successful first- or second-line treatment (i.e. effective viral suppressive therapy), 176 
individuals may progress from lower to higher CD4 counts. 177 
 178 
The change in the number of people in each compartment is determined by the sum over the relevant rates 179 
described above multiplied by the population size of the compartments on which they act. For example, the 180 
change in the number of undiagnosed HIV-positive female sex workers with a CD4 count between 200 and 181 
350 cells/μL is: 182 
 183 

ܷ݀ிௌௐଶ଴଴ିଷହ଴
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 184 
where ܷிௌௐଶ଴଴ିଷହ଴ is the current number of undiagnosed HIV-positive female sex workers with a CD4 count 185 

between 200 and 350 cells/μL, ܷிௌௐଷହ଴ିହ଴଴ is the same population but with higher CD4 count (350–500 186 

cells/μL), ߬ is the disease progression rate for the given CD4 count (where 1/	߬ is the average time to lose 150 187 
CD4 cells/μL), ߤ is the death rate, and ߟ is the HIV testing rate. (Note: this example does not consider 188 
movement between populations, such as female sex workers returning to the general female population and 189 
vice versa.) Each compartment (Figure A1B, boxes) corresponds to a single differential equation in the 190 
model, and each rate (Figure A1B, arrows) corresponds to a single term in that equation. 191 
 192 
Table 1 lists the parameters used in Optima; most of these are for calculating the force-of-infection. We 193 
interpret empirical estimates for model parameter values in Bayesian terms as prior distributions. The model 194 
must then be calibrated, which is the process of finding posterior distributions of the model parameter values 195 



such that the model generates accurate estimates of HIV prevalence, the number of people on treatment, and 196 
any other epidemiological data that are available (e.g., HIV-related deaths). The calibration can be done 197 
automatically, manually, or a combination of both. This process of model calibration and validation should 198 
normally be done in consultation with governments in those countries where the model is being applied. 199 
 200 
 201 

TABLE 1: INPUT PARAMETERS OF THE MODEL. 202 

  Biological parameters  Behavioral parameters Epidemiological/other parameters 

Population 
parameters 

Background death rate    Population sizes (TP) 

HIV‐related 
parameters 

Sexual HIV transmissibilities* (H) 
STI‐related transmissibility increase* 
Condom efficacy* 
Circumcision efficacy* 
HIV health state progression rates (H) 
HIV‐related death rates (H) 

Number of sexual partners* (TPS) 
Number of acts per partner* (S) 
Condom usage probability* (TP) 
Circumcision probability* (T) 
 

HIV prevalence (TP) 
STI prevalence (TP) 
 

MTCT 
parameters 

Mother‐to‐child transmission 
probability* 

Birth rate* 
PMTCT access rate* (T) 

 

Injection‐
related 
parameters 

Injecting HIV transmissibility* 
Syringe cleaning efficacy* 
Drug‐related death rate 

Number of injections* (T)
Syringe sharing probability* (T) 
Syringe cleaning probability* 
Methadone treatment probability (T) 

 

Treatment 
parameters 

ART efficacy in reducing 
infectiousness* 
ART failure rates 

HIV testing rates (TPH)  Number of people on ART (T) 

Economic 
parameters 

Health utilities   

Costs of all prevention, care and 
treatment programs, enablers and 
management (TI) 
Cost‐outcome curves (TI) 
Discounting and inflation rates (T) 
Healthcare costs  

Key: T = parameter value changes over time; P = parameter value depends on population group; H = parameter depends on health state; S = 203 
parameter depends on sexual partnership type; I = parameter depends on intervention type; * = parameter is used to calculate the force‐of‐infection. 204 

 205 

HIV resource optimization and program coverage targets 206 
 207 
A novel component of Optima is its ability to calculate allocations of resources that optimally address one or 208 
more HIV-related objectives (e.g., impact-level targets in a country’s HIV national strategic plan). Because 209 
Optima does not presuppose program coverage changes, but instead calculates the coverage levels required to 210 
achieve impact-level targets, it can be used to inform HIV strategic planning and the determination of program 211 
coverage levels. The key assumptions of resource optimization are the relationships between (a) the cost of 212 
HIV prevention and treatment programs, (b) the resulting coverage levels of targeted populations, and (c) how 213 
these coverage levels of programs influence behavioral, clinical and epidemiological outcomes. Such 214 
relationships are required to understand how incremental changes in spending affect HIV epidemics. A 215 
traditional approach is to apply unit cost values to inform a linear relationship between money spent and 216 
coverage attained. This is a reasonable assumption for programs like an established ART program that no 217 
longer incurs start-up or initiation costs, but less appropriate for condom promotion and behavior change 218 
communication programs. Most HIV programs typically have initial setup costs, followed by a more effective 219 
scale-up with increased funding, but attaining very high coverage levels requires reaching the most difficult to 220 
reach groups, which would require increased incremental investment for demand generation and related 221 
activities (i.e., there is a saturation effect with increased funding).  222 
 223 
Optima uses a logistic function fitted to available input data to model cost-coverage and coverage-outcome 224 
curves. Logistic functions can incorporate initial startup costs and allow changes in behavior to saturate at 225 
high spending levels, thus better reflecting the program reality. Using all available spending, behavioral, and 226 
clinical outcome data, users fit an equation of the form: 227 
 228 



ሻݔሺܮ ൌ ܣ ൅
஻ି஺
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	, 229 

 230 
where ܮሺݔሻ relates spending to coverage (or coverage to outcome), ݔ is the estimated amount of funding for 231 
the program, ܣ is the lower asymptote value (adjusted to match the value of L when there is no spending on a 232 
program), ܤ is the upper asymptote value (for very high spending), C is the midpoint, and ܦ is the steepness 233 
of the transition from ܣ to ܤ. For our fits, we typically choose saturation values of the coverage (or outcome) 234 
to match behavioral data in countries with heavily funded HIV responses. Program coverage for zero 235 
spending, or behavioral outcomes for zero coverage of formal programs, are inferred using data from early on 236 
in the epidemic or just prior to significant investment in HIV programs. Practically, we also discuss the zero 237 
and high spending cases with local experts who can advise on private sector HIV service delivery outside the 238 
governments’ expenditure tracking systems. 239 
 240 
For each HIV program, we derive one set of (logistic) curves that relate funding to program coverage levels, 241 
and another set of curves (generally linear relationships) between coverage levels and clinical or behavioral 242 
outcomes (i.e., the impacts that HIV strategies aim to achieve). In future, Optima will include a default set of 243 
these cost-coverage-outcome curves, based on all available international evidence. Outcomes expected from 244 
changes in program funding are assumed by interpolating and extrapolating available data using a fitted 245 
logistic curve. A limitation of this approach is that all changes in behavior are assumed to be due to changes in 246 
program funding.  247 
 248 
Optima can be used to minimize either (a) a given outcome (e.g., number of infections, number of disability-249 
adjusted life years, number of HIV-related deaths, or future HIV-related costs) given a fixed total budget over 250 
a determined program period, or (b) the amount of funding required to meet a particular epidemiological goal 251 
(e.g., reducing HIV incidence by 50%). Optima can also determine the amount of money required to 252 
simultaneously meet multiple goals (e.g. all impact-level targets in an HIV national strategic framework) or 253 
the optimal allocation of a fixed amount of resources which will simultaneously get as close as possible to 254 
achieving one or multiple target objectives. Optima can also be used to help decide in which geographic areas 255 
to implement programs for which target populations, or how to most effectively re-invest the savings from 256 
technical efficiency gains. Constraints may be placed on the optimization; for example, the number of people 257 
on antiretroviral therapy or prevention of mother-to-child transmission program coverage may not be allowed 258 
to decrease. 259 
 260 
To perform the optimization, Optima uses a global parameter search algorithm called Bayesian adaptive 261 
locally linear stochastic descent (BALLSD). BALLSD is similar to simulated annealing in that it makes 262 
stochastic downhill steps in parameter space from an initial starting point. However, unlike simulated 263 
annealing, BALLSD chooses future step sizes and directions based on the outcome of previous steps. For 264 
certain classes of optimization problems, we have shown that BALLSD can determine optimal solutions with 265 
fewer function evaluations than traditional optimization methods, including gradient descent and simulated 266 
annealing. 267 

Uncertainty analyses 268 
 269 
Optima uses a Markov chain Monte Carlo (MCMC) algorithm for performing automatic calibration and for 270 
computing uncertainties in the model fit to epidemiological data. With this algorithm, the model is run many 271 
(typically 1,000–10,000) times to generate a range of epidemic projections; their differences represent 272 
uncertainty in the expected epidemiological trajectories.  273 
 274 
 275 

 276 

 277 

 278 

 279 
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 284 

Figure A3: (A) Example population groups and HIV transmission-related interactions in Optima. (B) Schematic 285 
diagram of the health state structure of the model. Each compartment represents a single population group with the 286 
specified health state, while each arrow represents the movement of numbers of individuals between health states. 287 
All compartments except for “susceptible" represent individuals living with HIV. Death includes all causes of 288 
death. 289 

 290 


