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Supplemental Digital Content 

 
1. Description of the German seroconverter study 

The German HIV-1 seroconverter study is a nationwide, multicenter, open, prospective, long-term 

observational cohort study which was initiated in 1997. Only HIV-1-infected individuals (≥ 18 years old) 

of whom the date of HIV-1 seroconversion is documented by laboratory diagnostic methods and who gave 

an informed consent are enrolled to the HIV-1 seroconverter cohort. Ethical approval was first received in 

2005 and amended in 2013 by the ethics committee of the Charité University Medicine Berlin. Study 

patients were recruited by 22 clinics, 40 medical practices specialized in the care of HIV-1 patients, and 

seven public health offices. Epidemiological, clinical, laboratory diagnostic results and treatment data are 

collected at enrolment and at follow-up visits using standardized questionnaires. Inclusion criteria are 

seroconversion documented by a) a last negative and a first immunoblot-confirmed positive antibody test 

maximally 3 years apart (“documented seroconverter”) or b) a first reactive test  (“acute seroconverter”). 

The first reactive test of acute seroconverters is defined by the following laboratory diagnostic criteria: (1) 

detectable HIV-1 RNA or p24 antigen combined with a negative or indeterminate ELISA result or (2) a 

reactive HIV-1 ELISA combined with a negative or indeterminate immunoblot result and confirmation of 

seroconversion within six months. Note, that in the present study besides acute seroconverters only 

documented seroconverters were included of whom the maximal time period between the last negative and 

the first confirmed antibody tests was 12 months. 

The arithmetic mean of the blood sampling dates for the last negative and first confirmed positive HIV-1 

antibody test (documented HIV-1 seroconverter) or the blood sampling date for the first reactive test (acute 

HIV-1 seroconverter) is considered as the date of seroconversion and as the best proxy for the date of 

infection. The duration of infection is calculated as the difference between the date of blood sampling and 

the date of seroconversion.  
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2. Analysis of cluster size distribution 

The analysis of the cluster size distribution was based on the power-law testing method proposed by Clauset 

et al.1. To this end, first a parameter 𝑥𝑥min > 0 is estimated, which defines the lower bound on the data 

exhibiting a discrete power-law behavior and then the scaling parameter α of the power-law distribution 

function given by 𝑝𝑝(𝑥𝑥) = 𝑥𝑥-α is inferred. In order to test how plausible it is to fit a power-law model to the 

observed cluster size distribution, artificial sets of clusters are repeatedly generated from the power-law 

distribution, which are comparable in size with the observed set of clusters. Their distribution is 

parameterized by the values 𝑥𝑥min   and α estimated in the previous step. For each artificial distribution of 

clusters the distance to the true power-law distribution is computed using the Kolmogorov-Smirnov test 

(KS-test) and it is compared to the distance between the observed distribution of clusters and the true power-

law. The relative amount of instances where the distance of the observed cluster size distribution to the true 

power-law is smaller than the distance of the artificial cluster data to the true power-law gives rise to a P-

value. If this P-value is sufficiently large (here we used 𝑃𝑃 ≥ 0.1 in line with Clauset et al. 1) then the power-

law hypothesis cannot be rejected. If the P-value from the comparison of KS-statistics is smaller than the 

predefined threshold then the power-law hypothesis is considered not to be plausible. Note the different 

meaning of the P-value in this method, which, in contrast to usual null-hypothesis testing, is required to be 

large. For more details of this method see the paper of Clauset et al.1. For our analysis we used the Matlab 

code provided by Aaron Clauset (see http://tuvalu.santafe.edu/~aaronc/powerlaws/). 

In addition to fitting a power-law model (described in the main manuscript), we tested if alternative 

distributions may yield a better fit to the cluster size data (Fig. S1).  Using the method of Vuong2, which 

quantifies if the log likelihood-ratio is significantly far from zero, we tested exponential, Poisson, Waring 

and Yule as alternative distributions. Starting from the smallest clustering threshold where the power-law 

distribution is plausible (𝜃𝜃 =3%, see Fig. 1, right panel, main manuscript) we computed the log-likelihood 

ratios and P-values for the log-likelihood test. As shown in Fig. S1, the power-law distribution yielded a 

significantly better fit (greater log-likelihood ratio) than the exponential model for 𝜃𝜃 ≥ 9% (𝑃𝑃 < 0.05) and 

for 𝜃𝜃 ≥ 7.5% (𝑃𝑃 < 0.1). In addition, the power-law distribution exhibited a significantly better fit than 

http://tuvalu.santafe.edu/%7Eaaronc/powerlaws/
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Poisson for 𝜃𝜃 ≥ 5.5% (𝑃𝑃 < 0.05).  Below the indicated clustering thresholds, we did not identify a 

significantly higher likelihood for any model compared to the other, which suggests that a minimal amount 

of clusters is required for differentiating between alternative models. Similarly, power law provided a better 

fit as compared to the Waring distribution for a selected range of thresholds, while for a range of 

intermediate thresholds the two distributions could not be distinguished. In contrast, we could not determine 

a significant difference between power law and the Yule distribution independent of the choice of clustering 

threshold (see Fig. S1).   

   

 

Figure S1: Analysis of the cluster size distribution. Top panel: P-values for the log-likelihood 
test of the power-law model vs. alternative distributions, as indicated. The blue line shows the 
significance level of 0.1 and the red line indicates the more conservative significance level of 0.05. 
Bottom panel: Values of the log-likelihood ratios between power-law and alternative distributions, 
ordered according to the top panel. 
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3. Hierarchical clustering and optimization of the clustering threshold 

Phylogenetic clustering of viral sequences was conducted using a breadth-first search from the tree root to 

the leaves. Starting from the root, the algorithm recursively descends the phylogenetic tree along its inner 

nodes. For each node on this path it is first determined if it has at least 95% bootstrap support. If this is the 

case, it is then checked if the clade belonging to this node (i.e. all taxa for which this node is the putative 

most recent common ancestor) contains viral sequences from at least two different individuals and the mean 

of pairwise evolutionary distances 𝜇𝜇 between all individuals within this clade does not exceed a specified 

threshold  𝜃𝜃𝑑𝑑 . To this end, the mean pairwise divergence of a set of individuals belonging to a clade was 

computed according to 

𝜇𝜇 = �|𝑵𝑵|
2 �

−1
� 𝑑𝑑𝑖𝑖𝑖𝑖

 𝑖𝑖,𝑖𝑖𝑗𝑗𝑗𝑗

, 

where 𝑁𝑁 denotes the set of (at least two) individuals whose sequences are included in a clade, |𝑁𝑁| denotes 

the size of this set. Furthermore, 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the pairwise evolutionary distance between each two 

individuals 𝑖𝑖 and 𝑗𝑗  defined by the minimal patristic distance of any two sequences belonging to these two 

individuals. The search along the current descending path is stopped if all criteria are fulfilled and the 

individuals whose viral sequences descend from the current inner node are considered as a cluster. 

Otherwise the fulfilment of the criteria is recursively checked for each child node of the current node. As 

soon as the leaves of the tree are reached, the search is stopped indicating that no clusters are found along 

the current path. Similarly, the search is stopped without identifying a cluster if the clade belonging to the 

current node only consists of sequences from a single individual.   

In order to obtain an optimal threshold 𝜃𝜃𝑑𝑑, we assessed the clustering quality for a range of different 

thresholds. The challenge here is to find the balance between quantity and quality of putative transmission 

clusters.  Within each cluster we measured the degree of uniqueness of the assignment of viral sequences of 

an individual to this cluster on the basis of the silhouette score for each individual 𝑖𝑖 defined as: 
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𝜎𝜎𝑖𝑖 = 
              

𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘
�𝑏𝑏𝑖𝑖,𝑘𝑘�− 𝑎𝑎𝑖𝑖

max �𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘
�𝑏𝑏𝑖𝑖,𝑘𝑘�,𝑎𝑎𝑖𝑖�

,

 

 

with 𝑎𝑎𝑖𝑖 denoting the average of minimal distances between viral sequences of individual 𝑖𝑖 to viral sequences 

of all other individuals in the same cluster and 𝑏𝑏𝑖𝑖,𝑘𝑘 denoting the average of minimal sequence distances of 

individual 𝑖𝑖 to all individuals in a cluster 𝑘𝑘 ≠ 𝑖𝑖.   Depending on the assignment quality of each individua l, 

the silhouette score may range between -1 (completely wrong cluster assignment) and 1 (perfect cluster 

assignment).  In order to obtain a representative measure for the distribution of silhouette scores of all 

individuals in clusters we used the minimal silhouette score 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 = min(𝜎𝜎𝑖𝑖), i.e. a measure of the 

uniqueness of the most undetermined affiliation of an individual to a cluster.  

Due to the hierarchical structure of the phylogenetic tree topology, smaller distance thresholds result in  

clusters tending to higher silhouette scores  (see Figure 2 A, main manuscript) since these clusters consist 

of fewer sequences with a high similarity. In addition, small distance thresholds result in a small amount of 

clusters. In order to find a suitable trade-off between the silhouette score and the amount and size of clusters, 

we used a second optimality criterion based on the follow-up viral sequences of individuals. For our dataset 

(treatment-naïve pol sequences), we suspected weak diversifying selection pressure in contrast to several 

other studies 3-6. Note that these studies 3-5 analyze within- and between-host evolution of HIV based on the 

env region of the HIV genome (coding for the HIV-1 surface proteins). The env region is under strong 

diversifying selection pressure in response to the adaptive immune system. In contrast, pol is expected to 

have a much lower observable evolutionary rate within the host in the absence of therapy targeting pol-

encoded enzymes because the fitness of these enzymes could be near-optimal at the time of transmission. 

See also the reference7 for an in depth comparison of evolutionary dynamics in different regions of the HIV-

1 genome in untreated individuals.  Note that although the recent paper6 analyzes pol evolution, it considers 

sequences from treated individuals (implying a strong diversifying selective pressure). All of our samples 

originated from treatment-naïve individuals (see Material & Methods in main manuscript). To further 

confirm the absence of strong diversifying selection pressure, we analyzed the dN/dS ratio (ratio of non-
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synonymous vs. synonymous substitutions), which was ≤ 1 in 73% of all follow-up sequence pairs, in line 

with7. In addition, the overall divergence was quite low in follow-up sequences of the same individual, as 

shown in Fig. S2. Acknowledging that longitudinal sequence data approximates the evolutionary dynamics 

of directly descended viruses, we assumed that we may use the corresponding divergence rate as a 

benchmark for clustering closely related viruses from different individuals (see also the reference in8 which 

follows a similar idea). 

     A                                                         B         

         
 

Figure S2: Comparison of intra- and interpatient sequence distances. A: Distribution of tree-
based intra- and inter-patient sequence distances (blue and red, respectively). The dashed line 
indicates the threshold optimizing clustering modularity and the follow-up inclusion score (intra-
patient distances). This optimal threshold was used within this study to infer the geographical and 
temporal spread of HIV. B: Cumulative number of pairwise sequence distances below the value 
indicated on the x-axis. Depicted is the (log10) absolute amount (y-axis) of distances not larger 
than a certain distance indicated on the x-axis. 
 

Based on this observation, the second clustering criterion 𝜌𝜌(𝜃𝜃𝑑𝑑) measures for a given clustering threshold 

the amount of patients whose follow-up sequences are placed in the same cluster relative to the amount of 

all patients containing follow-up sequences (427 out of 1157 patients). An optimal clustering threshold 

should maximize the silhouette score and the criterion 𝜌𝜌(𝜃𝜃𝑑𝑑 ). 
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 In order to combine both criteria (𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜌𝜌), we adjusted 𝜌𝜌 (a ratio between 0 and 1) to the same range 

of values as 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚, which can take values −1 ≤ 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 1. The overall score to be maximized in order to 

optimize the clustering threshold can be derived as the arithmetic mean of both values: 

(𝜃𝜃𝑑𝑑∗) = argmax
𝜃𝜃𝑑𝑑

  �
𝜌𝜌(𝜃𝜃𝑑𝑑) ⋅ 2− 1 + 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚(𝜃𝜃𝑑𝑑)

2
�. 

We evaluated the results for the range of divergence thresholds 0.5 ≤ 𝜃𝜃𝑑𝑑 ≤ 7. The global maximum of the 

combined clustering score was reached at a mean pairwise divergence of 1.3% (Fig. 2, main manuscript).   

For comparison, throughout this work we used several locally optimal threshold values indicated in Fig. 2B 

 

4. Statistical analysis of spatial transmission dynamics.  

In order to assess the relation between regional proximity of patient’s residences and viral transmission, the 

geographical affiliation of individuals (in terms of the federal states in Germany) within putative 

transmission clusters was analyzed. Individuals from 15 (out of 16) German federal states are represented 

in our dataset; for 5 patients the residence was not available (see Table 1, main manuscript).  

Each putative transmission cluster may contain patients from different federal states 𝐴𝐴𝑖𝑖, e.g. a particular 

cluster may only contain patients that live in ‘Berlin’ and patients that live in ‘Bavaria’. In the following we 

will refer to this property as the ‘geographical cluster composition’. The number of clusters with an identical 

geographical composition 𝐴𝐴1 ∧… ∧ 𝐴𝐴𝑚𝑚 (e.g. ‘Berlin’, ‘Hamburg’, ‘Bavaria’) is counted and normalized by 

the number of clusters containing patients from at least one of the respective federal states, i.e. by all clusters 

containing patients from ‘Berlin’, ‘Hamburg’ or ‘Bavaria’: 

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧…∧ 𝐴𝐴𝑚𝑚) =
#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 𝑤𝑤𝑖𝑖𝑐𝑐ℎ 𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑚𝑚 𝐴𝐴1 ∧…∧ 𝐴𝐴𝑚𝑚

#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐 𝐴𝐴1 ∨… ∨ 𝐴𝐴𝑚𝑚
. 

where ‘#’ stands for ‘number of’. The amount of geographical compositions is not normalized by the number 

of all clusters, since this would lead to a bias due to the overrepresentation of patients from particular federal 
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states in our dataset, i.e. an overrepresentation of ‘Berlin’ in relation to other federal states (shown in Table 

1). 

We evaluated whether particular cluster compositions, e. g. ‘Berlin’ & ’Bavaria’, are statistically over- or 

underrepresented. To this end we performed a bootstrap resampling: In order to construct a null model of 

cluster compositions, we randomly drew from the population of clustered patients with replacement and 

assigned the drawn patients to clusters, taking the size distribution of the putative transmission clusters into 

account. These randomly composed clusters were evaluated to obtain 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧…∧ 𝐴𝐴𝑚𝑚) denoting the 

frequency of geographical cluster compositions after random assignment. We repeated the procedure 𝑚𝑚 =

10,000 times, arriving at 10,000 estimates for 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑. 

We then tested whether the observed cluster composition ratio 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 was significantly higher, or –lower than 

the one derived from random assignment of patients to putative transmission clusters. As an example, in the 

case of the Berlin/Bavaria cluster composition we assessed whether patients residing in federal states 𝐴𝐴1 

(e.g. ‘Berlin’) and 𝐴𝐴2 (e.g. ‘Bavaria’) were more frequently clustered together in comparison to the random 

background: 

𝐻𝐻0:𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧ 𝐴𝐴2)≤ 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2) 

𝐻𝐻1:𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧𝐴𝐴2) > 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2). 

The corresponding P-value (prob. of false positive prediction) is given by 

𝑃𝑃↑ =
#�𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2)≥ 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧ 𝐴𝐴2)�

𝑁𝑁 , 

𝐻𝐻0 can be rejected with significance level 𝛼𝛼 if 𝑃𝑃↑ < 𝛼𝛼.  

In order to evaluate whether patients residing in federal states 𝐴𝐴1 and 𝐴𝐴2 were less frequently clustered 

together than expected by chance, the test was devised analogously: 

𝐻𝐻0:𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧ 𝐴𝐴2)≥ 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2) 
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𝐻𝐻1 :𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧ 𝐴𝐴2) < 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2) 

with the P-value computed according to 

𝑃𝑃↓ =
#�𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑(𝐴𝐴1 ∧ 𝐴𝐴2)≤ 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝐴𝐴1 ∧ 𝐴𝐴2)�

𝑁𝑁 . 

In order to compare the significance levels of the cluster composition frequencies, the test is devised with 

three different values 𝛼𝛼: 0.05 and 0.01. The results are shown in Fig. 3A-C (main manuscript).  

 

5. Temporal properties of transmission dynamics 

Fig. 4A in the main manuscript was generated in Matlab using the function distributionPlot and P-values 

were computed using a Wilcoxon Ranksum test (statistics toolbox). Fig. 4B shows a survival plot that was 

computed using the function ecdf in Matlab (statistics toolbox). P-values were computed using a log rank 

test. Hazard rates were estimated by fitting an exponential to the survival plots shown in Fig 4B with 

weighted least squares using the lsqcurvefit function in Matlab (optimization toolbox). 

  

Figure S3:   Probability that the inter-infection time is greater than the time indicated on the 
x-axis. The dashed lines represent the empirical medians of the inter-infection time distribut ion 
(corresponding to the values in the figure legend). The results are shown for three different 



10 
 

clustering thresholds  𝜃𝜃𝑑𝑑  which correspond to global or local minima of the combined score in Fig. 
2 B (main manuscript). 

 

 
 

           

  

Figure S4: Temporal Transmission Dynamics when the background dynamics are defined 
in terms of all participants (clustered and unclustered).  A: Probability distribution of all 
inter-infection times between patients belonging to the same transmission cluster (blue) and 
between all patients (red). The dashed white horizontal lines indicate the respective medians. B: 
Probability that the inter-infection time is greater than the time indicated on the x-axis (survival 
plot). Blue line: patients belonging to the same transmission cluster. Red: all patients. Grey areas 
represent the respective confidence areas which were computed using Greenwood’s formula 
(vanishingly small for the red line). 
 

6. Correspondence of inter-infection times in clusters with the time to onwards transmission.  

In the following, we will outline several scenarios where inter-infection times in clusters and the time 

to onwards transmission either differ or coincide.  

• If a cluster consists of two individuals, then their inter-infection time 

a. will coincide with the time to onwards transmission, if the two individuals are 

connected by a direct transmission event. 
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b. In the case where the two individuals are not connected by a direct transmission 

event, the time to onwards transmission statistics may either be over- or 

underestimated by the inter-infection times: E.g. in the case of a transmission chain, 

the time to onwards transmission will always be overestimated by the inter-

infection times (e.g. assume individual #2 is not contained in the dataset in Figure 

S5C). It may be underestimated if individuals share a common source of infection, 

e.g. in Fig. S5A-B assume individual #1 is not contained in the dataset. Note that 

if the node-degree distribution in the transmission network is power-law 

distributed, then the latter scenario (common source of infection) is less likely. 

The same considerations hold true, if more than two individuals were clustered together, in the case of 

missing transmission links or when all individuals are sampled. Hence, our statement “onwards 

transmission occurs shortly after infection”, based on our analysis of inter-infection times, is reasonable. 

 

Figure S5: Correspondence of inter-infection times in clusters and time to onwards 
transmission.  A & B: In the case of a common source of infection. B: In the case of a 
transmission chain. Blue dots connected by vertical bended lines indicate transmission events. 
Dashed red lines mark the actual time interval until onwards transmission. Dashed red and dashed 
black lines mark the estimated inter-infection times. Consequently, the dashed black lines mark 
inter-infection times with no correspondence to onwards transmission. 
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